The singular sequence problem

WERNER TAFEL, JÜRGEN VOIGT, and JOACHIM WEIDMANN

Introduction

If *A* and *B* are bounded selfadjoint operators in a Hilbert space *H,* and *B—A* is compact, then *A* and *B* have the same essential spectrum.

This well-known result of H. WEYL [7] (cf. [1], section 94, Satz 1, [6], Satz 9.9) is easily proved by using Weyl's characterization of the essential spectrum by singular sequences. At the same time this proof shows that more is valid, namely: *A* and *B* have the same singular sequences. (For definitions see the end of the introduction.)

In this note we treat the question if the converse of this statement is valid, i.e.: *Let A and B be bounded selfadjoint operators with the same singular sequences. Is it possible to conclude that* $B - A$ *is compact?* We remark that we do not know the complete answer to this question. The purpose of this note is to present this problem and to give a positive answer in a special case.

We remark that a kind of converse of the above theorem of Weyl was proved

by VON NEUMANN [4] (cf. [1], section 94, Satz 3): If *A* and *B* are bounded selfadjoint operators in a separable Hilbert space, with the same essential spectrum, then there exists a unitary operator U such that $B-UAU^{-1}$ is compact. It is easy to see by examples that *B—A* need not be compact under this assumption; also *A* and *B* need not have the same singular sequences.

In Section 1 we review some results for unbounded operators in order to motivate the form in which we finally state the "singular sequence problem" for unbounded operators. In Section 2 we give a positive solution for the case that $\sigma(A)$ (or, equivalently, $\sigma_e(A)$) is countable. Here we need only that every singular sequence for *A* and *s* is also a singular sequence for *B* and *s.* In section 3 we show by an example that in the general case this assumption alone is not sufficient.

Received October 21, 1977.

We conclude the introduction by some basic facts and some notations. Let *A* be a selfadjoint operator in a Hilbert space H. The *essential spectrum* $\sigma_e(A)$ of A is the set consisting of the limit points of the spectrum $\sigma(A)$ of A and the eigenvalues of infinite multiplicity; this is just the set of the points of $\sigma(A)$ which are not isolated eigenvalues of finite multiplicity ([1], section 93, [3], section 1, [6], section 7.4). A real number *s* is in $\sigma_e(A)$ if and only if there is a *singular sequence for A and s*, i.e., a sequence (f_n) in $D(A)$ (the domain of definition of A) such that $\liminf ||f_n|| > 0$, $f_n - 0$, and $(A - s)f_n - 0$ ([7]; cf. [3], Theorem 11, [6], Satz 7.24). Let *B* also be a selfadjoint operator in *H*. If $D(A) \subset D(B)$, and for any $s \in \sigma_e(A)$ and any singular sequence (f_n) for A and s, (f_n) is also a singular sequence for B and s, then we say that $\sigma_e(A)$ is contained in $\sigma_e(B)$ in the sense of singular sequences, abbreviated $\sigma_{e}(A) \stackrel{S}{\subset} \sigma_{e}(B)$. Obviously, $\sigma_{e}(A) \stackrel{S}{\subset} \sigma_{e}(B)$ implies $\sigma_{e}(A) \subset \sigma_{e}(B)$. If $\sigma_{e}(A) \stackrel{S}{\subset} \sigma_{e}(B)$ s and $\frac{8}{2}$, $\frac{8}{2}$ $\sigma_e(A) = \sigma_e(B)$.
The singular sequence problem was posed by K. Jörgens in connection with

the work [3]. He gave this problem to W. TAFEL as the topic for his diploma thesis [5]. the work \mathbf{S} . Hence this problem to \mathbf{S} . This diplomatically for the topic for \mathbf{S} .

1. Statement of the problem

In order to give the first formulation of the problem for unbounded operators let us recall the statement of Weyl's theorem for unbounded operators (cf. [6], Satz 9.9): Let A be selfadjoint, V symmetric and A-compact. Then $B = A + V$ is selfadjoint **s** *and* $\sigma_e(A) = \sigma_e(B)$. The following example shows that the problem for unbounded operators cannot simply be the question if the converse of the foregoing statement is true.

1.1. Example. Let dim $H = \infty$, *A* selfadjoint with $\sigma_e(A) = \emptyset$, $B = 2A$. Then **s** obviously $\sigma_e(A) = \sigma_e(B)$, but $B - A = A$ is not A-compact.

We remark that from the assumption that V is A -compact one also concludes that V is A -bounded with A -bound zero ([2], Corollary V.3.8, [6], Satz 9.7). We include this in our first formulation of the problem for unbounded operators.

 \mathbf{s} 1.2. Problem. Let *A* and *B* be selfadjoint operators, $\sigma_e(A) = \sigma_e(B)$, $V = B - A$ A-bounded with \vec{A} -bound zero. Is it then possible to conclude that V is \vec{A} -compact?

Let us note that V is A -compact (A -bounded with A -bound zero) if and only if V is *B*-compact (*B*-bounded with *B*-bound zero); therefore Problem 1.2 is symmetric with respect to *A* and *B.*

In our second formulation of the problem for unbounded operators we do not want to assume the A -boundedness with A -bound zero. Instead of the A -compactness we want to conclude a "local" compactness of *V* ("local" with respect to the spectral measure of *A).*

1.3. Definition. Let A be a selfadjoint operator, with spectral measure E . An operator *V* is called *A-locally compact* if $R(E(J))\subset D(V)$ and *VE(J)* is compact for all compact intervals *J.*

Let us recall some known facts.

1.4. Theore m (cf. [6], Satz 9.8, Satz 9.11 b, c)'. *Let Abe a selfadjoint operator.*

a) *An operator Vis A-compact if and only if Vis A-locally compact and A-bounded with A-bound zero.*

b) *An A-bounded operator V is A-locally compact if and only if V is A^p -compact for some (and then for all)* $p > 1$.

1.5. Theorem (cf. [6], Satz 9.13). Let A and B be selfadjoint operators, $D(A)$ = $= D(B)$ *. Let* $V = B - A$ be A-locally compact. Then $\sigma_e(A) = \sigma_e(B)$ *.*

We conjecture that the converse of Theorem 1.5 is true.

s 1.6. Problem. Let A and B be selfadjoint operators, $\sigma_e(A) = \sigma_e(B)$. Is it then possible to conclude that $V = B - A$ is *A*-locally compact?

If the answer to Problem 1.6 is yes, then Theorem 1.4 shows that the answer to Problem 1.2 is also yes.

Also we remark that for bounded operators *A* and *B* Problems 1.2 and 1.6 are just the problem formulated in the introduction.

Finally let us note that both Theorem 1.5 and Problem 1.6 are symmetric with respect to *A* and *B.* To see this it is sufficient to show: If *A, B* are selfadjoint operators, $D(A) = D(B)$, then $V = B - A$ is A-locally compact if and only if V is B-locally compact. This statement follows from [6], Satz 9.11 b, c and Satz 9.12.

2. A special case

In this section let *A* and *B* be selfadjoint operators in a Hilbert space *H,* with $D(A) \subset D(B)$. Let *E* be the spectral measure of *A*.

2.1. Lemma. Let $s \in \mathbb{R}$ and $\epsilon > 0$. Assume that every singular sequence for A and s is also a singular sequence for B and s. Then there exist $\delta > 0$ and a finite dimen*sional subspace M of H such that for all* $f \in R(E((s - \delta, s + \delta))) \cap M^{\perp 1}$ *we have the inequality* $\|(B-A)f\|\leq \varepsilon \|f\|.$

^{&#}x27;) R **denotes range.**

Proof. We proceed by contradiction. So we can define inductively a sequence (f_n) in H , with the following properties:

$$
f_n \in R \left(E \left(\left(s - \frac{1}{n}, s + \frac{1}{n} \right) \right) \right)
$$
 (span $\{f_1, ..., f_{n-1}\}^{\perp}$, $||f_n|| = 1$, $||(B - A)f_n|| > \varepsilon$,

for all $n \in \mathbb{N}$. Obviously (f_n) is a singular sequence for A and s, and therefore by assumption also a singular sequence for *B* and *s*. This implies $\|(B-A)f_n\|$ \leq $||(B-s)f_n|| + ||(A-s)f_n|| \to 0$ ($n \to \infty$), in contradiction to $||(B-A)f_n|| > \varepsilon$ ($n \in \mathbb{N}$). \Box

2.2. Theorem. Assume that for some compact interval *J* the set $\sigma(A) \cap J$ is *countable and that every singular sequence for A and* $s \in J$ *is also a singular sequence for B and s. Then* $(B-A)E(J)$ *is compact.*

Proof. Let (f_n) be a sequence in *H* with $f_n \rightharpoonup 0$ and $||f_n|| \leq 1$ ($n \in \mathbb{N}$); we have to show $(B-A)E(J)f_n \to 0$.

Let $\varepsilon > 0$. Let $\sigma(A) \cap J = \{s_1, s_2, ...\}$. (We disregard the trivial case $\sigma(A) \cap$ $\bigcap J = \emptyset$.) For s_j and $\epsilon 2^{-j}$, $j \in \mathbb{N}$, we choose δ_j and M_j according to Lemma 2.1. Then $\sigma(A) \cap J \subset \bigcup_{i=1}^{\infty} J_i$, where $J_i := (s_i - \delta_i, s_i + \delta_i)$, and by the compactness of $\sigma(A) \cap J$ we find $m \in \mathbb{N}$ such that $\sigma(A) \cap J \subset \bigcup_{i=1}^{m} J_i$.

For $j=1,..., m$ define $K_j:=J_j\setminus\bigcup J_j$. Then $\sigma(A)\cap J\subset\bigcup K_j$, and $K_1,...$ *i* = *l i* = *l i* = *l i* = *l i* = *l i n[/]* projections onto $R(E(K_j))$, $R(E(K_j)) \cap M_j^{\perp}$, and define $P_j'' = P_j - P_j'$. P_j'' is finite
dimensional because $R(P_j'') - \overline{P_j}A_j''$ and M best finite dimension. Now we do dimensional because $R(P_i') = \overline{P_i M_i}$, and M_i has finite dimension. Now we decompose

$$
E(J) = \sum_{j=1}^{m} P_j E(J) = \sum_{j=1}^{m} P'_j E(J) + P,
$$

where $P = \sum_{j=1}^{m} P''_j E(J)$ is finite dimensional and therefore compact. Also the assumptions imply that $(B-A)E(J)$ is a bounded operator, and so $(B-A)P=(B-A)E(J)P$ is compact. This implies

 $\limsup \| (B-A)E(J)f_n \|$

$$
\leq \sum_{j=1}^{m} \limsup_{h \to 1} \|(B-A)P'_jE(J)f_n\| + \limsup_{h \to 1} \|(B-A)Pf_n\|
$$

$$
\leq \sum_{j=1}^{m} \limsup_{h \to 1} (\varepsilon 2^{-j}) \|P'_jE(J)f_n\| + 0 \leq \varepsilon \sum_{j=1}^{m} 2^{-j} < \varepsilon.
$$

This shows $(B-A)E(J)f_n \to 0$ $(n \to \infty)$. \Box

s 2.3. Corollary. Let $\sigma_e(A) \subset \sigma_e(B)$, and assume that $\sigma(A)$ is countable. Then *B—A is A-locally compact.*

Proof. By Theorem 2.2 $(B-A)E(J)$ is compact for each compact interval J. \Box

We note that Corollary 2.3 applies especially to the case that *A* has purely discrete spectrum, i.e., $\sigma_e(A) = \emptyset$.

3. An example

In this section we show by an example that in the general setting of Problem 1.6 the assumption $\sigma_e(A) \stackrel{s}{=} \sigma_e(B)$ cannot be replaced by $\sigma_e(A) \stackrel{s}{\subset} \sigma_e(B)$, as was done in the special case of Corollary 2.3.

3.1. Example. We are going to construct bounded selfadjoint operators A and *V* with the properties:

(i)
$$
V
$$
 is not compact,

- (ii) $\sigma_e(A) \stackrel{S}{\subset} \sigma_e(A+V)$,
- (iii) $[0, 1] = \sigma_e(A) \neq \sigma_e(A + V).$

Property (iii) shows that the example is not a counterexample to Problem 1.6.

We take the Hilbert space $H = L_2(0, 1)$, and as A we take the multiplication by the independent variable, $Af(x) = xf(x)$. The spectral measure of *A* is then given by $E(\Sigma)f=\chi_{\Sigma} \cdot f$ (Σ Borel set of **R**). Also $\sigma_e(A)=\sigma(A)=[0, 1].$

To construct *V*, we define the function $\psi: (0, \infty) \rightarrow \mathbb{R}$ by

$$
\psi(x) = (-1)^m \quad \text{for} \quad m < x \leq m+1; \quad m \in \mathbb{N}_0
$$

 $(N_0 = \{0, 1, 2, ... \})$, and we define $v_m \in L_2(0, 1)$ by $v_m(x) := \psi(2^m x)$ for $m \in N_0$; clearly (v_m) is an orthonormal sequence. We define V to be the orthogonal projection onto the subspace spanned by $\{v_m; m \in \mathbb{N}_0\}$, i.e. $Vf = \sum_{m=0}^{\infty} \langle v_m, f \rangle v_m$. Now we show that (i) , (ii) , (iii) are valid.

(i) is obvious.

(ii) Let $s \in [0, 1] = \sigma_e(A)$, and let (f_n) be a singular sequence for A and s. We are done if we show $Vf_n \rightarrow 0$. Without restriction we may assume $||f_n|| \le 1$. Let $\epsilon > 0$. There exist $m' \in \mathbb{N}_0$, $p, q \in \mathbb{Z}$, $p < q$, such that $s \in J := (p/2^{m'}, q/2^{m'}), (q-p)/2^{m'} \leq$ $\leq \varepsilon^2$. From $(A-s)f_n \to 0$ we obtain $(I-E(J))f_n \to 0$, and therefore $V(I-E(J))f_n \to 0$. Next, we define $v'_m := E(J)v_m = \chi_J \cdot v_m$ ($m \in \mathbb{N}_0$). It is easy to see from the definition of the v_m that $(v'_m)_{m \ge m'}$ is an orthogonal sequence in $L_2(0, 1)$ with $0 < ||v'_m||^2 \le \varepsilon^2$. In

$$
VE(J)f = \sum_{m=0}^{\infty} \langle v_m, E(J)f \rangle v_m = \sum_{m=0}^{m'-1} \langle v'_m, f \rangle v_m + \sum_{m=m'}^{\infty} \langle v'_m, f \rangle v_m
$$

.12

we estimate

$$
\left\|\sum_{m=m'}^{\infty}\langle v'_m, f\rangle v_m\right\|^2 = \sum_{m=m'}^{\infty}|\langle v'_m, f\rangle|^2 = \sum_{m=m'}^{\infty}||v'_m||^2|\langle v'_m||v'_m||, f\rangle|^2 \leq \varepsilon^2||f||^2.
$$

This estimate together with $\langle v'_m, f_n \rangle \rightarrow 0$ ($n \rightarrow \infty$) for all $m \in N_0$ implies

 $\limsup \|VE(J)f_n\| \leq \varepsilon$,

 $\limsup \|V f_n\| \leq \limsup \|V E(J) f_n\| + \limsup \|V(I - E(J)) f_n\| \leq \varepsilon + 0.$

This shows $Vf_n \to 0$.

(iii) Consider the sequence $(v_m)_{m \in N_0}$. It is orthonormal, and therefore $v_m \to 0$. Also,

$$
\langle v_m, (A+V)v_m \rangle = \langle v_m, Av_m \rangle + \langle v_m, Vv_m \rangle = \int_0^1 x \, dx + ||v_m||^2 = 3/2.
$$

Now the following lemma shows that there exists $s \in \sigma_e(A + V)$ with $s \geq 3/2$.

3.2. Lemma. Let A be a bounded selfadjoint operator, E its spectral measure. *Let* $s \in \mathbb{R}$. If there exists a sequence (f_n) in H with $f_n \to 0$, $||f_n|| = 1$ ($n \in \mathbb{N}$), such that $\limsup \langle f_n, Af_n \rangle \geq s$, then $\sigma_e(A) \cap [s, \infty) \neq \emptyset$.

Proof. If we assume $\sigma_e(A) \cap [s, \infty) = \emptyset$, then there exists $\varepsilon > 0$ such that $E((s-\varepsilon, \infty))$ is a finite dimensional projection. This would imply

$$
\limsup_{n \to \infty} \langle f_n, Af_n \rangle
$$

\n
$$
\leq \limsup_{n \to \infty} \langle E((-\infty, s-\varepsilon)]f_n, Af_n \rangle + \limsup_{n \to \infty} \langle E((s-\varepsilon, \infty))f_n, Af_n \rangle
$$

\n
$$
\leq (s-\varepsilon) \limsup_{n \to \infty} ||E((-\infty, s-\varepsilon)]f_n||^2 + 0 = s-\varepsilon,
$$

in contradiction with the assumption $\limsup \langle f_n, Af_n \rangle \geq s.$ \Box

References

- **[1] N . I. ACHIESER and I. M . GLASMANN,** *Theorie der linearen Operatoren im Hilbert-Raum, 5.* **Aufl., Akademie-Verlag (Berlin, 1968).**
- **[2] S. GOLD BERG,** *Unbounded Linear Operators,* **McGraw-Hill (New York, 1966).**
- **[3] K . JÖRGENS and J. WEIDMANN,** *Spectral Properties of Hamiltonian Operators,* **Lecture Notes in Mathematics, vol. 313, Springer-Verlag (Berlin/Heidelgerg/New York, 1973).**
- **[4] J. VON NEUMANN,** *Charakterisierung des Spektrums eines Integraloperators,* **Actualités Sei. Ind., 229 (1953), 1—20.**
- **[5] W . TAFEL,** *Kriterien für die (relative) Kompaktheit der Differenz zweier selbstadjungierter Operatoren,* **Diplomarbeit (München, 1974) (unpublished).**
- **[6] J. WEIDMANN,** *Lineare Operatoren in Hilberträumen,* **B. G. Teubner (Stuttgart, 1976).**
- **[7] H. WEYL, Über beschränkte quadratische Formen, deren Differenz vollstetig ist,** *Rend. Cire. Mat. Palermo* **27 (1909), 373—392.**

