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Concrete representation of related structures
of universal algebras. I

L. SZABO.

in his recent book [6], I. I. VALUCE quotes without proof a result of A. V.
Kuznecov, unpublished up to now. Trying to re-establish the proof, we observed
some general facts concerning mutual properties of relations and operations. This
enables us to solve several concrete representation problems for related structures
of algebras in a uniform way. '

The basic propositions of this article are Lemmas 1—5 preceeded by a survey
of notions we shall need. Using them we give a simultaneous characterization for
related structures of universal algebras (Theorem 6). As special cases of Theorem 6
we get characterizations for the systems of subalgebras of finite direct powers of
algebras (G. Gratzer’s Problem 19 in [3]; Theorem 7 and 9) and the endomorphism
semigroups of algebras (Gritzer’s Problem 3 in [3]; Theorem 15; for another solu-
tion of this problem, see N. SAUER and M. G. STONE [5]). As corollaries we get
Jirgen Schmidt’s concrete representation theorem for the subalgebra systems of
algebras (see, e.g. [2]) and the Bodnaréuk—KaluZnin—Kotov—Romov theorem
for the subalgebra systems of all finite direct powers of finite algebras [1]. Moreover,
we characterize the bicentralizers of sets of operations in arbitrary algebras. Then
Kuznecov’s above mentioned result appears as a special case.

In a forthcoming Part II, we shall apply the method developed here for the
representation of other related structures.

Let A be a nonempty set which will be fixed in the sequel. Let O, (n=0, 1, 2, ...)
and O denote the set of all n-ary and all finitary operations of A4, respectively; further-
more, let &, (n=1, 2, ...) and £ denote the set of all n-ary and all finitary relations
of A, respectively. In general, we shall not distinguish between an operation and
the associated relation, i.e., an n-ary operation may be considered as a mapping
f:A"~A and as an (n+1)-ary relation {(ay, ..., @, (@, ..., @))|(@, ..., 4 )EA")
as well. Thus we have O&# and O,&5%,:+,, n=0,1,2,.... If Ris an n-ary rela-
tion, we shall often write R(a,, ..., a,) instead of (ay, ..., a,)€R.
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176 . . - - L. Szabo

We say that an n-ary operation f preserves an m-ary relation R, if
R(f(ans -.-s 1), -5 f(@mis ---» Gpy)) holds whenever R(ay, ..., @), k=1, ...,n
i.e., (R, f) is a subalgebra of the algebra (4, f)™ (the m-th direct power of (4, f ).
Remark that the empty set is an n-ary relation for every n=1, and it is preserved
by every m-ary operation where m=1. Let f and g be operations of arity 7 and m,
respectively. If M is an mXn matrix of elements of 4, we can apply f [g] to each
row [column] of M. Thus we get a column [row] consisting of m [n] elements, which
will be denoted by f(M) [(M)g]. If for any mXn matrix M of elements of
A, f(M)g)=(f(M))g holds then we say that f and g commute. Clearly, two
operations commute if and only if any of them preserves the other as a relation.
For any set of relations I', denote by I'* the set of all operations preserving every
member of I'. We call I'* the centralizer of I'. If I'=0Q is a set of operations, then
Q** is called the bicentralizer of I'. The symbol 2° will denote the set of all rela-
tions preserved by every member of Q. Remark that Q*=Q°NO for any set of
operations .

Let IT be a set of relations of 4, i.e., ISZ. If a relation belongs to IT, we
shall call it a II-relation. Let (A, 2) be an algebra. By the related structure of type I
of (4, Q) (in symbol: Rel;(4, 2)) we mean the set of all II-relation preserved by
every operation of ©, i.e., Rel (4, 2)=Q°NII. Observe that if II, is the set of
all n-ary relations of A, IT, is the set of all equivalences of A, IT; is the set of all
unary operations of 4, and II, is the set of all bijective unary operations of 4, then
Rel‘,,1 (4, 2)=Sub ((4, Q"), Relp,(4, Q) =Con (4, 2), Rel,(4,2) =End(4, Q)
and Rely (4, Q) =Aut (4, Q).

Let X={x;|i€cI} be a set of variables indexed by an arbitrary set I and let
I’ be a set of relations of 4. If R is a symbol of an n-ary relation in I" and f, g are
symbols of operations of arity m, s that denote a projection or an operation belong-
ing to I', respectively, then R(x;,...,x;) and f(x;,...,x; )=8(x,,...,x,) are
said to be formulas of the varlable set X over I' provided Xy o x,n,x I ...’, Xj
X5 - X, €X. (Note that we might have formulas of the ﬁrst kmd only, but intro-
ducing these two kinds of formulas our considerations became somewhat simpler.)
We say that a family (g;|i€I)€ A" satisfies the above formulas if Ry, ..., q),
resp. f(a;, ..., a; )=g(ay, ..., @) holds. Consider a triple ¥=(Z, X, (x5 -5 X ))
where X={x|icI} is a set of variables indexed by /, (x;, ..., x; )€X", and b
is a set of formulas of variable set X over I'. Such a triple will be referred to as a
Sformula scheme over I We say that ¥ is finite if both ¥ and X are finite. If
¥=(Z, X, (%, .-, x;)) (X={x;|i€I}) is a formula scheme then we associate
- with ¥ an n-ary relation Ry defined as follows: Ry={(a,, ..., a,)|(a|i€]) cAl
and (a;|i€]) satisfies (every member of) Z}. Then we say that R., is deﬁned by
the formula scheme ¥.

~ We say that a formula scheme ¥=(Z, X, (x,, ... ) (X={x;|ieI}

'n+l



Concrete representation of related structures 177

defines the n-ary operation f on BC A" if for any (a,,-.., a,)€B, f(ay, ..., a)=
=a,,, for some a,.,€A4 if and only if Ry(ay, ..., a,, a,;;) holds. For B=A4"
we say that ¥ defines f. An n-ary operation fis said to be locally definable by a set
of relations I', if for every finite BES A" there exists a formula scheme over I'
defining f on B.

The following lemmas describe the connection between the notions “relations
preserved by operatlons and “relations defined by formula schemes”.

Lemma 1. Let I be a set of relations of A. If a reIatlon R can be defined by
a formula scheme over I', then ReI'*°,

Proof. Let ¥Y=(Z, X, (x,,....,%)) (X={x]|i€I}) be a formula scheme
over I' and let f be an m-ary operation preserving all members of I'. If Ry,=0
then f preserves Ry trivially, unless m=0. However if m=0, i.e., fis a nullary
operation then R(/, ...,f) holds for every RE€I', whence it follows that X is sat-
isfied by (a]i€I) where a;=f for all i€l Then Ry(f, ...,f) holds, a con-
tradiction.

Now suppose Ry#0 and let Ry (d, ...,d5), k=1,...,m. Then there exist
families (bf|i€I) satisfying X such that (4}, ..., d)=(f, ..., %), k=1,...,m
Using the fact that f preserves all relations and commutes with all operations whose
symbols occur in X, one can observe by routine that (f(b}, ..., bj")|i€I) satisfies
Z. Hence it follows '

(f@al, ... aD), ... f(ah, .. @) = (f(Bhys -, D), .., f(BL,, ..., B))ERy
showing that f preserves Ry. Q.E.D.

Lemma 2. Let I be a set of relations of A. Then for every positive integer n,
every finitely generated subalgebra of the algebra (A, I'*)" can be defined by a formula
scheme over I'. Moreover, if A is a finite set, then we can choose these formula schemes
to be finite.

Proof. Let T be a finitely generated subalgebra of (4, I'*)". If T=0 then
I'* has no nullary operation. Consider the set of formulas X={R(x,, ..., x,)| RET'}.
Then there is no element of A satisfying X. For if a€A satisfies X then we get
R(a, ..., a) for all ReI’ which implies that a€I'*, i.e., I'* has a nullary operation;
a contradiction. Thus the formula scheme ¥=(Z, {x,},(x)) defines T=0,
ji.e, Ry=0=T. Furthermore, as Ry=90, i.e., there is no element of 4 satisfying
Z, for any a€ A there is a formula R,(x,, ..., x,)€2 such that R,(q, ..., a) does not
hold. Then the formula scheme ¥’=(Z’, {x,}, (x)) with Z'={R,(x,, ..., X,)|a€ 4}
defines T=0, too. Moreover, if A is a finite set then ¥’ is a finite formula scheme.

Now suppose T## and the set {t,=(ty, ..., ,)|t;€4", i=1, ..., s} generates
T. Since I'* is a clone (i.e., it contains all projections.and is closed under super-
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178 L. Szab6

position), T={f(t,, ..., t)| fE'*NO,}. We construct a formula scheme ¥ which
defines T.

Let X be a set of variables indexed by A°, i.e., X={x;|i€4°}. Consider an
arbitrary relation Q from I'. Let m be the arity of Q. Considering every element
of O as a column vector of length m, every element of Q° is an mXs matrix of
elements of 4. With Q and any matrix M € Q® we associate a formula Q(xMl > oees Xng)
of the variable set X, where M, is the k-th row of M, k=1, ..., m. Now consider
the formula scheme ¥=(Z,X,(x;,...,x;)) where X={x|icd’}, Z=
={Q(xy,, ..., ¥y )IQEr and Me@}, and (i, ..., i)=((tus o5 1)y oo
(T -5 t,)). We show that T is defined by ¥, ie., T=Ry. Clearly R,=
={@,, .-, a,)|(@|i€c4)€4*" and (qj|icA°) satisfies Z}. Remark, however, that
A*=0,, and thus we can write f€O, instead of (g;]ic A€ A*". Using this nota~
tion we get

Ry = {(f @D, ..., ()| fEO, and f satisfies Z} =
={(f s o5 t1)s oo s [ (tmas .-, 1)) | FEO, and f satisfies Z} =

= {f(ty, ..., )| f€O, and f satisfies Z}. -

Furthermore, an s-ary operation f satisfies X if and only if f€I'*. To show this
first suppose that f€ O, satisfies X. Let O be an arbitrary m-ary relation from I,
and let g;=(qy;, ..., gm€Q, j=1, ...,s. Then from M=(q, ..., ¢,)€Q° we get
Q(xp 5 -5 Xy )EZ, which implies o(fay, ..., f), ie, O(f (s - 15
vees S Gm1y -o-s q,,,,)) proving that f preserves Q. Hence fe€I'*. Conversely suppose
that feO,NI'* and Q(x;, ..., x; ) is an arbitrary formula from X, where
Ji=(ras «» Jis)» k=1, ..., m. Then the matrix (ji).xs 15 an element of ¢, i.e.,
(Jurs oovs Ju)€Q, I=1, ...,5. Taking into account that f preserves Q we get that
Q(f(jlls -":jls)’ ey f(ij AR | Jms))s i.e., Q(f(.]l)9 (AR ] f(]m)) pfOViIlg that f
satisfies the formula Q(x;,...,x; ). Hence f satisfies X. This implies Ry=
=(f(ty, .es 1) feEr*No,}, and the right side is the same as T.

Now let A be a finite set, and consider the formula scheme ¥ constructed
above. For every s-ary operation f that does not satisfy X there exists a formula
J;€Z such that f does not satisfy J;. Consider the set of formulas X’'={7;|f€O,
and f does not satisfy X}. It is evident that an s-ary operation satisfies X if and
only if it satisfies X’. Therefore, the formula scheme ¥’=(Z’, X, (a5 eoes X))
where X and (x;, ..., x,-n) are the same as above, defines the relation 7. Namely,

T= Ry ={(fG, ....f ()| f€O, and f satisfies I} =
={(f @), -...f ()| f€O, and f satisfies 2} = Ry..

Fﬁrthermore, from [X|=|4°| and |¥’|=|0,|=|4%"| it follows that X and 2’
are finite. Hence ¥’ is a finite formula scheme. Q.E.D.
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Lemma 3. If A is a finite set and a relation can be defined by a formula scheme
over a set of relations I', then it can be defined by a finite formula scheme over I'.

Proof. Suppose an n-ary relation R can be defined by a formula scheme over
I. From Lemma 1 it follows R€Sub ((4, I'*)"). Applying Lemma 2 we get that
R can be defined by a finite formula scheme over I Q.E.D.

Lemma 4. Let I be a set of relations of A. Then a relation R belongs to I'*®
if and only if R is the union of a directed system of relations defined by formula
schemes over I.

Proof. First let R=|J R; where (Rj|i€l) is a directed system of relations
i€l

defined by formula schemes over I'. Therefore, by Lemma 1, we get that R,€I'™,
icI. Furthermore, one can see easily that the union of a directed system of elements
of I'*® belongs to I'*®. _

Now suppose that RET'*® is an n-ary relation. Then R is a subalgebra of the
algebra (4, I'*)". Therefore RinI R; where (R;|icI) is the directed system of

3
the finitely generated subalgebras of (4, I'*)" contained in R. In view of Lemma 2,
we have that R;, i1, can be defined by a formula scheme over I Q.E.D.

Lemma 5. Let I' be a set of relations of A. Then an operation f belongs to I *x
if and only if f can be defined by I' locally.

Proof. First suppose that f is an n-ary operation which is defined by I" locally.
Choose an m-ary operation g from I'* and let M=(ay),x, be an mXn matrix
of elements of 4. According to our assumption, there is a formula scheme ¥ that
defines f on

B = {(akh sy akn)]k = 1’ ""m}U{(g(all’ sets aml)a sty g(alns ~-"amn))}-
Then Rg(@, - s @s [ @, .. > @4y) holds, k=1, ..., m. Using Lemma 1 we get

that R‘P(g(alh sery aml)a LR g(alns sy amn)’ g(f(an’ seey aln)a ---’f(amls ey amn))
“holds, too, whence

f(g@y, s Gn)y s 8@1ns vy ) = E(f (@115 -, 1) 5 coes S @ms > Cnn))
follows, ie., f((M)g)=(f(M))g. Hence f commutes with g showing that feI**,

Now suppose that f€I'** is an n-ary operation and let BC A" be a finite set.
Considering f as an (n+1)-ary relation we have feI'*®. Therefore, by Lemma 4,
we get f= U R, where (R)|i€l) is a directed system of ((n+1)-ary) relations

defined by formula schemes over I'. As (R;|i€]) is a directed system and B i is a finite
set, f=|JR; implies f|BSR, for some i€l Now let ¥ be a formula scheme
iel

over I' defining R;. Then f|BSR, Sf implies
le = {(aI’ . ’ans n+l)|(al’ (24 ] a,,)EB and (als very an: an+1)€Rl° bt R‘P}
and this means exactly that ¥ defines f on B. Q.E.D.

12¢
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Theorem 6. Let I''SII,(ER), i€l, be sets of relations of A; furthermore,
let QI (ER), j€J, be sets of such relations which are operations of A. Put
r=(YTr)U(U 2;). Then the following two statements are equivalent:

©Oier : JjEJ . :

1. There exists an algebra (A, Q) such that F,=Rel,,‘ 4,2 and Q=
=Relul (4, Q) for every i€l and jcJ. .
- IL (@) For every i€l, if a II;-relation is the union of a directed system of rela-
tions defined by formula schemes over I', then it belongs to TI',.
(B) For every j€J, if a -relation (operation) can be defined by I' locally then
it belongs to Q;.

Proof. I=Il. Suppose that I';=Rely (4, £2) and Q,-=Rel,,j 4, Q) for
some algebra (4, Q) for every i€l and j€J. First let i€ I and suppose a II; -relation
R to be the union of a directed system of relations defined by formula schemes
over I'. Taking into account Lemma 4 and I'*2Q we have that Rer*cC Qo
This fact together with R being a II, -relation shows that R¢ Rel,,‘o(A, Q). Hence
() holds.

Now let jo€J and suppose a I1; -operation f can be defined by I' locally. Then,
by Lemma 5, we have feI**SQ*CQ’. Hence f€Rely, (4, Q), ie., (f) holds.

. I=1 Let Q=I* Weshall prove that I';=Rely (4, 2) and Qj=Re1Hj(A, Q)
for every i€ I'and jcJ. First choose an arbitrary iy € I. The inclusion 1",.0gRel,,‘o 4, Q)
is obvious. Let R€Rely, (4, 2). Then R€Q°=I*°. Therefore, by Lemma 4, we
have that R is the union of a directed system of relations defined by formula schemes
over I'. Thus, by the condition (a), Rerly, . :

Now choose an arbitrary jo€J. Again, Q; & RelHJO(A, Q) is obvious. Let
f€Rely, (4, Q) be a II; -operation. Then f€Q*=I"**. Therefore, by Lemma S,
we get that f can be defined by I locally. Thus, by the condition (), f€Q i, QED.

Theorem 7. Let (I'y|n=1,2,...) be a family of sets of relations of A such
that I, has n-ary relations only, n=1,2, ... . Then the following two statements are
equivalent:

1. There exists an algebra (A, Q) such that I',=Sub ((4, Q)’),n=1,2, ....

IL. () For every n, if an n-ary relation can be defined by a formula scheme over

Cs

I'y then it belongs to I,.

k=1

(B) For every n, T, is closed under union of directed systems.

Proof. Put I={1,2, ...}, J=0 and, as II,, the set of all n-ary relations of
A in Theorem 6. .

Corollary 8. If A is a finite set then statement II in Theorem 6 can be
replaced by T o -
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IV. For every n, if an n-ary relation can be defined by a finite formula scheme

over | I'y then it belongs to I',.
k=1

Proof. As A is a finite set, the assumption () in Theorem 6 is superfluous and
we can apply Lemma 3.

Theorem 9. Let I' be a set of n-ary relations of A. Then there exists an algebra
(4, Q) such that I'=Sub ((4, Q)') if and only if T is closed under union of directed
systems and I' contains every n-ary relation defined by a formula scheme over I.

Proof. Put 7={1}, I''=T, J=0 and, as II;, the set of all n-ary relations
of A in Theorem 6.

Corollary' 10. Let A be finite and let I" be a set of n-ary relations of A. Then
there exists an algebra (A, Q) such that I'=Sub((4, Q)") if and only if I’ contains
every n-ary relation defined by a finite formula scheme over T.

Corollary 11. (J. Schmidt) For a s‘et I of unary relations of A, there is an
algebra (A, Q) such that T'=Sub (4, Q) if and only if T is an algebraic closure
system.

Proof. Suppose that I'=Sub (4, Q) for some algebra (4, Q). Let {R;|jcJ}
be a subset of I'. Then the formula scheme (Z, {x,}, (x)) with Z={R;(x)|j€J}
defines () R;. Applying Theorem 9, we get that () R;€l, ie., I is closed under

JjeJ jeJ

intersections. This fact together with the conditions of Theorem 9 proves that I’
is an algebraic closure system.

Conversely, suppose that I' is an algebraic closure system. Then I' is closed under
union of directed systems. Now consider a formula scheme ¥=(Z, X, (xp)

(X—{xliEI}) over I If Ry=0 then Ry=0= () R Otherwise, aEﬂ R
Rer

1mp11es that (a;]ic]) where g;=a for all i€l, satisfies £ showing Ry (a), a con-
tradiction. Thus Ry =0€l. If Ry, then it is a routine to check that

Ry=. () R, ie., Ry €I'. Thus we get that I satisfies the condition of Theo-
R(x1)€Z2

rem 9. Q.E.D.
In [1], KaLuZNIN and his co-workers have given a characterization for the

subalgebra system G Sub((4, Q)") of a finite algebra (4, Q). Now we derive their
n=1

result from Corollary 8. We need some additional notions and notations.

For an m-ary relation R of 4 and a permutation 7 of the set {l, ..., m} the
t-translate of R is an m-ary relation R of A defined by R = {a,,, ..., @) |R(ay, ..., G}
For any two relations R and T of arity m and n, respectively, the direct product of
R and T'is an (m+n)-ary relation RX T defined by RX T={(ay, ..., @p+n)|R(ay; --., @)

rand T(@p+1s s Auen)}- If R is an m-ary relation and 1=i<...<i=m, then



182 L. Szabo

the projection of R to the coordinates iy, ..., J, is a t-ary relation R;  , defined
by R, . ..={@,..,a)IR(@, . ..,a,)} If R is an m-ary relation and O is
an equivalence relation of the set {1, ..., m}, then the @-diagonal of R is an m-ary
relation Ry defined by Rg={(a, ..., a,)|R(ay, ..., a,) and (i@j=a;=a;)}. Finally,

the n-ary diagonal D, is defined by D,={(a, ..., a)lac A} for any n.

Corollary 12. (V. G. Bodnarfuk, L. A. KaluZnin, V. N. Kotov, V. A. Romov)
If A is a finite set and I is a set of relations of A then there exists an algebra (A, Q)

such that I'= G Sub((4, Q)") if and only if all diagonals belong to I', and I is closed
n=1

under formation of direct products, as well as arbitrary t-translates, projections,
and O-diagonals.

Proof. By Corollary 8 we have to prove only that a set of relations I' fulfils’
the assumptions of the corollary if and only if every relation defined by a finite
formula scheme over I" belongs to I'.

First suppose that all relations defined by finite formula schemes belong to I'.
Then for any n the formula scheme (@, {x,}, (x;, ..., x,)) defines D,. If R and T
are relations from I' of arity m and n, respectively, T is a permutation and @ is an
equivalence relation of the set {1, ..., m} and 1=i,<...<i,=m, then the formula
schemes

ROy, s Xy T Kpt1s <o X)) %15 < os Xman}s (a5 s X))

({R(-xl’ A xm)}’ {xl’ teer xm}? (xln LR X,m.)),
({R(x1, - os X} {315 vos X}y (Xigser X3))s

({R(xh srey xm)}u {D2(xk’ xl) |k@l}’ {xl’ sy xm}’ (xlﬁ ety xm))

and

define RX T, R, R, . -and Rg, respectively.
Conversely, suppose that I" satisfies the assumptions of the corollary and let
. ¥=(2, X, (i 5 ...,xi")) (X={x;|i€I}) be a finite formula scheme over I'. We
have to prove that Ry can be got from I' in a finite number of steps by formation
of directed products, t-translates, projections, and @-diagonals. Concerning ¥,
we can assume w.lo.g. that every component of (Xis oo xin) occurs in some
formula of X, otherwise we can add the formulas Dz(x,-l,qcil), ...,Dz(x,-n,x,-n)
to 2. Furthermore, we can assume that (x;, ..., x;) has pairwise distinct com-
ponents, otherwise we can consider the formula scheme ¥=(Z’, X', (1, ..., ¥»)
where  X'=XU{py, ..., (XN {ys, ..., pa}#0) and  Z'=ZU{Dy(x;, y), -,
Dy(x; , ¥} Clearly Ry=Ry.. Finally, we can also assume that X has formulas
of the form R(le, ...,x,-m) (RET) only. Otherwise, if a formula ¢ of the form
f (x,l, s x,,)=g(x,,l, ) belongs to X, then replace ¢ by the formulas
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f(x,l, ...,x,.)=y, and g(xkl, ...,x,,)=y,. Considering f and g as (s+1)-ary
and (r+1)-ary relations, respectively, these formulas have the form we required.
Thus we get a set of formulas X”. Then the formula scheme ¥”=
=(Z", X", (%5 oo, %)) With X"=XU{y,]e€Z and ¢ is of the form f=g}
defines R, . _

Now suppose that ¥ has these properties. Then let -

Z={R01, - Vi) - ROA, o 32)h WEX, I=1, s, k=1,..,m.
Consider the formula scheme ®=(Z, X, (3}, -.., y‘nl, s Vs eves y’,,.)). Observe that
Ry can be got from Ry by formation of a suitable projection and t-translate. Further-
more, let @ be an equivalence of the set {1, e Zs'nk} defined as follows: jOI if
and oniy if the j-th and I-th components of ( y},k.il, Yugs s Vis -5 ¥3) are equal,
1= ..., Zs'nk. Now it is a routine to verify that R, equals the @-diagonal
of R1><...>k<=1$s. Q.E.D.

Theorem 13. If Q is a set of operations of A, then Q=Q** if and only if Q
contains every operation defined by Q locally.

It follows from Lemma 5 immediately.

Corollary 14. (A. V. Kuznecov) If A is a finite set, then Q=Q** for some
set of operations Q if and only if every operation defined by a finite formula scheme
over Q belongs to Q.

Proof. If dis a ﬁnite set, an operation f locally definable by Q can be defined
by a formula scheme over Q. Lemma 3 shows that we can restrict ourselves to finite
formulas. It remains to apply Theorem 13.

Theorem 15. For a set E of transformations of A there exists an algebra (4, Q)
such that E=End (4, Q) if and only if E contains every transformation defined
by E locally.

Proof. Put I=0, J={1}, Q,=F and, as II,, the set of all unary operations
in Theorem 6. '

Corollary 16. If A is a finite set, then for a set E of tran.sfo}mations of A there
exists an algebra (A, Q) such that E=End (A, Q) if and only if E contains every
transformation defined by a finite formula scheme over E.

Proof. We can proceed similarly as it was done in the proof of Corollary 12.
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