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On automorphism groups of subalgebras of a universal algebra

E. FRIED and J. SICHLER*

Let A be a universal algebra and let Con (4), Sub (4), Aut(4) denote the
lattice of all congruences of A, the lattice of all subalgebras of 4, and the auto-
" morphism group of A, respectively. First in a- series of so-called independence
results is that of E. T. ScHMIDT [6] asserting that Aut (4) is independent of Sub (4).
W. A. LaMmPE [5] gave a construction representing any pair of nontrivial algebraic
lattices and an arbitrary group as Sub (4), Con (4), and Aut(4) of a finitary
algebra A. :

Once these results are established, somewhat more detailed investigations of
the structures associated ‘with a universal algebra appear to be in order; we would
like to formulate further possible questions in this field. For every finitary algebra
A there are two obvious homomorphisms H,: Aut (4)—~Aut (Sub (4)) and
H,: Aut (4)~Aut (Con (4)) of the respective groups. Given a quintuple
(G, Ly, H,, L,, Hy) in which G is a group, L, and L, are algebraic lattices, and
H;: G~Aut (L) are group homomorphisms, one may ask under what circum-
stances there is an algebra 4 with Aut (4)==G, L,=2Sub (4), L,2=Con (4), and
H,, H, the two natural homomorphisms as above. [1] states that an arbitrary triple
(G, L,, H,) is representable in this way. There appears to be no corresponding result
for the triple (G, L,, H,). ‘

The aim of this note is to prove a partial result concerning the relationship
of the subalgebra lattice and the automorphism groups of subalgebras. of a finitary
algebra. It is well known that automorphism groups of pairs algebra-subalgebra
can be chosen arbitrarily, and similar claim is valid for endomorphism monoids
as well ([3] and [4], see also [2]). The question we ask is this: what are the systems
(G,.: x€ L) of groups appearing as automorphism groups of subalgebras of a finit-
ary algebra A whose subalgebra lattice is isomorphic to L?
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To be more precise, let 4 be a finitary algebra and let
) _ H,: Aut(4) — Aut (Sub (4))

be defined by (H,(«))(B)=a*(B)={a(b): b€ B} for a€Aut (4) and B¢ Sub (4).
H, is a group homomorphism; if Autg(4) denotes the subgroup of Aut (4) con-
sisting of all those automorphisms « of 4 for which «*(B)=B, then

@) Ker (H,) € Autg(4) for every Be Sub(A4).

The restriction R,z(B) of a B€Autg(4) to B is an automorphism of B and the
mapping

(3) : - RAB: AutB (A) et Aut (B)

is a group homomorphism.
We will restrict our attention to the special case

@ Ker (Hy) = Aut(B) for all BeSub(4),

that is, it will be assumed that, for every o€ Aut(B), a* acts trivially on Sub (B) -
for each BeSub (A4). It follows that Aut (B)=Aut(B) and thus Aut (B) is the
domain of Ry for any pair CSB of subalgebras of 4.

.- An algebraic lattice L is isomorphic to the lattice I(C) of all ideals of the
join semilattice C of all non-zero compact elements of L. If J€I(C)=L==Sub (4),
let A; denote the subalgebra of A4 corresponding to the ideal J of C; for a principal
ideal J=(c] write A4, instead of A4,. Recall that J is principal if and only if 4; is
finitely generated and that A4;=U(4,:c€J) for every JEI(C). It is easy to see
that an automorphism a: 4;—~A4, acts trivially on Sub (4;) if and only if

®) ' - at(A4) =A, for all ceJ.

Thus the restriction (4) is equivalent to (5) being valid for all J€I(C). If c=d is
a pair of elements of C, let R («) denote the restriction of a¢ Aut (4,) to 4,. The
system of homomorphisms

(6) (R Aut(4,) — Aut(4,), c=d in C)

satisfies

™

RioR4=R, forall c=d=z=ein C,

R, =id,, forall ecC

under the restriction (4).

If d,ecC, c=dVe, then R4(0x)€ Aut (4,) and R_,(«)€ Aut (4,); if both R, ()
and R, () are identity automorphisms, then a is the identity automorphism of
- A, since A, is generated by A4;UA,. Thus Aut (4,) is a subgroup of Aut (4,)X
X-Aut (4,); in other words, Ker (R.;)Ker (R,,) is trivial whenever ¢=dVein C.
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If JeI(C) is non-principal, then A4;={U(4.:c€J) and, because of (5), each
€ Aut (4;) determines a system (o € Aut (4,):c€J) such that R, (a)=a, whenever
c=d belong to J. Conversely, let (x,.:c€J) be a system of automorphisms «,€
€ Aut (4,) such that R ,(x)=w, for all pairs c=d in J. If d,ecJ, then dVe=
=f¢J and the equality o;(x)=Rp(o;)(*)=R () (x)=a,(x) holds for all
x€A;N A, Thus we may define a mapping «:4;—~A4; by a(x)=a.(x) for all
x€A,;itis easy to see that « is an automorphism of 4,; « is the identity automorphism
if and only if all «. are identities. Aut (4;) is therefore uniquely determined by
the system °
' S=(Ry:c=din J)

of group homomorphisms. § is closed under composition; let R.: Aut(4,)—~
- Aut (4,) be the homomorphism that assigns to every a€ Aut (4,) its restriction
ac:Ac»Ac.\ A straightforward argument shows that Aut(4;) is isomorphic to
the inverse limit of the diagram S with the homomorphisms R, playing the role
of projections.

Now let L==I(C) be an algebraic lattice, let G, be a group for every x¢L,
and let r4:G.—~G,; be a group homomorphism for every pair c¢z=d of elements -
of C, let r.. be the identity endomorphism of G,.. We say that a system

®) 2 =(L,(G,: x€L),(ry: c =d in C))

is representable if there is a finitary algebra A4 such that

) ' © Sub(4) = L,

10y at(4,)) =4, forall y=x and all «cAut(4,),
(11) Aut(4,) = G, for every x€L,

(12) each r, represents the restriction homomorphism R.,: Aut(4,) — Aut (4,).

The statement below characterizes representability of X.

Theorem. Z is representable if and only if

@) ryorg=re for all c=d=e in C,

(b) Ker (r.)NKer (r.,) is trivial whenever dVe=c,

(c) if x€L is not compact, then G, is the inverse limit of the diagram
(ra:x=>c=d, ¢, deC).

Proof. We have already seen that (a), (b), (c) are consequences of represent-
ability of Z. To prove the converse, define an algebra A4 as follows: its underlying
set is the disjoint union of all groups G, for c€C and its operations are defined
by the formulae below.'

(13) If g¢G,, define a unary operation £ by

gh)=hg if heG;
gw=h if h¢G,
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(14) If ¢=>d are elements of C, F_; is a unary operation defined as

Fea(h) =rq(h) if he G
Fauh=h if héG,.
(15) A single binary operation = :

gi¥ga=g If £.€G,;, 8E€G, g€G, c=dVe, ry(8) =g, (g = g
g1%8, = g, otherwise.

Note that (b) implies that # is well-defined.

First we will show that B is a subalgebra of A4 if and only if B is the (disjoint)
union A; of the groups G,(c€I) for some ideal I of C (including 7=0); this yields
(9) immediately. It is easy to see that each A is a subalgebra of 4; conversely, if
BcSub (4), set ,

I={ceC: BNG, #0}.

If 7=0, then B=@ as well; let c€I and let k¢ BNG,. If ge€G,, then A-lg=k
belongs to G, and k(h)=hh~'g=geB. Hence I[={ccC:G.SB}. If deC and
d<c€l, then F(1,.)=r4(1)=1, for the unit elements 1,€G, and 1,€G,; thus
1,€B, and deT as well. 1.+ 1,=1_y,6B whenever c, dcI; hence 7 is an ideal, and
B=A;. A nonempty.A, is finitely generated (one-generated, in fact) if and only
if I is a principal ideal. '

Let I=(c]. A;=U(G;:d=c) in this case; for every g€G, define a mapping
g¥:A;~4; by g*(W)=r,(g)-h for heG,, d=c. Observe that (g, g.)*(h)=
=rca(8182)  h=roa(8) roa(8s) - h=g7 (rca(82) - B)=87 (g5 (h), and that g* is the
identity mapping on A4; only if 1.=g*(1)=r.(g)-1,=g. Hence g—g* is a one-
. to-one homomorphism of G, into the symmetric group on A, To show that

g*€ Aut (4)), choosea k€ G, (exc) first. If h€G,S A4, then k(g*(h)=k(r..(g)-h)=
=r.(g)-h=g*(W)=g*(k(h) if d=e, and Kk(g*(h)=Kk(r.a(g)-h)=ra(g) -h-k=
=g*(h-k)=g*(k(h) if d=e. Secondly, let d=e in C. For any h€G, with f=d
we have g*(Fio(h)=g"(h)=Fu(s*(0). If f=d; then Fy (8" (0))=Fue(reals)-h)=
= rae(rea(®)  H)=rae(rea(®)) - Fae ) =r2e(8)  Fao () =" e(8)  Fao(W)=g"(Fae(W)  since
all r., are homomorphisms satisfying (a).

Now let d,e=c, f=dVe and let h cG;, h,€G, be such that there is an
heG, with ry(hy=h, and  r,(h)=h,. Then g*(hyxh))=g*(h)=r (g)-h,
and g*(hl) *g*(hZ)z(rcd(g) ° hl)*(rce(g) ‘ h2):(rcd(g) ° rfd(h))*(rce(g) ¢ rje(h)):
=rra(rep(g) - ) % rs(ros(8) - BY=r(g)+h by (15). To deal with the second clause
of (15), assume g*(h)=ry (k) and g*(h)=r, (k) for,a k=g*(h)*g*(hy) in

G Then rpk)y=r(rp(&)-h and rp(k)=rs(r.;(g))-h, imply that h,=
=ry(r (g™ k) and hy=ry(r (g1 k). Thus hyxhy=r (g1 -kcG, and
g (hyxh)=r (gg™) - k=k=g*(h) *g*(hy) as required. This proves that g--g*
is an embedding of G, into Aut (4,).
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Let 70 be an ideal of C, let c€], and let o€ Aut (4;) be arbitrary. If I={c},
then o€ Aut (4,) and, in particular, a(h)=a(h(1))=h(e(1))=0a(l,)-h for every
heG,. g=a(l)€G, and a=g*, that is, we know that Aut(A4;)=G; in this case.
If I is not a singleton, then for every c€[r there is a d¢[ such that either ¢>d or
c<d. Assume that c€I is not a minimal element, let d<c. Note that G .=
={hcA;: Fy(h)=h}; hénce F(a(l))=a(F4(1))=a(l)5%a(l,) implies a(l)€G,.
If, on the other hand, ¢ is minimal in I then there is a d>c¢ in I and «a(l)=
=a(F;.(15))=Fy.(x(l,)) belongs to G, since a(1,)€G, by the previous argument.’
a(g)=a(g(1))=8(x(1))=a(l)-g€G, for all g€G,, c€l. Thus at(4)=4. for
all c¢l and this implies (10). Denote g.=a(l,) for c€l If d=c¢, then a(h)=
=a(E(]d))= E(‘x(ld)): E(d(ch(lc)))=E(ch(d(lc)))= E(rcd(gc))':rcd(gc) -h ) and
a(h)=g,-h for all h¢G,. Therefore ry(g.)=g, for c¢=d in I If I=(c], then
a(hy=gX(h) for all h€A, and, consequently, Aut(4.)=G, This proves (11) for
non-zero compact elements of L. If I is not principal, then every a€ Aut (4,) deter-
mines a system : :

(8.€G.: ec])
such that g7 is the restriction of a to 4. As r,(g.)=g4 for all ¢=d in I, there
is a unique g€ G; whose projection in G, is g.. It is now clear that G,;= Aut (4,)
for every ideal I of C.

Finally, let c=d=e in C,g€G,,k€G,. Then g*(k)=r.(g) - k=r4(ra(g)) k=
=(r.(g))*(k) and (12) is satisfied as well. This finishes the proof. .

Example 1. The set C of nonzero compact elements of an algebraic chain
L consists of those x¢€ L that cover some y€L. If G, is arbitrary for c€C, |G,|=1
for x¢ C, and if all r; are constant homomorphisms for ¢=>d, then the system
I is representable. This generalizes the independence of automorphism groups
of pairs algebra-subalgebra.

Example 2. Under the restriction (4) assumed throughout this note, the
automorphism groups of subalgebras not finitely generated are uniquely determined
by the automorphism groups of their finitely-generated subalgebras. A simple
example shows that this is not generally the case.

Let L be the chain Z of integers extended by a largest element e and a smallest
‘element z. L is an algebraic chain with C=ZU{z}. Let G.={l} for c€C and let
(ros: c=d) be the obvious homomorphisms. If G,={1} as well, then the system
Z formed by these data is representable. On the other hand, if f: Z—Z is defined
by f(n)=n—1, then the algebra A=(Z, f) satisfies Sub(4)=L, |Aut([r])|=1
for all nonempty subalgebras [n]={k:k=n}, while Aut(4) is isomorphic to the
additive group of integers.

Example 3. If L=2<]J(C) is an algebraic lattice and if all ideals of C are auto-
morphism-free, then our special-case theorem describes the possible choices of
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(G,:x€L) completely. This is the case if, for instance, C is the join semilattice
indicated by the Figure below.

Note that any non-empty ideal of C that is not a singleton is isomorphic to C;
C is automorphism free as a semilattice — which implies (4) for any representable
system with L=1I(C).
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