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A note on congruence extension property

E. FRIED

Congruence extension property (further on CEP) is very useful when trying
to find identities for equational classes (see e.g. [3]). However, CEP is not an equa-
tional property. Therefore one has to prove it for all members of a given equa-
tional class. The only simplification is that subalgebra preserves CEP. The actual
aim of this paper is to give an example to prove that homomorphic image does
not preserve CEP. We shall put down some other ideas in this topic, too.

We shall use the terminology of [5]. We say that CEP holds for (A, B, 6)
if B is a subalgebra of A, 8 is a congruence relation on B and there exists a congruence
relation 6’ on A the restriction of which to B coincides with . The pair (A, B)
satisfies CEP exactly if B is a subalgebra of A and for each congruence relation
6 on B CEP holds for (A, B, §). An algebra A satisfies CEP iff for all subalgebras
B of A (A, B) satisfy CEP. CEP holds for a class of algebras iff each element of
this class satisfies CEP. ,

We define strong congruence extension property (further on SCEP) as follows:
A quadruple (A, B, 0, ) satisfies SCEP iff B is a subalgebra of A, 6 is a congruence
relation on B, @’ is a congruence relation on A the restriction of which to B is
contained in 6 and there exists a congruence relation 8 on A containing ¢’ the
restriction of which to B coincides with 6. (A, B, 8) satisfies SCEP iff for each con-
gruence relation @ on A the quadruple (A, B, 8, ®") satisfies SCEP, provided B
is a subalgebra of A and the restriction of ¢’ to B is contained in the congruence
relation 6 of B. We define that a pair (A, B), an algebra A and a class of algebras
satisfy SCEP as we have defined that for CEP substituting, everywhere, CEP by
SCEP, respectively.

Proposition 1. 4n algéb(‘a A has SCEP iff all homomorphic images of A
have CEP.

Proof. Let A be the homomorphic image of A under the homomorphism
¢, B a subalgebra of A and 0 a congruence relation on B. We define B=¢~1(B),
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0=¢~2(0) and @ =Ker ¢. SCEP for (A, B, 0, @) yields CEP for (A, B, ). On
the other hand, for given A, B, § and &’ CEP for (A/®’, B/®’, 6/P") implies SCEP
for (A, B, 8, 9).

Now, we are going to show that SCEP is “more” equational then CEP.

Proposition 2. If a class K has SCEP so does HS(K).

Proof. We have to prove that if A satisfies SCEP so do all homomorphic
images and subalgebras of A. Proposition 1 takes care of homomorphic images.
Now, let B be a subalgebra of A, C be a subalgebra of B, ¢’ a congruence relation
on B with the restriction @ to C and 6=¢ be a congruence relation on C. Since
CEP holds for (A, B, @’) there exists a congruence relation ¢” on A the restriction
of which to C coincides with ®. Then SCEP for (A, C, 8, ®”) gives us that there
exists a congruence relation #”=®” on A the restriction of which to C equals
0. Hence, for the restriction 8 of 0 to B we have 0’=¢®’ and the restriction of
9’ to C equals @ proving that (B, C, 8, ) satisfies SCEP.

The next proposition describes a typical situation when SCEP holds.

Proposition 3. Let B be a subalgebra of A, " a congruence relation on A
with the restriction @ to B and 0= a congruence relation on B. If each congruence
_class of @', containes a (nonempty) class of ®, then CEP for (A, B, 0) implies
SCEP for (A, B, 0, ).

Proof. Actually, CEP for (A, B, 0) is not needed; the statement is an obvious
consequence of the first isomorphism theorem.

Theorem. CEP does not imply SCEP.

We shall prove the statement by giving an example. The method used can
give examples for 4n-elements algebras with integers n greater than 1. The situation
is somewhat more complicated if n is not @ prime. The choice n=2 has the ad-
vantage that there exists a field with eight elements, thus, we can express the func-
tions by the operations of the field, for finite fields are functionally complete.

Example. Let a be a root of the polynomial x®+x+1 over the two elements
field @, and we denote the underlying set of Q,(a) by A. We define the following
algebra: .

A =(A0, f, g, p, F)

where the operations are given as follows: 0 is a nullary operation assigning the
zero element 0; f, g and p are unary operations defined by f(x)=x+1, g(x)=x+a,

p(x)=x"; F is a binary operation defined by F(x,y)=(x"+1) (a*((ay)* +(ay)*+(ay))).
The elements 0, f (0)—1 g(0)=a and f(g(0))=a+1 are constants. We denote
B={0,1,a,a+1}.
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The underlying set of the only proper subalgebra B of A is B. The only non-
trivial congruence 0 of B consists of the cosets {0, 1} and {a, a+1}. The congruence
0" of A consisting of the cosets {0, 1, a% a®?+1} and {a,a+1,a*+a, a2+a+l}
is an extension of #. Hence, CEP holds for A.

Thecosets U={a* a*+a}, V={a®+1,a*+a+1} and all the singletons disjoint
to both U and V form a congruence @” of A the restriction of which to B is w.
Since 'V@'=: we have 0’%=¢’. Thus, (A, B, 0, ¢"), hence A do not satisfy
SCEP. The details are left to the reader.

Remark. We are going to list some stxalghtforward properties of SCEP to
show how close it is to equational classes.

1) Proposition 1 shows that for an equational class CEP implies SCEP.

2) If an element of an equational class has SCEP so do its subdirect irreduc-
ible components.

3) If each direct product of subdirect irreducible elements of an equational
class has SCEP so does the whole equational class.

4) If each direct product of some subdirect irreducible.elements of a con-
gruence distributive equational class has SCEP so does the equational class they
generate (comp. [6]).

Problem. Let K be a class of algebras with SCEP. Prove or disprove:

a) K need not be closed under finite direct produéts.

b) K need not be closed under prime products.

¢) Though the class K is closed both under finite direct products and prime
products it need not be closed under direct products.
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