On extendibility of $*$-representations from *-ideals

ZOLTÁN SEBESTYÉN

In this note we give necessary and sufficient conditions for the extension of a *-representation from a $*$-ideal in à complex involutory algebra, briefly *algebra, to the whole algebra. One of our conditions, given in the Theorem below, is the same as the one we required in [3]; Corollary 2. 8, and [4], Corollary 6; for the existence of such a *-representation of the whole algebra on some Hilbert space for which the norms of the representing operators of the elements in the *-ideal are equal to the norms of the corresponding representing operators concerning the given $*$-representation. We also give a new proof of our previous result (see [3], Theorem 2. 6; [4], Theorem 4) concerning the extension of C^{*}-semi-norms from *-ideals in $*$-algebras to the whole algebras.

Let us be given a *-ideal J of a *-algebra A over the complex number field C and a $*$-representation \dot{T} of J on a Hilbert space H, i.e. a $*$-preserving aigebra homomorphism $T: J \rightarrow B(H)$ of J into the C^{*}-algebra $B(H)$ of all bounded linear operators on H. It is natural to ask: when does a *-representation $\bar{T}: A \rightarrow B(H)$ of A on the same Hilbert space exist, which is an extension of the given *-representation T, i.e. for which $\bar{T}_{b}=T_{b}$ holds whenever \dot{b} is in J.

We answer this question in three ways, giving necessary and sufficient conditions, the first of which is simple enough still it needs no restriction on the algebra unlike in Palmer [2], Theorem 3.1.

Lemma. Let $T: J \rightarrow B(H)$ be $a *$-representation of $a *$-ideal J in the complex *-algebra A on the Hilbert space H. Then there exists a *-representation $\bar{T}: A \rightarrow B(H)$ of A on the same Hilbert space H extending T, if and only if

$$
\begin{equation*}
\sup \left\{\left\|\sum_{n} T_{a b_{n}} x_{n}\right\|: \dot{b}_{n} \in J, x_{n} \in H,\left\|\sum_{n} T_{\dot{b}_{n}} \dot{x}_{n}\right\| \leqq 1\right\}<\infty \tag{1}
\end{equation*}
$$

holds for every a in A; here and further on \sum_{n} denotes a finite sum.

Received May 16, 1976, and in revised form, August 22, 1977.

Proof. Assume first that such a *-representation \bar{T} of A exists. We have then for every $a \in A, b_{n} \in J$ and $x_{n} \in H$, since $a b_{n} \in J$,

$$
\left\|\sum_{n} T_{a b_{n}} x_{n}\right\|=\left\|\sum_{n} \bar{T}_{a b_{n}} x_{n}\right\|=\left\|\bar{T}_{a}\left(\sum_{n} \bar{T}_{b_{n}} x_{n}\right)\right\|=\left\|\bar{T}_{a}\left(\sum_{n} T_{b_{n}} x_{n}\right)\right\| \leqq\left|\bar{T}_{a}\right|\left\|\sum_{n} T_{b_{n}} x_{n}\right\| ;
$$

hence (1) is satisfied; here $\left|\bar{T}_{a}\right|$ is the norm of the operator \bar{T}_{a} on the Hilbert space H.
Let

$$
H_{0}=\left\{x \in H: T_{b} x=0 \text { for all } b \in J\right\}=\cap\left\{\operatorname{Ker} T_{b}: b \in J\right\}
$$

be the maximal closed linear subspace in H, the restriction of T to which is a zero *-representation T^{0} of J on H_{0}. Denote by \bar{T}^{0} the zero $*$-representation of A on H_{0}, the trivial extension of T^{0} from J to A. Denote further

$$
H_{1}=\left\{x \in H:(x, y)=0 \text { for all } y \in H_{0}\right\}
$$

the orthogonal complement of H_{0} in H, and T^{1} the restriction of T to H_{1} (which is clearly an invariant subspace for T). In this way T is the direct sum of a zero and an essential *-representation T^{0} and T^{1} respectively: $T=T^{0} \oplus T^{1}$. Indeed, $G=\left\{\sum_{n} T_{b_{n}} x_{n}: x_{n} \in H_{1}, b_{n} \in J\right\}$ is a dense linear manifold in H_{1}, which is invariant for T also, because if an element x in H_{1} is orthogonal to G, then for all $c \in J$

$$
\left\|T_{c} x\right\|^{2}=\left(T_{c} x, T_{c} x\right)=\left(x, T_{c}^{*} T_{c} x\right)=\left(x, T_{c^{*} c} x\right)=0,
$$

hence $x \in H_{0}$ and thus $x=0$.
Define for an element a in A a linear operator S_{a} in H_{1} given on G by

$$
S_{a}\left(\sum_{n} T_{b_{n}} x_{n}\right)=\sum_{n} T_{a b_{n}} x_{n} \quad\left(b_{n} \in J, x_{n} \in H_{1}\right),
$$

We have now to show that S_{a} is well defined on G, that is, $\sum_{n} T_{b_{n}} x_{n}=0$ implies $\sum_{n} T_{a b_{n}} x_{n}=0$. For $y=\sum_{n} T_{a b_{n}} x_{n}$ we have

$$
\begin{gathered}
\|y\|^{2}=\left(\sum_{m} T_{a b_{m}} x_{m}, \sum_{n} T_{a b_{n}} x_{n}\right)=\sum_{m, n}\left(T_{a b_{m}} x_{m}, T_{a b_{n}} x_{n}\right)= \\
=\sum_{m, n}\left(T_{b_{n}^{*} a^{*} a b_{m}} x_{m}, x_{n}\right)=\sum_{m, n}\left(T_{a^{*} a b_{m}} x_{m}, T_{b_{n}} x_{n}\right)=\left(\sum_{m} T_{a^{*} a b_{m}} x_{m}, \sum_{n} T_{b_{n}} x_{n}\right),
\end{gathered}
$$

hence $y=0$ indeed. But our assumption (1) means then that S_{a} is a densely defined bounded linear operator in H_{1}, thus it has a unique extension \bar{T}_{a}^{1} to H_{1} in a standard way. For an $a \in J$ we have $S_{a} x=T_{a} x(x \in G)$, hence that $\bar{T}_{a}=T_{a}$. It is now easy to check that $\bar{T}^{1}: A \rightarrow B\left(H_{1}\right)$ is a $*$-representation of A on H_{1}. The linearity and multiplicativity of \bar{T}^{1} is immediate. On the other hand, if $a \in A ; b_{n}, c_{m} \in J ; x_{n}, y_{m} \in H_{1}$, then we

$$
\begin{aligned}
& \left(S_{a}\left(\sum_{n} T_{b_{n}} x_{n}\right), \sum_{m} T_{c_{m}} y_{m}\right)=\left(\sum_{m, n} T_{a b_{n}} x_{n}, T_{c_{m}} y_{m}\right)= \\
& =\sum_{m, n}\left(x_{n}, T_{b_{n}^{*} a^{*} c_{m}} y_{m}\right)=\sum_{m, n}\left(T_{b_{n}} x_{n}, T_{a^{*} c_{m}} y_{m}\right)=\left(\sum_{n} T_{b_{n}} x_{n}, S_{a^{*}}\left(\sum_{m} T_{c_{m}} y_{m}\right)\right)
\end{aligned}
$$

and thus $\left(\bar{T}_{a}^{1}\right)^{*}=\bar{T}_{a^{*}}^{1}$ as well. Moreover, the extension of T^{1} to A is unique. Indeed, if \hat{T}^{1} is an arbitrary $*$-representation of A that is an extension of T^{1}, then for $a \in A$, $b_{n} \in J, x_{n} \in H_{1}$ we have

$$
\hat{T}_{a}^{1}\left(\sum_{n} T_{b_{n}}^{1} x_{n}\right)=\hat{T}_{a}^{1}\left(\sum_{n} \hat{T}_{b_{n}}^{1} x_{n}\right)=\sum_{n} \hat{T}_{a b_{n}}^{1} x_{n}=\sum_{n} T_{a b_{n}}^{1} x_{n}=S_{a}\left(\sum_{n} T_{b_{n}}^{1} x_{n}\right)
$$

We have finally that $\bar{T}=\bar{T}^{0} \oplus \bar{T}^{1}$ is a $*$-representation of A on the Hilbert space H which extends T and the lemma is proved.

We are now able to improve the above result as follows.
Proposition. The *-representation $T: J \rightarrow B(H)$ has an extension, a *-representation $\bar{T}: A \rightarrow B(H)$ if and only if

$$
\begin{equation*}
\sup \left\{\left\|T_{a b} x\right\|: b \in J, x \in H,\left\|T_{b} x\right\| \leqq 1\right\}<\infty \quad \text { for every } a \in A \tag{2}
\end{equation*}
$$

Proof. The necessity part is obvious from Lemma as (2) is a specialization of (1).
Suppose now that (2) holds. We are going to prove that T has an extension $\bar{T}: A \rightarrow B(H)$. Let T^{1} and H^{1} be as before and write T^{1} in the form of direct sum of topologically cyclic sub-*-representations (see [2]):

$$
T^{1}=\oplus\left\{T^{\lambda}: \lambda \in \Lambda\right\} ; T^{\lambda}=\left.T^{1}\right|_{H_{\lambda}}, T^{\lambda}: J \rightarrow B\left(H_{\lambda}\right)
$$

for every index λ in Λ; on a maximal family of pairwise orthogonal T^{1}-invariant subspaces $\left\{H_{\lambda}: \lambda \in \Lambda\right\}$ in H_{1} (and thus spanning H_{1}) with topological cyclic vectors $x_{\lambda} \in H_{\lambda}$ such that $G_{\lambda}=\left\{T_{b} x_{\lambda}: b \in J\right\}$ is a dense linear manifold in H_{λ} for each $\lambda \in \Lambda$. An argument similar to that used in Lemma shows, by (2), that for $a \in A$ the linear operator S_{a}^{λ} in H_{λ} given on G_{λ} by $S_{a}^{\lambda}\left(T_{b} x_{\lambda}\right)=T_{a b} x_{\lambda}(b \in J)$ is a densely defined bounded linear operator on H_{λ}. This has a unique extension \bar{T}_{a}^{λ} to H_{λ} with norm

$$
\begin{aligned}
\left|\bar{T}_{a}^{\lambda}\right|= & \sup \left\{\left\|S_{a}^{\lambda}\left(\dot{T}_{b} x_{\lambda}\right)\right\|: b \in J,\left\|T_{b} x_{\lambda}\right\| \leqq 1\right\}= \\
& =\sup \left\{\left\|T_{a b} x_{\lambda}\right\|: b \in J,\left\|T_{b} x_{\lambda}\right\| \leqq 1\right\} \leqq \sup \left\{\left\|T_{a b} x\right\|: b \in J, x \in H,\left\|T_{b} x\right\| \leqq 1\right\}<\infty .
\end{aligned}
$$

We thus have the $*$-representations $\bar{T}^{\lambda}: A \rightarrow B\left(H_{\lambda}\right)(\lambda \in \Lambda) . \bar{T}^{\lambda}$ extends T^{λ} in a unique way for all λ in Λ and thus

$$
\bar{T}^{1}=\oplus\left\{\bar{T}^{\lambda}: \lambda \in \Lambda\right\}
$$

the direct sum of $\bar{T}^{\lambda}-\mathrm{s}$, is a *-representation of A on H_{1} extending T^{1} uniquely and such that for each $a \in A$

$$
\begin{gathered}
\left|\bar{T}_{a}^{1}\right|=\sup \left\{\left|\bar{T}_{a}^{\lambda}\right|: \lambda \in \Lambda\right\}=\sup \left\{\left\|T_{a b} x_{\lambda}\right\|: b \in J, \lambda \in \Lambda,\left\|T_{b} x_{\lambda}\right\| \leqq 1\right\} \\
\leqq \sup \left\{\left\|T_{a b} x\right\|: b \in J, x \in H,\left\|T_{b} x\right\| \leqq 1\right\}<\infty .
\end{gathered}
$$

$\bar{T}=\bar{T}^{0} \oplus \bar{T}^{1}$ is then a *-representation of A on H which extends T as well and the proof is complete.

The main result of this note is the following.

Théorem. Let $T: J \rightarrow \bar{B}(\hat{H})$ be a *-representation of a *-ideal in the complex *-algebía A on the Hilbert space H. There exists then a *-representation $\bar{T}: A \rightarrow B(H)$, which is an extension of T, if and only if

$$
\begin{equation*}
q(a):=\sup \left\{\left|T_{a b}\right|: b \in J,\left|T_{b}\right| \leqq 1\right\}<\infty \quad \text { for all } a \text { in } \dot{A} \tag{3}
\end{equation*}
$$

Proof. Assume first that such a *-representation T of A exists. Then we have for all $a \in A, b \in \dot{J}$

$$
\left|T_{a b}\right|=\left|\bar{T}_{a b}\right|=\left|\dot{\bar{T}}_{a} \bar{T}_{b}\right| \leqq\left|\bar{T}_{a}\right| \cdot\left|\bar{T}_{b}\right|=\left|\dot{\bar{T}}_{a}\right| \cdot\left|\dot{T}_{b}\right|
$$

whence $q(a) \leqq\left|T_{a}\right|$ follows and (3) is satisfied.
Suppose now that (3) holds for all a in A. The quantity \dot{q} is obviously a seminorm on A. Moreover, if $\left|T_{b}\right|=0$ for some $b \in J$, then $\left|T_{a b}\right|=0$ for all $\dot{a} \in A$ since

$$
\left|T_{a b}\right|^{2}=\left|T_{a b}^{*} T_{a b}\right|=\left|T_{b^{*} a^{*}} T_{a b}\right|=\left|T_{b^{*} a^{*} a b}\right|=\left|T_{b^{*} a^{*} a} T_{b}\right| \leqq\left|T_{b^{*} a^{*} a}\right|\left|T_{b}\right|
$$

and thus

$$
\left|T_{a b}\right| \leqq q(a)\left|T_{b}\right| \text { holds for } b \in \mathcal{J}, a \in A
$$

We are now going to show that q has the C^{*}-property:

$$
\begin{equation*}
q\left(a^{*} a\right)=(q(a))^{2} \quad(a \in A) \tag{4}
\end{equation*}
$$

in other words, q is a C^{*}-semi-norm, and that (3) implies (2) whence our statement follows by the Proposition. For $a \in A, b \in J$ we have

$$
\left|T_{a b}\right|^{2}=\left|\dot{T}_{b^{*} a^{*} a b}\right|=\left|T_{b^{*}} T_{a^{*} a b}\right| \leqq\left|T_{b^{*}}\right|\left|T_{a^{*} a b}\right|=\left|T_{b}\right|\left|\dot{T}_{a^{*} a b}\right| \leqq \dot{q}\left(\dot{a}^{*} a\right)\left|T_{b}\right|^{2}
$$

and thus

$$
(q(a))^{2} \leqq q\left(a^{*} a\right) \quad(a \in A)
$$

On the other hand, for $a \in A, b \in J$ we have

$$
\left|T_{a^{*} a b}\right| \leqq q\left(a^{*}\right)\left|T_{a b}\right| \leqq \dot{q}\left(a^{*}\right) q(a) \mid T_{b} \dot{\dot{b}} .
$$

Hence

$$
q\left(a^{*} a\right) \leqq q\left(a^{*}\right) q(a) \quad(a \in A)
$$

But (4') and (4") together give $q(a) \leqq q\left(a^{*}\right)$ for each $a \in A$; whence by interchanging the rôles of a and a^{*} we obtain that $q(a)=q\left(a^{*}\right)$ for all a in A. We have then by (4) and (4")

$$
(\dot{q}(a))^{2} \leqq q\left(a^{*} \dot{a}\right) \leqq \ddot{q}\left(a^{*}\right) q(a)=(q(a))^{\dot{2}}
$$

whence (4) follows.
We are now able to prove that (2) holds. For if $a \in A, b \in J$ and $x \in H$, then we have

$$
\begin{aligned}
\left\|T_{a b} \dot{x}\right\|^{2} & =\left(T_{a b} x, T_{a b} x\right)=\left(T_{a b}^{*} T_{a b} \dot{x}, \dot{x}\right)=\left(T_{b^{*} a^{*} a \dot{b}} x, x\right)= \\
& =\left(T_{b^{*}} T_{a^{*} a b} x, x\right)=\left(T_{\dot{a}^{*} a b} x, T_{\dot{b}} x\right) \leqq\left\|T_{a^{*} a b} x\right\|\left\|T_{b} x\right\| .
\end{aligned}
$$

Replacing a by $a^{*} a$ we obtain

$$
\left\|T_{a^{*} a b} \dot{x}\right\|^{2} \xlongequal[\leqq]{\cong} T_{\left(a^{*} a\right)^{2} b} x\left\|T_{b} x\right\|,
$$

and by recurrence;

$$
\left\|\dot{T}_{a b} \dot{x}\right\|^{2^{n+1}} \leqq\left\|\dot{T}_{\left(a^{*} a\right)^{2^{n}}} x\right\|\left\|T_{b} x\right\|^{2^{n+1}-i} \quad(n=0,1,2, \ldots)
$$

But then we have by (4)

$$
\begin{aligned}
\left\|T_{a b} x\right\|^{2^{n+1}} & \leqq\left|T_{\left(a^{*} a\right)^{2 n}}\right|\|x\|\left\|T_{b} x\right\|^{2^{n+1}-1} \leqq q\left(\left(a^{*} a\right)^{2^{n}}\right)\left|T_{b}\right|\|x\|\left\|T_{b} x\right\|^{2^{n+1}-1}= \\
& =\left(q\left(a^{*} a\right)\right)^{2^{2}}\left|T_{b}\| \| x\| \| T_{b} x\left\|^{2^{n+1}-1}=(q(a))^{2^{n+1}} \mid T_{b}\right\| x\| \| T_{b} x \|^{2^{n+1}-1}\right.
\end{aligned}
$$

By letting $n \rightarrow \infty$ we obtain

$$
\left\|T_{a b} x\right\| \leqq q(a)\left\|T_{b} x\right\| \quad \text { for all } \quad a \in A, b \in J, x \in H
$$

hence by (3)

$$
\sup \left\{\left\|T_{a b} x\right\|: b \in J, x \in H,\left\|T_{b} x\right\| \leqq 1\right\} \leqq q(a) \quad(a \in A)
$$

which finishes the proof.
We get finally a new proof of Theorem 2. 6 in [3] (or Theorem 4 in [4]).
Corollary. Let p be a C*-semi-norm on a *-ideal J of the complex *-algebra A. There exists then $a C^{*}$-semi-norm on A which is equal to p on J if and only if

$$
\begin{equation*}
\sup \{p(a b): b \in J, p(b) \leqq 1\}<\infty \tag{5}
\end{equation*}
$$

holds for all a in A.
Proof. Let q be such a C^{*}-semi-norm. q is also submultiplicative in consequence of our previous result (see [3], Theorem 2. 3 or [4], Theorem 2). We have for every $a \in A, b \in J$ that

$$
p(a b)=q(a b) \leqq q(a) q(b)=q(a) p(b)
$$

proving that (5) is necessary.
To show that (5) is sufficient consider $J_{p}=\{b \in J: p(b)=0\}$. Since p is automatically submultiplicative and the $*$-operation is isometric with respect to p also, J_{p} is in fact a $*$-ideal in J such that the completion B_{p} of the quotient algebra J / J_{p} with respect to the quotient norm and with natural involution is a C^{*}-algebra. The classical Gelfand-Naimark theorem assures a canonical isometrical *-representation of B_{p} on some Hilbert space $H: \bar{T}^{p}: B_{p} \rightarrow B(H)$. From the restriction T^{p} of \bar{T}^{p} to J / J_{p} we get in a standard way a $*$-representation $T: J \rightarrow B(H)$ of J on H such that $T_{b}=\dot{T}_{b+J_{p}}^{p}$ and $\left|T_{b}\right|=p\left(b+J_{p}\right)=p(b)$ holds for all $b \in J$. As a consequence (5) implies (3) for this *-representation T and the statement follows from the Theorem.

Remark. Our result on automatic submultiplicativity of a C^{*}-semi-norm, mentioned above, is an improvement of a recent result due to Araki and Elliott concerning the definition of C^{*}-algebras (see Theorem 1 in [1]).

For the following two remarks we are indebted to Dr. J. SzÛcs. First, in the proof of the Lemma S_{a} is well defined simply because (1) implies for $a \in A$, $b \in J, x \in H$

$$
\sum_{n} T_{a b_{n}} x_{n}=0 \quad \text { provided } \quad \sum_{n} T_{b_{n}} x_{n}=0
$$

since for each $t>0,0=\sum_{n} T_{t b_{n}} x_{n}=t \cdot \sum T_{b_{n}} x_{n}$ so that by (1)

$$
\sup \left\{t\left\|\sum_{n} T_{a b_{n}} x_{n}\right\|: t>0\right\}=\sup \left\{\left\|\sum_{n} T_{a t b_{n}}\right\|: t>0\right\}<\infty .
$$

Secondly, (3) implies (2) as an easy application of Kaplansky's Density Theorem shows. For if $a \in A, b \in J, x \in H_{1}$ and $\left\|T_{b} x\right\| \leqq 1$ then it is enough to show $\left\|T_{a b} x\right\| \leqq$ $q\left(a^{*}\right)$ or equivalently

$$
\left|\left(T_{a b} x, y\right)\right| \leqq q\left(a^{*}\right)\|y\| \quad \text { for each } \quad y \in H
$$

$\left\{T_{b}^{1}: b \in J\right\} \subset B\left(H_{1}\right)$ is a *-algebra of bounded linear operators on H_{1} such that $\left\{T_{b}^{1} x: b \in J, x \in H_{1}\right\}$ spans H_{1}, its double commutant N is a von Neumann algebra containing the identity operator on H_{1}. But $\left\{T_{b}^{1}: b \in J\right\}$ is strongly dense in N hence by Kaplansky's theorem the strong closure of the unit ball in $\left\{T_{b}^{1}: b \in J\right\}$ contains N_{1}, the unit ball of N, especially the identity operator. Hence for a fixed $y \in H_{1}$ there exists $\left\{b_{n}\right\}_{n=1}^{\infty} \subset J$ with $\left|T_{b_{n}}\right| \leqq 1$ such that $\left\|T_{b_{n}} y-y\right\| \rightarrow 0$. We then obtain for $a \in A, b \in J, x \in H_{1}$ that

$$
\begin{aligned}
& \left|\left(T_{a b} x, y\right)\right| \leqq \sup _{n}\left|\left(T_{a b} x, T_{b_{n}} y\right)\right|=\sup _{n}\left|\left(T_{b_{n}^{*} a b} x, y\right)\right|= \\
& \quad=\sup _{n}\left|\left(T_{\left(a^{*} b_{n}\right)^{*}} T_{b} x, y\right)\right|=\sup _{n}\left|\left(T_{b} x, T_{a^{*} b_{n}} y\right)\right| \leqq \sup _{n}\left\|T_{a^{*} b_{n}} y\right\| \leqq \\
& \quad \leqq \sup _{n}\left|T_{a^{*} b_{n}}\right|\|y\| \leqq\|y\| q\left(a^{*}\right) \sup _{n}\left|T_{b_{n}}\right| \leqq\|y\| q\left(a^{*}\right),
\end{aligned}
$$

and thus the required inequality follows.
The author is indebted to Professor Béla Sz.-Nagy for having called his attention to the problem dealt with in this paper.

References

[1] H. Araki-G. A. Elliott, On the definition of C^{*}-algebras, Publ. Res. Inst. for Math. Sciences, Kyoto Univ., 9 (1973), 93-112.
[2] T. W. Palmer, The reducing ideal is a radical, Pacific J. of Math., 43 (1972), 385-414.
[3] Z. Sebestyén, Investigations about the axiomatic C C^{*}-algebra theory, Dissertation 1974 (Hungarian).
[4] Z. Sebestyen, Every C^{*}-semi-norm is automatically submultiplicative, to appear.

