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Derivations and translations on l-semigroups

H. MITSCH

Introduction. Functions of lattices into themselves have been studied in
[41, [7], [9], [10]. With respect to pointwise intersection A and union V and to com-
position of functions o the set (F(L), A, V, o) of all transformations of a lattice
(L, A\, V) forms a “right-lattice ordered semigroup” (tl-semigroup; see [3], [4]).
This means a set S with three binary operations A, V and -, such that (S, -) is
a semigroup, (S, A, V) is a lattice and :

C(xV¥)z = (x2)V(yz), (xAy)z = (x2)A(yz) forall x,y,z€S.

Note that with respect to the order-relation induced by the lattice-operations
multiplication satisfies: x=y=xz=yz for each zcS.

Recently SzAsz [9], [10] started the investigation of special functions on lattices-

(L, A\, V), so-called “derivations”, motivated by the formal rules of derivations in
rings, i.e. transformations ¢ of L which satisfy

e(xVy) =o®)Vo(y) and o(xAy)=[pX)AyIVIxAp(y)] forall x, yeL.
Since in F(L) also the composition of functions is defined, it is natural to con-

sider transformations of the rl-semigroup (F(L), A, V, o) which satisfy also a
formal chain rule:

@(fog) = [p(f)oglhe(g) for all f, g€ F(L).

For rings with a third operation o, so-called composition-rings, such derivations
with chain-rule have been studied — especially for polynomial-rings — in [6], [8].

In the following we suppose S to be a right-lattice ordered semigroup and
investigate transformations ¢ of (S, A, V, ») — so-called C-derivations — which
have the following properties:

L o(xVy) = ¢(x)Vo(y)
IL o(xAy) = [p()AYIVIxA@ ()] for all x,y€S.
IL o(xy) =le@)yIAe(y)
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Standard examples for S will be the rl-semigroups (F(L), A, V, o) of all trans-
formations of a lattice L, (L[x], A, V, o) of all polynomials on L in the indetermi-
nate x and (P(L), A, V, o) of all polynomial-functions on L (see [3]).

We shall use also the concept of lattice ordered semigroup (I-semigroup), which
is defined as an rl-semigroup (S, A, V, ) satisfying also’ the two left-distributive
laws:

)f(sz) = (xy)V(xz) and x(yAz)=(xy)A(xz) forall x,y, z€S.

Note that now multiplication also satisfies: x=p=zx=zy for each z€S; for the
general theory see [2].

1. Reduction to translations

The main purpose of this section is to show, that every C-derivation ¢ on an
rl-semigroup S is a special meet-translation [9], i.e. ¢(x)=xAa for all x€S, ac S
fixed, if the lattice (S, A, V) has a greatest element or if the semigroup (S, -) has
an identity.

Properties. Let ¢ be a C-derivation on S; then

0) o(xAY)=p(X)Ne(y) for all x,y€S; p(x)=x for all xS ([10)).

1) If S has a least element o, then ¢(0)=0 (by II).

2) If ¢ is a left-zero of (S, -) with least element o, then @(c)=0 (p(c)=¢(co)=

=@ (c)oNgp(0)=0).

3) If S does not have a least element but admits a left-zero, then there is no C-
derivation on S. (¢(c)=¢(cx)= (p(c)x/\qo(x)<(p(x)<x for all x€S by 0):
contradiction.)

4) If S has a right-identity e, then p(x)=p(e) for all xe€S. (p(x)=¢p(xe)=
=p(x)eAp(e)=@(e) for all x€S.)

5) If S admits a right-identity ¢ and a least element o, then (p(e) @(0) implies
¢(x)=0 for all xeS.

6) If (S, -) is O-right-simple with o such that ox=o0 for all x¢ S, then ¢@(a)=o

© for an element aso implies @(x)=o for all x¢S. (Since aS=S, hence for
all x€S there exists'a y€S with ay=x; thus ex)=¢(@)=¢@yAp(y)=
=oyNo(y)=o for all x€8.) :

Examples. 1) If S admits a least element o, then (p(x) o for all x€S is a
C-derivation, the trivial C-derivation.

2) The identity-function ¢(x)=x for all x€ S is a C-derivation, iff xy< y for
all x,y€S.

3) The constant function @(x)=a for all x€S, ac§ fixed, is a C-derivation,
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iff a=o (if 0€ S exists) (a=p(xAx)=@(x)Ax=x for all x).
4) Concerning meet-translations we know by Corollary 3 of [10]:

Lemma 1.1. Let S be an rl-semigroup v;lith greatest element i. Then every C-
derivation ¢ on S has the form @(x)=xAa for all x¢ S and a suitable element ac S.
In order to determine the suitable elements a€.S we prove:

"Lemma 1.2. Let S be an rl-semigroup. The function ¢(x)=xAa for all x¢S
is a C-derivation, iff 1) a is a neutral element of (S, A\, V) and 2) xyAa=ayAy for
all x,y€eS.

Proof. If a€ S satisfies 1), then @(x)=xAa does 1 and II of the definition,
too. If a also satisfies 2), then ¢ (xy)=xyAa=(xyAa)A(ayAy)=(xAa)yA(aAy)=
=p(xX)yA@(y) for all x, y¢S. The converse is clear.

Combining Lemmas 1.1 and 1.2 we get the following

Theorem 1.3. Let S be an rl-semigroup with greatest element. Then the C-deriv-
ations on S are the functions ¢ of the form @(x)=x/A\a with a fixed neutral element
" a of S such that xyhNa=ay\y for each pair x,y of elements of S.

Example. 5) Let S be an rl-semigroup with identity e admitting an invertible
element a#e; then @(x)=xAe is nota C-derivation. (If ¢ is a C-derivation, then
by Lemma 1.2: xyAe=y for all x, y€S; but since aa’=d’a=e for a’€S, this
implies in particular e=a and e=d’; consequently we get a'=aa’=e, thus
a’=a=e: contradiction.)

Theorem 1.4. Let S be an ri-semigroup with greatest element i, such that ix=i
Jor all x€S. Then there is no C-derivation on S except the trivial one (if defined).

Proof. By Theorem 1.3 every C-derivation on S has the form ¢@(x)=xAa
such that xyAa=ayAy for all x,y€S. For x=i we get a=ayAy=y for all
yeS. If S has a least -element o, then a=o0 and ¢ is the trivial C-derivation; if
not, then we have a contradiction.

The existence of /€ S ensured that every C-derivation is a special meet-transla-
tion. The same is true if an identity exists:

Lemma 1.5. Let S be an rl-semigroup with right-identity e. Then every C-deriva-
tion on S has the form @(x)=xAa for all x¢S with a=¢(e). '

Proof. Since x=xV(xAe), hence @(x)=xAg@(e) for all x€S. But ¢@(x)=
=¢(e) by 4) and p(x)=x for all x€S by 0); thus ¢{x)=xA¢(e) and equality
follows. . ' .

Corollary. If e is the identitj) of S and o(x)=xN\a is a C-derivation, then:
1) a=e; 2) a®>=a; 3) xy=y for all y=a=x=e.
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Proof. Since a=¢@(e)=eAa, we have a=e; thus a*=a, ay=y for all y€S.
By Lemma 1.2: xyAa=ayAy=ay for all x,y€S; for x=e we get yAa=ay.
For y=a we obtain a=gq? thus a&®>=a; for y=a we conclude y=ay, so that
ay=y for all y=a. Now if a=x=e, then y=ay=xy=y for all y=a and the
assertion follows.

Remark. If S is an rl-semigroup with right-identity which is the least element
of S, then there is only the trivial C-derivation on S. The same is true in the follow-
ing case:

Lemma 1.6. Let S be a left-simple ri-semigroup with right-identity. Then there
is no C-derivation on S except the trivial one (if defined).

Proof. Again for every C-derivation on S we have: ¢(x)=xAa with xyAa=y
for all x, y€ S. Since Sy=.S for all y¢ S, for each y€ S there is an x¢ § with xy=e;
thus by Corollary 1) of Lemma 1.5 we conclude a=eAa=y for all y¢ S and a=o
Gf 0€ S exists).

Corollary. Let S={e} be an rl-group; then there is no C-derivation on S.

Proof. Since a semigroup S is a group iff S is left- and right-simple (see [1]),
there is at ' most the trivial C-derivation ¢(x)=o0 on S. But an rl-group cannot have
a least element o:o0=e implies o®*=o0 and since the only idempotent in S is e,
we get o=e; thus e=a for all ac S implies a~'=e, so that a—'=e¢ and a=e
for all acS.

Example. 6) Concerning semigroup-left-translations (see [1]) we note the
following: if S is a semigroup with left-identity e and ¢ a mapping of S into itself
such that ¢(xy)=¢(x)y for all x,yc S, then for x=e one gets @(y)=¢(e)y
for all y¢ S and ¢(x)=ax for all xcS.

Lemma 1.7. Let S be an rl-semigroup with right-identity e. Then the mapping
@(xX)=ax for all x€8, acS fixed, is a C-derivation iff 1) ac S is left-distributive
with respect to \/ and 2) ab=alb for all bES.

Proof. If a€ S satisfies 1), then ¢@(xVy)=a(xVy)=axVay=¢x)Ve(y) for
all x, y€S. If it also satisfies 2), then @(xAy)=a(xAy)=aA(xAy)=[px)Ay]V
VixAe(y)] for all x,y€S. Furthermore, since ax=aAx=aq implies axy=ay
for all x, y€S, it follows: @(xy)=axy=(ax)yAay=@(x)yAe(y) for all x, ycS.
Conversely, let ¢(x)=ax be a C-derivation; then by I of the definition: a(xVy)=
=axVay for all x, y€S; by Lemma 1.5 we have ax=¢(x)=xA¢p(e)=xAa, that
is ab=aAb for all beS.

Combining Lemmas 1.5 and 1.7 we get similarly to Theorem 1.3:
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- Theorem 1.8. Let S be an rl-semigroup with right-identity. Then the C-deriva-
tions on S are the functions ¢ of the form ¢ (x)=ax with a fixed element ac S which
is left-distributive with respect to \ such that ab=aAb for all b¢S.

Remark. If S is an rl-semigroup with (right-identity e and) greatest element i,
then ¢(x)=ax such that ai=i is not a C-derivation except @(x)=x (if possible).
In fact: if @(x)=ax=aAx for all x¢ S, then i=ai=¢@()=aAi=a and ¢(x)=x
for all x¢S.

For l-semigroups we have:

Theorem 1.9. Let S be an I-semigroup with identity e, which is the greatest
element of S. Then the C-derivations on S are exactly the left- translatlons @ (x)=ax
such that ab=aAb for all beS.

Proof. On an l-semigroup every function ¢@(x)=ax with ab=aAb for all
be S is a C-derivation by Lemma 1.7. Conversely, if ¢ is any C-derivation on S,
then by Lemmas 1.2 and 1.5: ¢(x)=aAx with xyAa=ay for all x, y¢S. For
x=e we get yAa=ay; but a,y=e implies ay=a and ay=y, thus ay=aly
and ay=aAy for all ycS. Consequently @o(x)=ax for all x¢S§ with ab=aAb
for all beS.

Corollary. Let S be a Boolean I-semigroup with identity e (resp. a uniguely
complemented I-semigronp with e as greatest element); then the C-derivations on S
are exactly the left-translations of S.

Proof. By the Corollary (resp. Remark) in §6 of [4] we have in both cases
e=i and xy=xAy for all x, ycS. :
Returning to general rl-semigroups with identity we show:

Lemma 1.10. Let S be an rl-semigroup with right-identity e (resp. with greatest
element i). Then the set of all C-derivations on S is a commutative, idempotent semi-
group with respect to composition of functions: (po¥)(x)=e@[Y(x)] for all xcS.

| Proof. Let ¢(x)=aAx, y(x)=bAx with a=¢(e), b=y(e) be arbitrary
C-derivations on S (see Theorems 1.3 resp. 1.8). Then (poy)(x)=(aAb)Ax=cAx
for all x¢§ with (goy)(e)=cAe=c, since by Corollary 1) to Lemma 1.5: a=e,
b=e, hence c=aAb=e. Furthermore, since g and b are neutral, c=aAb is neutral,
too. Since xyAa=ayAy and xyAb=byAy for all x, y€S, we get xyAlaAb)=
=(@@Ab)yAy for all x,ycS and we can apply Lemma 1.2. Trivially we have
(po)(x)=(Yop)(x) and (pog)(x)=¢(x) for all xcS.
The results deduced above show, that the class of rl-semigroups whlch admit
non-trivial C-derivations is quite restricted. For concrete examples of rl-semigroups
Wwe can prove even more:
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Theorem 1.11. Let (L, A, V) be an arbitrary lattice. Then on the rl-semigroups
(F(L), A, V, 0) resp. (P(L), A, V, o) there is no C-derivation except the trivial
one (if o€L exists).

Proof. We give the proof for F(L). If a least element does not exist, then there
is no C-derivation by Property 3. If a least element exists, then for the constant
functions f,(x)=a, f,(x)=0 for all x¢L we have f,of,=f, and f,of,=f, for all
acL. If ¢ is a C-derivation on F(L), then o(f)=[o(f)of,JANo(f,)=¢(f,) and
conversely o(f)=¢(f.); thus o(f)=¢(f,) for all acL. Since F(L) has an
identity id (x)=x for all x¢.S, with respect to o, we know by Lemma 1.5 that
o(f)=fAe(id) for all f€ F(L). Moreover, ¢(id)=id by Property 0). Consequently:
[ (id)) (@) =aA[e (id)](a) =1, (@) Al (D] (@)= [o( L)@ =[e(f)](@)=f,(@)=0. There-
fore [p(id)}(@)=0 for all acL. Thus ¢(id)=6, the zero-function on L and
o(f)=fAB=8 for all fe F(L).

The proof of this Theorem depends essentially on the constant functions on
L, which are left-zeroes of the semigroup (F (L), o). We can generalize it to left-
zero 1-semigroups with identity e, that means l-semigroups .S, such that xy=x for
all xse, y€ S (see [1]) — for example the set of all constant functions on a lattice:

Lemma 1.12. Let S be a left-zero l-semigroup with identity e. Then there are
no C-derivations on S except ¢(x)=o0 and @(x)=x for all x€S (if defined).

Proof. By Lemma 1.5, ¢(x)=xA¢@(e) for all x¢ S. If there is no least element
in S, then by Property 3) there is no C-derivation on S. If there is 0€ S, then @(x)=o0
for all x»e in § by Property 2) Thus we have to determine only ¢(e): if
o(e)=e, p(e) is a left-zero of Sand ¢(e)=¢[p(e)]=0 by Lemma 1.10; if ¢(e)=e,
we have for any x=e: o=¢(x)=xAe. If e is not the greatest element, then there
is an x=e and o=xAe=e=¢@(e); if e is the greatest element, then o=xAe=x
for all xse in §,S={0,e} and @(x)=x for all x€8§.

2. Derivations with dual chain-rule

As mentioned above, a large class of rl-semigroups admits only the trivial
C-derivation (if defined). Even the standard examples of mappings resp. polynomial-
functions on lattices belong to this class. Therefore the abstraction of derivation
of functions, which formalizes the rules of differentiating a sum, a product and the
composite of functions, turns out to. be not very useful Also if axiom III of a C-
derivation is replaced by its dual:

. o(p)=0)yVe(y) for all x,yeS

we get nothing new. We can show even more:
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Theorem 2.1. Let S be an rl-semigroup with identity e resp. o=o0x for all
X€S (if 0€ S exists). Then there is no derivation with dual chain-rule except the
trivial one (if defined).

Proof. If S admits no least element and if ¢ is any mapping satisfying I, II"
and III’, then p(x)=¢p(xe)=¢p(x)eVo(e)=p(e) for all x¢S; but @(x)=x for all
x€ S by Property 0) (valid also in this case) and thus ¢(e) is the least element of
S: contradiction. If § admits o with ox=o0 for all x€S, then ¢@(0)=¢(ox)=
=@(0)xVe(x)=e(x) for all x€S; by Axiom I the mapping ¢ is order-preserving,
hence @(o)=¢(x) for all x€S and @(x)=¢(0)=a with some a¢ S, for all x¢ S;
by Axiom II we have a=¢(x)=@(xAx)=¢(x)Ax=x for all x¢S and a=o;
thus @(x)=o0 for all x<8.

Remark. Motivated by the properties of “derivations of formal languages”,
which are in short lattice-endomorphisms of the l-semigroup of all formal languages
on an alphabet X satisfying the dual chain rule IIT’, the Axiom II of a derivation
finally may be replaced by

I". e(xAy)=p(x)A\@(y) for all x,ycS.

Such “derivations™ are studied in [5].
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