Necessary and sufficient conditions for imbedding of classes of functions

J. NÉMETH

Dedicated to Professor Béla Szőkefalvi-Nagy on his 65th birthday

1. Let $\Psi(p)$ (p>1) denote the family of non-negative functions $\psi(u)$ on $(0, \infty)$ such that $\frac{\psi(u)}{u}$ is non-decreasing and $\frac{\psi(u)}{u^p}$ is non-increasing, and let $\Psi:=\bigcup_{p>1}\Psi(p)$. Let $\Psi_+(p)$ (p>1) denote the family of non-negative functions $\psi_+(u)$ on $(0, \infty)$ such that $\frac{\psi_+(u)}{u^p}$ is non-decreasing, while for any p'>p, $\frac{\psi_+(u)}{u^p}$ is non-increasing, and let $\Psi_+:=\bigcup_{p>1}\Psi_+(p)$; furthermore let $\Psi_-(p)$ (0< p<1) denote the family of non-negative functions $\psi_-(u)$ on $(0, \infty)$ such that $\frac{\psi_-(u)}{u^p}$ is non-increasing, while for any p', 0< p'< p, $\frac{\psi_-(u)}{u^p}$ is non-decreasing, and let $\Psi_-:=\bigcup_{0< p<1}\Psi_-(p)$.

Let P=P(C) $(C \ge 1)$ denote the family of non-negative and continuous functions $\varrho(u)$ on $(0, \infty)$ which are non-decreasing and satisfy $\varrho(u^2) \le C \cdot \varrho(u)$ on $[1, \infty)$, while on (0, 1] are defined by $\varrho(u) = \varrho\begin{pmatrix} 1 \\ u \end{pmatrix}$, and for 0 by $\varrho(0) = 0$; and let $P:=\bigcup_{C \ge 1} P(C)$.

Let $\Lambda(M)$ denote the family of non-negative monotonic sequences $\lambda = \{\lambda_K\}_1^\infty$ such that $\lambda_{k2} \leq M \lambda_k$, and let $\Lambda := \bigcup_{M>0} \Lambda(M)$, and for $\lambda \in \Lambda$ let $\lambda(u)$ denote the function $\lambda(u) = \sum_{k=1}^{\lfloor u \rfloor} \frac{\lambda_k}{k}$ for $u \geq 1$, $\lambda(u) = \lambda \left(\frac{1}{u}\right)$ for $0 < u \leq 1$ and $\lambda(0) = 0$.

For $\varrho \in P$ let ϱ_1 and ϱ_2 denote the functions which are equal to $\varrho(u)$ on $1 \le u < \infty$ and $0 \le u < 1$ respectively, and equal to 0 elsewhere on $[0, \infty)$.

For $\lambda \in \Lambda$ we define the functions λ_1 and λ_2 in an analogous way.

For a non-negative, piecewise continuous function σ on $(0, \infty)$ we denote by $\sigma(L[a, b])$ $(0 \le a < b \le \infty)$ the set of measurable functions f on (a, b) for which

Received October 17, 1977.

318 J. Németh

 $\int_{a}^{b} \sigma(|f(x)|) dx < \infty.$ In the case [a, b] = [0, 1] we simply write $\sigma(L)$ instead of $\sigma(L[0, 1])$.

If φ is a non-negative, continuous and strictly monotonic function on $(0, \infty)$ and if $f \in \varphi(L[a, b])$ then the modulus of continuity of f with respect to φ is defined by

$$\omega_{\varphi}(\delta; f) = \sup_{0 \le h \le \delta} \bar{\varphi} \left(\int_{a}^{b-h} \varphi(|f(x+h) - f(x)|) dx \right) \quad (0 < \delta \le b - a)$$

and if $f \in \varphi(L(0, \infty))$ we also define

$$\hat{\omega}_{\varphi}(\delta;f) = \bar{\varphi}\left(\int_{1/\delta}^{\infty} \varphi(|f(x)|) dx\right), \quad \tilde{\omega}_{\varphi}(\delta;f) = \omega_{\varphi}(\delta;f) + \hat{\omega}_{\varphi}(\delta;f),$$

where $\bar{\varphi}$ denotes the inverse of φ .

Let f^* denote a non-increasing function, equidistributed with |f|, that is, such that

$$\operatorname{mes} \{x \colon x \in [a, b], |f(x)| > y\} = \operatorname{mes} \{z \colon z \in [a, b], f^*(z) > y\}.$$

2. Recently many papers deal with imbedding problems. Among others UL'JANOV [10], [11], [12] gave conditions which assure that a function $f \in L^p$ $(p \ge 1)$ should belong to another space L^v (v > p). Leindler [2] generalized this result and gave conditions assuring the transition from L^p to $L^p(\ln^+ L)^\beta$ and from L^p to $\psi(L)$ where $\psi \in \Psi$; and in [3] the latter results were further generalized. More precisely he proved:

Theorem A. (Leindler [3], Theorem 2) Let φ , $\psi \in \Psi$, and let ϱ be a non-negative, non-decreasing, continuous function with

$$\sum_{k=m}^{\infty} \frac{\varrho(k)}{k^2} \le K \frac{\varrho(m)}{m}.$$

Then $f \in \varphi(L)$ and

$$\sum_{n=1}^{\infty} \frac{\varrho(n)}{n^2} \left(\psi \circ \overline{\varphi} \circ n\varphi \right) \left(\omega_{\varphi} \left(\frac{1}{n}; f \right) \right) < \infty$$

imply $f \in \psi(L) \varrho(L)$.

STOROŽENKO [9] gave necessary conditions, in terms of the modulus of continuity $\omega_p(\delta; f^*)$, that a function $f \in L^p$ should belong to the class $L^q \varrho_1(L)$ (q > p), where $\varrho \in P$ is absolutely continuous on any interval (0, A), $A \ge 1$. She proved:

Theorem B. ([9], Theorem 1) If $\varrho \in P$ and $f \in L^q \varrho_1(L)$, then

(1)
$$\int_0^1 x^{-q/p} \omega_p^q(x; f^*) \varrho_1\left(\frac{1}{x}\right) dx < \infty \quad \text{for} \quad q > p \ge 1$$

and

(2)
$$\int_0^1 x^{-2} \omega_p^p(x; f^*) \varrho_1'\left(\frac{1}{x}\right) dx < \infty \quad \text{for} \quad q = p \ge 1.$$

Later Leindler [5] gave a generalization of (2) and certain converse of Theorem A which is similar to (1), that is, he proved:

Theorem C. ([5], Theorem 1) If $\varphi \in \Psi$, $\lambda \in \Lambda$ and $f \in \varphi(L) \lambda_1(L)$ then

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \, \varphi\left(\omega_{\varphi}\left(\frac{1}{n}; f^*\right)\right) < \infty.$$

Answering a problem of Leindler we gave a necessary condition in terms of the modulus of continuity $\omega_{\varphi}(\delta; f^*)$ that f should belong to $\psi(L)\varrho_1(L)$ where $\psi \in \Psi$, $\varrho \in P$. Namely we proved:

Theorem D. ([8]) Let $\varphi, \psi \in \Psi$ and $\varrho \in P$. Suppose that $\psi \circ \overline{\varphi}$ belongs to Ψ_+ . If $f \in \psi(L)\varrho_1(L)$ then we have

$$\sum_{n=1}^{\infty} \frac{\varrho(n)}{n^2} \left(\psi \circ \overline{\varphi} \circ n\varphi \right) \left(\omega_{\varphi} \left(\frac{1}{n}; f^* \right) \right) < \infty.$$

We remark that all of the above mentioned results are valid on the interval [0, 1].

UL'JANOV [12], GAĬMNASAROV [1] and the present author [7] have gave sufficient conditions for imbedding of classes of functions on the interval $(0, \infty)$ which are similar to the results concerning the interval [0, 1].

In this paper we prove a theorem concerning the interval $(0, \infty)$ which is similar to above mentioned results and gives necessary and sufficient conditions for general imbedding problems.

Theorem. Let $\varphi \in \Psi$, $\varrho \in P$ and $f \in \varphi(L(0, \infty))$. If $\psi \in \Psi$ is such that $\psi \circ \overline{\varphi} \in \Psi_+$ then we have

(3)
$$f \in \psi(L(0, \infty)) \varrho(L(0, \infty))$$

if and only if

(4)
$$\sum_{n=1}^{\infty} \frac{\varrho(n)}{n^2} (\psi \circ \overline{\varphi} \circ n\varphi) \left(\omega_{\varphi} \left(\frac{1}{n}; f^* \right) \right) < \infty.$$

If $\psi \in \Psi$ is such that $\psi \circ \overline{\varphi} \in \Psi_+$ then

(5)
$$f \in \psi(L(0, \infty)) \varrho(L(0, \infty))$$

if and only if

(6)
$$\sum_{n=1}^{\infty} \varrho(n) \left(\psi \circ \overline{\varphi} \circ \frac{1}{n} \varphi \right) \left(\hat{\omega}_{\varphi} \left(\frac{1}{n}; f^* \right) \right) < \infty.$$

If $\lambda \in \Lambda$ then

(7)
$$f \in \varphi(L(0, \infty)) \lambda(L(0, \infty))$$

if and only if

(8)
$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \varphi \left(\tilde{\omega}_{\varphi} \left(\frac{1}{n}; f^* \right) \right) < \infty.$$

Corollary. Let $f \in L^p(0, \infty)$, $p \ge 1$, $\varrho \in P$. If v > p then $f \in L^v(0, \infty) \varrho(L(0, \infty))$ if and only if

$$\sum_{n=1}^{\infty} \varrho(n) n^{\nu/p-2} \omega_p^{\nu} \left(\frac{1}{n}; f^*\right) < \infty.$$

If $1 \le v < p$ then $f \in L^{v}(0, \infty) \varrho(L(0, \infty))$ if and only if

$$\sum_{n=1}^{\infty} \varrho(n) n^{-\nu/p} \hat{\omega}_{p}^{\nu} \left(\frac{1}{n}; f^{*}\right) < \infty.$$

If $\lambda \in \Lambda$ then $f \in L^p \lambda(L)$ if and only if

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \, \tilde{\omega}_p^p \left(\frac{1}{n}; f^* \right) < \infty.$$

3. We require the following lemmas

Lemma 1. ([13] p. 29) If χ is a non-negative non-decreasing function on $(0, \infty)$ then

(9)
$$\int_{0}^{1} (\chi \circ |f|)(x) dx = \int_{0}^{1} (\chi \circ f^{*})(x) dx.$$

Lemma 2. ([5], Lemma 2) If $\psi \in \Psi$ and $\varrho \in P$ then

(10)
$$\int_{0}^{1} ((\psi \varrho_{1}) \circ f^{*})(x) dx < \infty$$

implies

(11)
$$\int_{0}^{1} (\psi \circ f^{*})(x) \varrho_{1}\left(\frac{1}{x}\right) dx < \infty.$$

Lemma 3. ([8], Lemma 6) If $\psi_+ \in \Psi_+$ and

$$\varrho \in P$$
, $f(x) \ge 0$, $F(x) = \int_0^x f(t) dt$ then

(12)
$$\int_0^1 \varrho_1\left(\frac{1}{x}\right)\psi_+\left(\frac{F(x)}{x}\right)dx \leq K(\psi_+)\int_0^1 \varrho_1\left(\frac{1}{x}\right)(\psi_+\circ f)(x)\,dx.$$

Lemma 4. If $\psi \in \Psi$, $\varrho \in P$ then

(13)
$$\int_{0}^{\infty} ((\psi \varrho) \circ f^{*})(x) dx < \infty \Leftrightarrow \int_{0}^{\infty} ((\psi \varrho) \circ |f|)(x) dx < \infty.$$

The proof of this lemma is by an easy application of (9), using the definition of f^* and the properties of ψ and ϱ .

Lemma 5. If $\psi \in \Psi$ and $f \in \psi(L(0, \infty))$ then

(14)
$$\psi\left(\omega_{\psi}\left(\frac{1}{n};f^{*}\right)\right) \leq \int_{0}^{1/n} (\psi \circ f^{*})(x) dx.$$

The proof is similar to that of Lemma 3 of Leindler [5].

Lemma 6. If the non-negative sequence $\{a_n\}$ is quasi-decreasing $(a_{n+j} \le K \cdot a_n)$ for any n and $j \le n$, and if $\{\lambda_k\}$ is a non-negative sequence and $\psi_- \in \Psi_-$ then

(15)
$$\sum_{n=1}^{\infty} \lambda_n \psi_{-} \left(\sum_{k=n}^{\infty} a_k \right) \leq M \sum_{n=1}^{\infty} \frac{\psi_{-} (n \cdot a_n)}{n} \left(n \cdot \lambda_n + \sum_{k=1}^{n} \lambda_k \right).$$

This is a trivial generalization of the inequality (4) of LEINDLER [4].

Lemma 7. Let $\psi \in \Psi$ and $\varrho \in P$. Then we have

(16)
$$\int_{0}^{\infty} ((\psi \varrho_{2}) \circ f^{*})(x) dx < \infty$$

if and only if

(17)
$$\int_{0}^{\infty} (\psi \circ f^{*})(x) \varrho_{2}\left(\frac{1}{x}\right) dx < \infty.$$

Proof. Let $\psi \in \Psi(p)$, p > 1. (16) implies $\sum_{n=1}^{\infty} (\psi \circ f^*)(n) < \infty$ and since $(\psi \circ f^*)(n) \downarrow$ we get $(n\psi \circ f^*)(n) = 0(1)$, whence

(18)
$$\sum_{n=1}^{\infty} (\psi \circ f^*)(n) \varrho_2\left(\frac{1}{n}\right) \leq K \sum_{n=1}^{\infty} \left((\psi(\varrho_2 \circ \psi)) \circ f^*\right)(n) = \sum_1.$$

Applying the following properties of ϱ_2 and ψ

$$(\varrho_2 \circ \psi)(u) \leq K_1 \varrho_2(u^p) \leq K_1 \varrho_2(u)$$

we obtain

$$\sum_{1} \leq K_{3} \sum_{n=1}^{\infty} ((\psi \varrho_{2}) \circ f^{*})(n),$$

which by (18) proves the statement (16) \Rightarrow (17).

J. Németh

To prove (17) \Rightarrow (16) we mention that from the properties of ϱ_2 it follows

$$\sqrt{t}\varrho_2(t) \to 0$$
 if $t \to 0_+$

(see for example [11] p. 664), therefore we can write

$$\sum_{n=1}^{\infty} ((\psi \varrho_2) \circ f^*)(n) \leq K_1 \sum_{(\psi \circ f^*)(n) < n^{-4}} \sqrt{(\psi \circ f^*)}(n) + K_2 \sum_{(\psi \circ f^*)(n) \geq n^{-4}} (\psi \circ f^*)(n) \varrho_2(n^{-4}) \leq K_3 + K_4 \sum_{n=1}^{\infty} (\psi \circ f^*)(n) \varrho_2(n^{-1}),$$

which gives the statement.

L'emma 8. If $\psi_{-} \in \Psi_{-}$, $\varrho \in P$ and $a_K \ge 0$ then

(19)
$$\sum_{n=1}^{\infty} \varrho(n)\psi_{-}\left(\frac{1}{n}\sum_{k=n}^{\infty} a_{k}\right) \geq K\sum_{n=1}^{\infty} \varrho(n)\psi_{-}(a_{n}).$$

Proof. Let $\psi \in \Psi_{-}(p)$, 0 . Using

(20)
$$\psi_{-}(tx) = \frac{\psi_{-}(tx)}{(tx)^{p}} (tx)^{p} \ge \frac{\psi_{-}(x)}{x^{p}} t^{p} x^{p} = \psi_{-}(x) t^{p} \quad \text{if} \quad t \le 1, \ x > 0;$$

and applying the inequality (see [6], (11))

$$K \cdot \sum_{n=1}^{\infty} \lambda_n \psi \left(\sum_{k=n}^{\infty} a_k \right) \ge \sum_{n=1}^{\infty} \lambda_n \psi \left(\frac{a_n}{\lambda_n} \sum_{k=1}^{n} \lambda_k \right)$$

with $\lambda_n = \varrho(n)n^{-p}$ and $\psi = \psi_-$ we get for an arbitrary integer l that

(21)
$$\sum_{n=1}^{l} \varrho(n)\psi_{-}\left(\frac{1}{n}\sum_{k=n}^{\infty} a_{k}\right) \geq \sum_{n=1}^{l} \varrho(n)\frac{1}{n^{p}}\psi_{-}\left(\sum_{k=n}^{l} a_{k}\right) \geq K_{1}\sum_{n=1}^{l} \frac{\varrho(n)}{n^{p}}\psi_{-}\left(\frac{a_{n}}{\varrho(n)}n^{p}\sum_{k=1}^{n} \frac{\varrho(k)}{k^{p}}\right) = S_{1}.$$

Since from the properties of ϱ it follows that

$$\sum_{k=1}^{n} \frac{\varrho(k)}{k^{p}} \ge K_{2} \varrho(n) n^{1-p}$$

we can write

(22)
$$S_1 \ge K_3 \sum_{n=1}^{l} \frac{\varrho(n)}{n^p} \psi_{-}(n \cdot a_n) = S_2.$$

By

(23)
$$\psi_{-}(tx) = \frac{\psi_{-}(tx)}{(tx)^{p'}} (tx)^{p'} \ge \frac{\psi_{-}(x)}{x^{p'}} t^{p'} x^{p'} = \psi_{-}(x) t^{p'} \text{ if } x > 0, t \ge 1, p' < p,$$

choosing p'_i such that $0 < p'_i < p$ and $l^{p-p'_i} < 2$, we have

(24)
$$S_2 \ge K_4 \sum_{n=1}^{l} \varrho(n) \frac{n^{p'_l}}{n^p} \psi_{-}(a_n) \ge K_5 \sum_{n=1}^{l} \varrho(n) \psi_{-}(a_n).$$

Collecting (21), (22) and (24) we get (19).

Lemma 9. If $\psi_- \in \Psi_-$, $\varrho \in P$ and $\{a_k\}$ is a non-negative non-increasing sequence then

(25)
$$\sum_{n=1}^{\infty} \varrho(n)\psi_{-}\left(\frac{1}{n}\sum_{k=n}^{\infty} a_{k}\right) \leq K\sum_{n=1}^{\infty} \varrho(n)\psi_{-}(a_{n}).$$

Proof. Let $\psi_- \in \Psi_-(p)$, 0 , and let <math>l be an arbitrary integer and $0 < p'_l < p$ such that $l^{p-p'_l} < 2$; then applying (15) with $\lambda_n = \varrho(n) n^{-p'_l}$ (20) and (23) we get

$$\sum_{n=1}^{l} \varrho(n) \psi_{-} \left(\frac{1}{n} \sum_{k=n}^{l} a_k \right) \leq M \sum_{n=1}^{l} \varrho(n) \frac{1}{n^{p_i^{\prime}}} \psi_{-} \left(\sum_{k=n}^{l} a_k \right) \leq$$

$$\leq \frac{M_1}{1-p'} \sum_{n=1}^{l} \frac{\psi_{-}(n \cdot a_n)}{n^{p'_{l}}} \varrho(n) \leq \frac{M_1}{1-p'} \sum_{n=1}^{l} \psi_{-}(a_n) \frac{n^{p}}{n^{p'_{l}}} \varrho(n) \leq M_2 \sum_{n=1}^{l} \psi_{-}(a_n) \varrho(n).$$

If $l \rightarrow \infty$ we obtain (25).

Proof of Theorem.

Implication (4)⇒(3) follows from Theorem 2 of [7], applying Lemma 4.

To prove (3)⇒(4) we apply Lemma 3 and Lemma 5 so we get

$$\sum_{n=1}^{\infty} \frac{\varrho(n)}{n^2} (\psi \circ \overline{\varphi} \circ n\varphi) \left(\omega_{\varphi} \left(\frac{1}{n}; f^* \right) \right) \leq \sum_{n=1}^{\infty} \frac{\varrho(n)}{n^2} (\psi \circ \overline{\varphi}) \left(n \cdot \int_{0}^{1/n} (\varphi \circ f^*)(x) \, dx \right) \leq \sum_{n=1}^{\infty} \frac{\varrho(n)}{n^2} (\psi \circ \overline{\varphi}) \left(n \cdot \int_{0}^{1/n} (\varphi \circ f^*)(x) \, dx \right) \leq \sum_{n=1}^{\infty} \frac{\varrho(n)}{n^2} (\psi \circ \overline{\varphi}) \left(n \cdot \int_{0}^{1/n} (\varphi \circ f^*)(x) \, dx \right) \leq \sum_{n=1}^{\infty} \frac{\varrho(n)}{n^2} (\psi \circ \overline{\varphi}) \left(n \cdot \int_{0}^{1/n} (\varphi \circ f^*)(x) \, dx \right)$$

$$\leq K_1 \int_0^1 \varrho\left(\frac{1}{x}\right) (\psi \circ \overline{\varphi}) \left(\frac{1}{x} \int_0^x (\varphi \circ f^*)(t) dt\right) dx \leq K_2 \int_0^1 \varrho\left(\frac{1}{x}\right) (\psi \circ f^*)(x) dx.$$

Hence, using Lemmas 2 and 4, the statement follows.

To prove (6) \Rightarrow (5) we apply that from the properties of $\psi \circ \bar{\varphi}$ and ϱ we have

(26)
$$\psi(u)\varrho(u) \leq K\varphi(u)$$

if u is large enough, furthermore applying Lemma 8 we get

$$\int_{0}^{\infty} (\psi \circ f^{*})(x) \varrho\left(\frac{1}{x}\right) dx = K_{1} + K_{2} \sum_{n=1}^{\infty} \varrho(n)(\psi \circ \overline{\varphi} \circ \varphi \circ f^{*})(n) \leq$$

$$\leq K_{1} + K_{3} \sum_{n=2}^{\infty} \varrho(n)(\psi \circ \overline{\varphi}) \left(\frac{1}{n} \sum_{k=n}^{\infty} (\varphi \circ f^{*})(k)\right) \leq$$

$$\leq K_{1} + K_{4} \sum_{n=1}^{\infty} \varrho(n)(\psi \circ \overline{\varphi}) \left(\frac{1}{n} \hat{\omega}_{\varphi} \left(\frac{1}{n}; f^{*}\right)\right).$$

Using Lemmas 4 and 7, and (26) we get that $(6) \Rightarrow (5)$.

The proof of $(5) \Rightarrow (6)$ runs similarly to that of $(6) \Rightarrow (5)$ using Lemma 9 instead of Lemma 8.

To prove $(8) \Rightarrow (7)$ we remark, first of all, that from [7] Theorem 1, and from Lemma 4 of the present paper we get

(27)
$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \varphi \left(\omega_{\varphi} \left(\frac{1}{n}; f^* \right) \right) < \infty \Rightarrow f \in \varphi(L(0, \infty)) \lambda_1(L(0, \infty)).$$

To prove

(28)
$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \varphi \left(\hat{\omega}_{\varphi} \left(\frac{1}{n}; f^* \right) \right) < \infty \Rightarrow f \in \varphi \left(L(0, \infty) \right) \lambda_2 \left(L(0, \infty) \right)$$

let $[\alpha_n, \alpha_{n+1})$ denote the interval of values x for which $\frac{1}{(n+1)^2} < f^*(x) \le \frac{1}{n^2}$ $(\alpha_0 = 0)$. If we apply the properties of λ and, furthermore, the property

(29)
$$\varphi(tx) \leq t\varphi(x) \quad (x > 0, \ 0 < t \leq 1)$$

of φ then we get

$$\int_{0}^{\infty} ((\varphi \lambda_{2}) \circ f^{*})(x) dx \leq K \sum_{n=0}^{\infty} \int_{a_{n}}^{a_{n+1}} (\psi \circ f^{*})(x) dx \sum_{k=1}^{n} \frac{\lambda_{k}}{k} \leq$$

$$\leq K_{1} + K_{2} \sum_{k=1}^{\infty} \frac{\lambda_{k}}{k} \left\{ \int_{a_{k}}^{k} (\varphi \circ f)(x) dx + \int_{k}^{\infty} (\varphi \circ f^{*})(x) dx \right\} \leq$$

$$\leq K_{1} + K_{3} \sum_{k=1}^{\infty} \frac{\lambda_{k}}{k} \cdot k \cdot \frac{1}{k^{2}} + K_{4} \sum_{k=1}^{\infty} \frac{\lambda_{k}}{k} \varphi \left(\hat{\omega}_{\varphi} \left(\frac{1}{k}; f^{*} \right) \right) \leq$$

$$\leq K_{5} + K_{6} \sum_{k=1}^{\infty} \frac{\lambda_{k}}{k} \varphi \left(\hat{\omega}_{\varphi} \left(\frac{1}{k}; f^{*} \right) \right).$$

Hence we get (28), and by (27) and (28), applying Lemma 4 we have $(8) \Rightarrow (7)$.

To prove $(7) \Rightarrow (8)$ we show that

(30)
$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \varphi \left(\omega_{\varphi} \left(\frac{1}{n}; f^* \right) \right) \leq K \int_{0}^{\infty} (\varphi \circ f^*)(x) \lambda_1 \left(\frac{1}{x} \right) dx$$

and

(31)
$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \varphi \left(\hat{\omega}_{\varphi} \left(\frac{1}{n}; f^* \right) \right) \leq K \int_0^{\infty} (\varphi \circ f^*)(x) \lambda_2 \left(\frac{1}{x} \right) dx.$$

Now, (30) follows by Lemma 5, namely

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \varphi \left(\omega_{\varphi} \left(\frac{1}{n}; f^* \right) \right) \leq \sum_{n=1}^{\infty} \frac{\lambda_n}{n} \sum_{k=n}^{\infty} \int_{\frac{1}{k+1}}^{\frac{1}{k}} (\varphi \circ f^*)(x) dx \leq$$

$$\leq 2 \sum_{n=1}^{\infty} \frac{\lambda_n}{n} \sum_{k=n}^{\infty} \frac{1}{k^2} (\varphi \circ f^*) \left(\frac{1}{k} \right) = 2 \sum_{k=1}^{\infty} \frac{1}{k^2} (\varphi \circ f^*) \left(\frac{1}{k} \right) \lambda_1(k) \leq$$

$$\leq K \int_{0}^{1} (\varphi \circ f^*)(x) \lambda_1 \left(\frac{1}{x} \right) dx.$$

The proof of (31) runs as follows

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \varphi \left(\hat{\omega}_{\varphi} \left(\frac{1}{n}; f^* \right) \right) = \sum_{n=1}^{\infty} \frac{\lambda_n}{n} \sum_{k=n}^{\infty} \int_{k}^{k+1} (\varphi \circ f^*)(x) \, dx \le$$

$$\leq \sum_{n=1}^{\infty} \frac{\lambda_n}{n} \sum_{k=n}^{\infty} (\varphi \circ f^*)(k) = \sum_{k=1}^{\infty} (\varphi \circ f^*)(k) \lambda_2 \left(\frac{1}{k} \right) \le$$

$$\leq 2 (\varphi \circ f^*)(x) \lambda_2 \left(\frac{1}{x} \right) dx.$$

So from (30) and (31), and applying Lemmas 2, 4 and 7, we get $(7) \Rightarrow (8)$. Thus our Theorem is completely proved.

References

- [1] Г. Гаймназаров, Теорема вложения для $L_p(-\infty,\infty)$ классов функций, Изв. ВУЗ, сер. мат., 4 (119) (1972), 44—54.
- [2] L. Leindler, On embedding of classes H_p^{ω} , Acta Sci. Math., 31 (1970), 13—31.
- [3] L. LEINDLER, On imbedding theorems, Acta Sci. Math., 34 (1973), 231-244.
- [4] L. Leindler, Inequalities of the Hardy—Littlewood type, Analysis Math., 2 (1972), 117—123.
- [5] L. Leindler, Necessary conditions for imbedding of classes of functions, Analysis Math., 1 (1975), 55—61.

- 326
- [6] J. NÉMETH, Generalization of the Hardy-Littlewood inequality. II, Acta Sci. Math., 35 (1973),
- [7] J. NÉMETH, Note on imbedding theorems, Publ. Math. Debrecen (to appear).
- [8] J. Németh, Necessary condition for imbedding of classes of functions, Analysis Math., 3 (1977),
- [9] Э. А. Стороженко, Необходимые и достаточные условия для вложения некоторых классов функций, Изв. АН СССР, сер. мат., 37 (1973), 386—398.
- [10] П. Л. Ульянов, Теоремы вложения и наилучшие приближения, Докл. АН СССР, 184 (1968), 1044--1047.
- [11] П. Л. Ульянов, Вложение некоторых классов функций H_{ν}^{o} , Изв. АН СССР, 32 (1968), 649-686.
- [12] П. Л. Ульянов, Теоремы вложения и соотношения мещду наилучшими приближениями в разных метриках, Мат. Сб., 81 (1971), 104-131.
- [13] A. ZYGMUND, Trigonometric series. I (Cambridge, 1959).

BOLYAI INSTITUTE ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY