Derivations and translations on I-semigroups

H. MITSCH

Introduction. Functions of lattices into themselves have been studied in [4], [7], [9], [10]. With respect to pointwise intersection \land and union \lor and to composition of functions \circ the set $(F(L), \land, \lor, \circ)$ of all transformations of a lattice (L, \land, \lor) forms a "right-lattice ordered semigroup" (rl-semigroup; see [3], [4]). This means a set S with three binary operations \land, \lor and \cdot , such that (S, \cdot) is a semigroup, (S, \land, \lor) is a lattice and

$$(x \lor y)z = (xz) \lor (yz), (x \land y)z = (xz) \land (yz)$$
 for all $x, y, z \in S$.

Note that with respect to the order-relation induced by the lattice-operations multiplication satisfies: $x \leq y \Rightarrow xz \leq yz$ for each $z \in S$.

Recently Szász [9], [10] started the investigation of special functions on lattices (L, Λ, \vee) , so-called "derivations", motivated by the formal rules of derivations in rings, i.e. transformations φ of L which satisfy

$$\varphi(x \lor y) = \varphi(x) \lor \varphi(y)$$
 and $\varphi(x \land y) = [\varphi(x) \land y] \lor [x \land \varphi(y)]$ for all $x, y \in L$.

Since in F(L) also the composition of functions is defined, it is natural to consider transformations of the rl-semigroup $(F(L), \wedge, \vee, \circ)$ which satisfy also a formal *chain rule*:

$$\varphi(f \circ g) = [\varphi(f) \circ g] \land \varphi(g) \text{ for all } f, g \in F(L).$$

For rings with a third operation \circ , so-called *composition-rings*, such derivations with chain-rule have been studied — especially for polynomial-rings — in [6], [8].

In the following we suppose S to be a right-lattice ordered semigroup and investigate transformations φ of (S, \wedge, \vee, \cdot) — so-called *C*-derivations — which have the following properties:

I.
$$\varphi(x \lor y) = \varphi(x) \lor \varphi(y)$$

II. $\varphi(x \land y) = [\varphi(x) \land y] \lor [x \land \varphi(y)]$ for all $x, y \in S$.
III. $\varphi(xy) = [\varphi(x)y] \land \varphi(y)$

Received July 20, in revised form December 3, 1977.

Standard examples for S will be the rl-semigroups $(F(L), \land, \lor, \circ)$ of all transformations of a lattice L, $(L[x], \land, \lor, \circ)$ of all polynomials on L in the indeterminate x and $(P(L), \land, \lor, \circ)$ of all polynomial-functions on L (see [3]).

We shall use also the concept of *lattice ordered semigroup* (l-semigroup), which is defined as an rl-semigroup (S, \land, \lor, \cdot) satisfying also the two left-distributive laws:

 $x(y \lor z) = (xy) \lor (xz)$ and $x(y \land z) = (xy) \land (xz)$ for all $x, y, z \in S$.

Note that now multiplication also satisfies: $x \le y \Rightarrow zx \le zy$ for each $z \in S$; for the general theory see [2].

1. Reduction to translations

The main purpose of this section is to show, that every C-derivation φ on an rl-semigroup S is a special meet-translation [9], i.e. $\varphi(x)=x \wedge a$ for all $x \in S$, $a \in S$ fixed, if the lattice (S, \wedge, \vee) has a greatest element or if the semigroup (S, \cdot) has an identity.

Properties. Let φ be a C-derivation on S; then

0) $\varphi(x \wedge y) = \varphi(x) \wedge \varphi(y)$ for all $x, y \in S$; $\varphi(x) \le x$ for all $x \in S$ ([10]).

1) If S has a least element o, then $\varphi(o)=o$ (by II).

2) If c is a left-zero of (S, \cdot) with least element o, then $\varphi(c) = o (\varphi(c) = \varphi(co) = = \varphi(c)o \land \varphi(o) = o)$.

- If S does not have a least element but admits a left-zero, then there is no C-derivation on S. (φ(c)=φ(cx)=φ(c)x∧φ(x)≤φ(x)≤x for all x∈S by 0): contradiction.)
- 4) If S has a right-identity e, then $\varphi(x) \leq \varphi(e)$ for all $x \in S$. $(\varphi(x) = \varphi(xe) = = \varphi(x)e \land \varphi(e) \leq \varphi(e)$ for all $x \in S$.)
- 5) If S admits a right-identity e and a least element o, then $\varphi(e) = \varphi(o)$ implies $\varphi(x) = o$ for all $x \in S$.
- 6) If (S, ·) is 0-right-simple with o such that ox=o for all x∈S, then φ(a)=o for an element a≠o implies φ(x)=o for all x∈S. (Since aS=S, hence for all x∈S there exists a y∈S with ay=x; thus φ(x)=φ(ay)=φ(a)y∧φ(y)= = oy∧φ(y)=o for all x∈S.)

Examples. 1) If S admits a least element o, then $\varphi(x)=o$ for all $x \in S$ is a C-derivation, the *trivial* C-derivation.

2) The identity-function $\varphi(x) = x$ for all $x \in S$ is a C-derivation, iff $xy \leq y$ for all $x, y \in S$.

3) The constant function $\varphi(x) = a$ for all $x \in S$, $a \in S$ fixed, is a C-derivation,

iff a=o (if $o \in S$ exists) $(a=\varphi(x \land x)=\varphi(x) \land x \leq x$ for all x).

4) Concerning meet-translations we know by Corollary 3 of [10]:

Lemma 1.1. Let S be an rl-semigroup with greatest element i. Then every Cderivation φ on S has the form $\varphi(x)=x \wedge a$ for all $x \in S$ and a suitable element $a \in S$. In order to determine the suitable elements $a \in S$ we prove:

Lemma 1.2. Let S be an rl-semigroup. The function $\varphi(x) = x \wedge a$ for all $x \in S$ is a C-derivation, iff 1) a is a neutral element of (S, \wedge, \vee) and 2) $xy \wedge a \leq ay \wedge y$ for all $x, y \in S$.

Proof. If $a \in S$ satisfies 1), then $\varphi(x) = x \wedge a$ does 1 and II of the definition, too. If a also satisfies 2), then $\varphi(xy) = xy \wedge a = (xy \wedge a) \wedge (ay \wedge y) = (x \wedge a)y \wedge (a \wedge y) = = \varphi(x)y \wedge \varphi(y)$ for all $x, y \in S$. The converse is clear.

Combining Lemmas 1.1 and 1.2 we get the following

Theorem 1.3. Let S be an rl-semigroup with greatest element. Then the C-derivations on S are the functions φ of the form $\varphi(x) = x \wedge a$ with a fixed neutral element a of S such that $xy \wedge a \leq ay \wedge y$ for each pair x, y of elements of S.

Example. 5) Let S be an rl-semigroup with identity e admitting an invertible element $a \neq e$; then $\varphi(x) = x \wedge e$ is not a C-derivation. (If φ is a C-derivation, then by Lemma 1.2: $xy \wedge e \equiv y$ for all $x, y \in S$; but since aa' = a'a = e for $a' \in S$, this implies in particular $e \equiv a$ and $e \equiv a'$; consequently we get $a' \equiv aa' = e$, thus a' = a = e: contradiction.)

Theorem 1.4. Let S be an rl-semigroup with greatest element i, such that ix=i for all $x \in S$. Then there is no C-derivation on S except the trivial one (if defined).

Proof. By Theorem 1.3 every C-derivation on S has the form $\varphi(x) = x \wedge a$ such that $xy \wedge a \leq ay \wedge y$ for all $x, y \in S$. For x = i we get $a \leq ay \wedge y \leq y$ for all $y \in S$. If S has a least element o, then a=o and φ is the trivial C-derivation; if not, then we have a contradiction.

The existence of $i \in S$ ensured that every C-derivation is a special meet-translation. The same is true if an identity exists:

Lemma 1.5. Let S be an rl-semigroup with right-identity e. Then every C-derivation on S has the form $\varphi(x)=x\wedge a$ for all $x\in S$ with $a=\varphi(e)$.

Proof. Since $x = x \lor (x \land e)$, hence $\varphi(x) \ge x \land \varphi(e)$ for all $x \in S$. But $\varphi(x) \le$ $\le \varphi(e)$ by 4) and $\varphi(x) \le x$ for all $x \in S$ by 0); thus $\varphi(x) \le x \land \varphi(e)$ and equality follows.

Corollary. If e is the identity of S and $\varphi(x) = x \wedge a$ is a C-derivation, then: 1) $a \leq e$; 2) $a^2 = a$; 3) xy = y for all $y \leq a \leq x \leq e$.

H. Mitsch

Proof. Since $a = \varphi(e) = e \wedge a$, we have $a \leq e$; thus $a^2 \leq a$, $ay \leq y$ for all $y \in S$. By Lemma 1.2: $xy \wedge a \leq ay \wedge y = ay$ for all $x, y \in S$; for x = e we get $y \wedge a \leq ay$. For y = a we obtain $a \leq a^2$, thus $a^2 = a$; for $y \leq a$ we conclude $y \leq ay$, so that ay = y for all $y \leq a$. Now if $a \leq x \leq e$, then $y = ay \leq xy \leq y$ for all $y \leq a$ and the assertion follows.

Remark. If S is an rl-semigroup with right-identity which is the least element of S, then there is only the trivial C-derivation on S. The same is true in the following case:

Lemma 1.6. Let S be a left-simple rl-semigroup with right-identity. Then there is no C-derivation on S except the trivial one (if defined).

Proof. Again for every C-derivation on S we have: $\varphi(x) = x \wedge a$ with $xy \wedge a \leq y$ for all $x, y \in S$. Since Sy = S for all $y \in S$, for each $y \in S$ there is an $x \in S$ with xy = e; thus by Corollary 1) of Lemma 1.5 we conclude $a = e \wedge a \leq y$ for all $y \in S$ and a = o (if $o \in S$ exists).

Corollary. Let $S \neq \{e\}$ be an rl-group; then there is no C-derivation on S.

Proof. Since a semigroup S is a group iff S is left- and right-simple (see [1]), there is at most the trivial C-derivation $\varphi(x)=o$ on S. But an rl-group cannot have a least element $o: o \leq e$ implies $o^2 = o$ and since the only idempotent in S is e, we get o=e; thus $e \leq a$ for all $a \in S$ implies $a^{-1} \leq e$, so that $a^{-1}=e$ and a=efor all $a \in S$.

Example. 6) Concerning semigroup-left-translations (see [1]) we note the following: if S is a semigroup with left-identity e and φ a mapping of S into itself such that $\varphi(xy) = \varphi(x)y$ for all $x, y \in S$, then for x = e one gets $\varphi(y) = \varphi(e)y$ for all $y \in S$ and $\varphi(x) = ax$ for all $x \in S$.

Lemma 1.7. Let S be an rl-semigroup with right-identity e. Then the mapping $\varphi(x)=ax$ for all $x \in S$, $a \in S$ fixed, is a C-derivation iff 1) $a \in S$ is left-distributive with respect to \lor and 2) $ab=a \land b$ for all $b \in S$.

Proof. If $a \in S$ satisfies 1), then $\varphi(x \lor y) = a(x \lor y) = ax \lor ay = \varphi(x) \lor \varphi(y)$ for all $x, y \in S$. If it also satisfies 2), then $\varphi(x \land y) = a(x \land y) = a \land (x \land y) = [\varphi(x) \land y] \lor$ $\lor [x \land \varphi(y)]$ for all $x, y \in S$. Furthermore, since $ax = a \land x \leq a$ implies $axy \leq ay$ for all $x, y \in S$, it follows: $\varphi(xy) = axy = (ax)y \land ay = \varphi(x)y \land \varphi(y)$ for all $x, y \in S$. Conversely, let $\varphi(x) = ax$ be a *C*-derivation; then by I of the definition: $a(x \lor y) =$ $= ax \lor ay$ for all $x, y \in S$; by Lemma 1.5 we have $ax = \varphi(x) = x \land \varphi(e) = x \land a$, that is $ab = a \land b$ for all $b \in S$.

Combining Lemmas 1.5 and 1.7 we get similarly to Theorem 1.3:

Theorem 1.8. Let S be an rl-semigroup with right-identity. Then the C-derivations on S are the functions φ of the form $\varphi(x)=ax$ with a fixed element $a \in S$ which is left-distributive with respect to \lor such that $ab=a \land b$ for all $b \in S$.

Remark. If S is an rl-semigroup with (right-identity *e* and) greatest element *i*, then $\varphi(x)=ax$ such that ai=i is not a C-derivation except $\varphi(x)=x$ (if possible). In fact: if $\varphi(x)=ax=a \wedge x$ for all $x \in S$, then $i=ai=\varphi(i)=a \wedge i=a$ and $\varphi(x)=x$ for all $x \in S$.

For l-semigroups we have:

Theorem 1.9. Let S be an l-semigroup with identity e, which is the greatest element of S. Then the C-derivations on S are exactly the left-translations $\varphi(x)=ax$ such that $ab=a \wedge b$ for all $b \in S$.

Proof. On an 1-semigroup every function $\varphi(x)=ax$ with $ab=a\wedge b$ for all $b\in S$ is a C-derivation by Lemma 1.7. Conversely, if φ is any C-derivation on S, then by Lemmas 1.2 and 1.5: $\varphi(x)=a\wedge x$ with $xy\wedge a\leq ay$ for all $x, y\in S$. For x=e we get $y\wedge a\leq ay$; but $a, y\leq e$ implies $ay\leq a$ and $ay\leq y$, thus $ay\leq a\wedge y$ and $ay=a\wedge y$ for all $y\in S$. Consequently $\varphi(x)=ax$ for all $x\in S$ with $ab=a\wedge b$ for all $b\in S$.

Corollary. Let S be a Boolean l-semigroup with identity e (resp. a uniquely complemented l-semigroup with e as greatest element); then the C-derivations on S are exactly the left-translations of S.

Proof. By the Corollary (resp. Remark) in §6 of [4] we have in both cases e=i and $xy=x \wedge y$ for all $x, y \in S$.

Returning to general rl-semigroups with identity we show:

Lemma 1.10. Let S be an rl-semigroup with right-identity e (resp. with greatest element i). Then the set of all C-derivations on S is a commutative, idempotent semigroup with respect to composition of functions: $(\varphi \circ \psi)(x) = \varphi[\psi(x)]$ for all $x \in S$.

Proof. Let $\varphi(x) = a \land x$, $\psi(x) = b \land x$ with $a = \varphi(e)$, $b = \psi(e)$ be arbitrary C-derivations on S (see Theorems 1.3 resp. 1.8). Then $(\varphi \circ \psi)(x) = (a \land b) \land x = c \land x$ for all $x \in S$ with $(\varphi \circ \psi)(e) = c \land e = c$, since by Corollary 1) to Lemma 1.5: $a \leq e$, $b \leq e$, hence $c = a \land b \leq e$. Furthermore, since a and b are neutral, $c = a \land b$ is neutral, too. Since $xy \land a \leq ay \land y$ and $xy \land b \leq by \land y$ for all $x, y \in S$, we get $xy \land (a \land b) \leq \leq (a \land b)y \land y$ for all $x, y \in S$ and we can apply Lemma 1.2. Trivially we have $(\varphi \circ \psi)(x) = (\psi \circ \varphi)(x)$ and $(\varphi \circ \varphi)(x) = \varphi(x)$ for all $x \in S$.

The results deduced above show, that the class of rl-semigroups which admit non-trivial *C*-derivations is quite restricted. For concrete examples of rl-semigroups we can prove even more:

H. Mitsch

Theorem 1.11. Let (L, \land, \lor) be an arbitrary lattice. Then on the rl-semigroups $(F(L), \land, \lor, \circ)$ resp. $(P(L), \land, \lor, \circ)$ there is no C-derivation except the trivial one (if $o \in L$ exists).

Proof. We give the proof for F(L). If a least element does not exist, then there is no C-derivation by Property 3. If a least element exists, then for the constant functions $f_a(x)=a$, $f_o(x)=o$ for all $x \in L$ we have $f_a \circ f_o = f_a$ and $f_o \circ f_a = f_o$ for all $a \in L$. If φ is a C-derivation on F(L), then $\varphi(f_a) = [\varphi(f_a) \circ f_o] \land \varphi(f_o) \leq \varphi(f_o)$ and conversely $\varphi(f_o) \leq \varphi(f_a)$; thus $\varphi(f_a) = \varphi(f_o)$ for all $a \in L$. Since F(L) has an identity $\operatorname{id}(x)=x$ for all $x \in S$, with respect to \circ , we know by Lemma 1.5 that $\varphi(f)=f \land \varphi(\operatorname{id})$ for all $f \in F(L)$. Moreover, $\varphi(\operatorname{id}) \leq \operatorname{id}$ by Property 0). Consequently: $[\varphi(\operatorname{id})](a)=a \land [\varphi(\operatorname{id})](a)=f_a(a) \land [\varphi(\operatorname{id})](a)=[\varphi(f_a)](a)=[\varphi(f_o)](a) \leq f_o(a)=o$. Therefore $[\varphi(\operatorname{id})](a)=o$ for all $a \in L$. Thus $\varphi(\operatorname{id})=\theta$, the zero-function on L and $\varphi(f)=f \land \theta=\theta$ for all $f \in F(L)$.

The proof of this Theorem depends essentially on the constant functions on L, which are left-zeroes of the semigroup $(F(L), \circ)$. We can generalize it to left-zero 1-semigroups with identity e, that means 1-semigroups S, such that xy=x for all $x \neq e, y \in S$ (see [1]) — for example the set of all constant functions on a lattice:

Lemma 1.12. Let S be a left-zero l-semigroup with identity e. Then there are no C-derivations on S except $\varphi(x)=o$ and $\varphi(x)=x$ for all $x \in S$ (if defined).

Proof. By Lemma 1.5, $\varphi(x) = x \land \varphi(e)$ for all $x \in S$. If there is no least element in S, then by Property 3) there is no C-derivation on S. If there is $o \in S$, then $\varphi(x) = o$ for all $x \neq e$ in S by Property 2) Thus we have to determine only $\varphi(e)$: if $\varphi(e) \neq e, \varphi(e)$ is a left-zero of S and $\varphi(e) = \varphi[\varphi(e)] = o$ by Lemma 1.10; if $\varphi(e) = e$, we have for any $x \neq e$: $o = \varphi(x) = x \land e$. If e is not the greatest element, then there is an x > e and $o = x \land e = e = \varphi(e)$; if e is the greatest element, then $o = x \land e = x$ for all $x \neq e$ in S, $S = \{o, e\}$ and $\varphi(x) = x$ for all $x \in S$.

2. Derivations with dual chain-rule

As mentioned above, a large class of rl-semigroups admits only the trivial C-derivation (if defined). Even the standard examples of mappings resp. polynomial-functions on lattices belong to this class. Therefore the abstraction of derivation of functions, which formalizes the rules of differentiating a sum, a product and the composite of functions, turns out to be not very useful. Also if axiom III of a C-derivation is replaced by its dual:

III'. $\varphi(xy) = \varphi(x)y \lor \varphi(y)$ for all $x, y \in S$

we get nothing new. We can show even more:

Theorem 2.1. Let S be an rl-semigroup with identity e resp. o=ox for all $x \in S$ (if $o \in S$ exists). Then there is no derivation with dual chain-rule except the trivial one (if defined).

Proof. If S admits no least element and if φ is any mapping satisfying I, II and III', then $\varphi(x) = \varphi(xe) = \varphi(x)e \lor \varphi(e) \ge \varphi(e)$ for all $x \in S$; but $\varphi(x) \le x$ for all $x \in S$ by Property 0) (valid also in this case) and thus $\varphi(e)$ is the least element of S: contradiction. If S admits o with ox=o for all $x \in S$, then $\varphi(o) = \varphi(ox) =$ $= \varphi(o)x \lor \varphi(x) \ge \varphi(x)$ for all $x \in S$; by Axiom I the mapping φ is order-preserving, hence $\varphi(o) \le \varphi(x)$ for all $x \in S$ and $\varphi(x) = \varphi(o) = a$ with some $a \in S$, for all $x \in S$; by Axiom II we have $a = \varphi(x) = \varphi(x \land x) = \varphi(x) \land x \le x$ for all $x \in S$ and a=o; thus $\varphi(x) = o$ for all $x \in S$.

Remark. Motivated by the properties of "derivations of formal languages", which are in short lattice-endomorphisms of the l-semigroup of all formal languages on an alphabet X satisfying the dual chain rule III', the Axiom II of a derivation finally may be replaced by

II'. $\varphi(x \wedge y) = \varphi(x) \wedge \varphi(y)$ for all $x, y \in S$.

Such "derivations" are studied in [5].

References

- A. H. CLIFFORD and G. B. PRESTON, *The algebraic theory of semigroups*, Amer. Math. Soc. Math. Surveys 7, Vol. I (Providence, 1961).
- [2] L. FUCHS, *Partially ordered algebraic systems*, Monographs in Pure and Applied Math. 28, Pergamon Press (1963).
- [3] H. LAUSCH and W. NÖBAUER, Algebra of polynomials, North-Holland Math. Library, Vol. 5 (Amsterdam—New York, 1973).
- [4] H. MITSCH, Rechtsverbandshalbgruppen, J. reine und angew. Math., 264 (1973), 172-181.
- [5] H. MITSCH, Derivations on l-semigroups and formal languages, J. Pure and Appl. Algebra (submitted).
- [6] W. MÜLLER, Eindeutige Abbildungen mit Summen-, Produkt- und Kettenregel, Monatsh. Math., 73 (1969), 354-367.
- [7] J. NIEMINEN, Derivations and translations on lattices, Acta Sci. Math., 38 (1976), 359-363.
- [8] W. NÖBAUER, Derivationssysteme mit Kettenregel, Monatsh. Math., 67 (1963), 36-49.
- [9] G. Szász, Die Translationen der Halbverbände, Acta Sci. Math., 17 (1956), 165-169.
- [10] G. Szász, Derivations on lattices, Acta Sci. Math., 37 (1975), 358-363.

MATH. INSTITUT, UNIVERSITÄT WIEN STRUDLHOFGASSE 4 1090 WIEN, AUSTRIA

7