Построение полугрупповой амальгамы, независимо вложимой в полугруппу

л. медеши*

Полугрупповая амальгама *вкладывается независимо* в полугруппу, если в этой полугруппе независимы исходные полугруппы, составляющие данную амальгаму.

В настоящей работе изучаются свойства таких амальгам и в некоторых частных случаях (например, для некоторого гомоморфного образа всех упомянутых амальгам) дается полное описание.

Эта статья по существу есть продолжение статьи [6]. Мы предполагаем, что читатель знаком с [6] и используем определения и обозначения этой работы.

§ 1. Построение полугрупп, содержащих М-элементы

Пусть A слабо ассоциативная амальгама полугрупп A_{ξ} ($\xi \in \mathcal{I}$, где \mathcal{I} — некоторое множество индексов), которая может быть вложена в некоторую полугруппу B таким образом чтобы A_{ξ} ($\xi \in \mathcal{I}$) в ней являлись независимыми подполугруппами. Другими словами, амальгама A удовлетворяет условиям теоремы 3 в статье [6] и по теореме 2 (в [6]) обладает свойствами $\alpha - \beta$. Этими свойствами мы будем в дальнейшем неоднократно пользоваться.

Отбросим из \mathscr{I} такие ундексы α , для которых A_{α} не обладает L-элементами (T-элементами, M-элементами). Полученные три множества обозначим соответственно через \mathscr{I}_L , \mathscr{I}_T , \mathscr{I}_M . В этих множествах определим *отношения* ϱ_L , ϱ_T , ϱ_M следующим образом:

 ϱ_L : $\alpha \varrho_L \beta$ ($\alpha, \beta \in \mathscr{I}_L$) \Leftrightarrow существует L-элемент x, для которого $\alpha, \beta \in \overline{x}$,

 ϱ_T : $\alpha \varrho_T \beta$ ($\alpha, \beta \in \mathscr{I}_T$) \Leftrightarrow существует T-элемент t, для которого $\alpha, \beta \in \overline{t}$,

 ϱ_M : $\alpha \varrho_M \beta$ (α , $\beta \in \mathscr{I}_M$) \Leftrightarrow существует такая (конечная) последовательность $\gamma_0 = \alpha$, $\gamma_1, \gamma_2, \ldots, \gamma_n = \beta$ ($\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_n \in \mathscr{I}_M$) для которой найдутся M-элементы y_1, y_2, \ldots, y_n со свойством: $\bar{y}_1 = \langle \gamma_0, \gamma_1 \rangle, \ \bar{y}_2 = \langle \gamma_1, \gamma_2 \rangle, \ldots, \ \bar{y}_n = \langle \gamma_{n-1}, \gamma_n \rangle$.

Поступило 7. апреля 1977

^{*} L. MEGYESI

Л. Медеши

Очевидно, что ϱ_L , ϱ_T рефлексивны и симметричны. Транзитивность отношения ϱ_L следует из свойства β , а транзитивность отношения ϱ_T следует из ϑ . Таким образом, ϱ_L , ϱ_T и ϱ_M являются отношениями эквивалентности (для ϱ_M это очевидно). Следовательно, ϱ_L , ϱ_T и ϱ_M определяют разбиения. Обозначим ϱ_L -классы через P_i ($i \in \mathscr{I}_P$), ϱ_T -классы через Q_j ($j \in \mathscr{I}_Q$), ϱ_M -классы через R_k ($k \in \mathscr{I}_R$) (\mathscr{I}_P , \mathscr{I}_Q , \mathscr{I}_R — некоторые (подходящие) множества индексов). Мощность множеств P_i , Q_j , R_k записываем так $|P_i|$, $|Q_j|$, $|R_k|$. В дальнейшем пусть L_α , M_α , T_α обозначают соответственно множества всех L-, M-, T-элементов из A_α ($\alpha \in \mathscr{I}$) и $D_\alpha = A_\alpha \setminus (L_\alpha \cup T_\alpha)$.

Далее, пусть $K_{\alpha\beta} = A_{\alpha} \cap A_{\beta}$ (α , $\beta \in \mathscr{I}$), M^{l} - и M^{r} -компоненты $K_{\alpha\beta}$ в A_{α} будем называть M-компонентами и ее L-, M^{l} -, M^{r} -, T-компоненты в A_{α} обозначать через L, $M_{\alpha\beta}$, $M_{\beta\alpha}$, T. Значит $M_{\alpha\beta} = \langle y | y - M$ -элемент и $\hat{y} = (\alpha, \beta) \rangle$, $M_{\beta\alpha} = \langle y | y - M$ -элемент, $\hat{y} = (\beta, \alpha) \rangle$.

Лемма 1. Если ϱ_M -класс R_k содержит такое α , что A_α обладает T-элементом, то R_k содержится в некотором ϱ_T -классе.

Доказательство. Достаточно показать следующее: если y - M-элемент и $\bar{y} = \langle \alpha, \beta \rangle$ и A_{α} содержит T-элемент то содержит и A_{β} . А это утверждение следует из свойства η .

Лемма 2. Пусть $R_k \varrho_M$ -класс; $\alpha, \beta \in R_k$.

- 1) Если $M_{\alpha\beta} \neq \emptyset$ то существует разбиение $F_{\alpha\beta} = U_{\alpha\beta}^{(\alpha)} \cup V_{\alpha\beta}^{(\alpha)}$ такое, что ux = x, $vx \in T$, $uM_{\alpha\beta} \subseteq M_{\alpha\beta}$, $vM_{\alpha\beta} \subseteq T$ при всех $u \in U_{\alpha\beta}^{(\alpha)}$, $v \in V_{\alpha\beta}^{(\alpha)}$, $x \in F_{\alpha\beta}$ и элементы множества $N_{\alpha\beta}^{(\alpha)} = U_{\alpha\beta}^{(\alpha)} M_{\alpha\beta}$ являются правыми нулями в полугруппе $L \cup M_{\alpha\beta} \cup U_{\alpha\beta}^{(\alpha)}$.
- 2) Если $M_{\beta\alpha} \neq \emptyset$, то существует разбиение $F_{\alpha\beta} = U_{\beta\alpha}^{(\alpha)} \cup V_{\beta\alpha}^{(\alpha)}$ такое, что xu = x, $xv \in T$, $M_{\beta\alpha}u \subseteq M_{\beta\alpha}$, $M_{\beta\alpha}v \subseteq T$ при всех $u \in U_{\beta\alpha}^{(\alpha)}$, $v \in V_{\beta\alpha}^{(\alpha)}$, $x \in F_{\alpha\beta}$ и элементы множества $N_{\beta\alpha}^{(\alpha)} = M_{\beta\alpha}U_{\beta\alpha}^{(\alpha)}$ являются левыми нулями в полугруппе $L \cup M_{\beta\alpha} \cup U_{\beta\alpha}^{(\alpha)}$.
- 3) Если $U_{\alpha\beta}^{(\alpha)} \neq \emptyset$ и $U_{\alpha\beta}^{(\beta)} \neq \emptyset$ (аналогично $U_{\beta\alpha}^{(\alpha)} \neq \emptyset$ и $U_{\beta\alpha}^{(\beta)} \neq \emptyset$) то $N_{\alpha\beta}^{(\alpha)} = N_{\alpha\beta}^{(\beta)}$ (соответственно, $N_{\beta\alpha}^{(\alpha)} = N_{\beta\alpha}^{(\beta)}$) состоит из одного элемента, который является нулем в $L \cup M_{\alpha\beta}$ (соответственно, в $L \cup M_{\beta\alpha}$).

Доказательство. Пусть $R_k - \varrho_M$ -класс, и α , $\beta \in R_k$. Предположим, что $M_{\alpha\beta} \neq \emptyset$. Доказательство в случае $M_{\beta\alpha} \neq \emptyset$ аналогично. Из теоремы 2.8 в [3] следует, что $uy \in T \cup M_{\alpha\beta}$ для всех $u \in F_{\alpha\beta}$, $y \in M_{\alpha\beta}$. Так как при всех $x \in F_{\alpha\beta}$

(1)
$$ux = u(yx) = (uy)x = \begin{cases} x & \text{если} & uy \in M_{\alpha\beta} \\ \in T \text{ если} & uy \in T, \end{cases}$$

то для элемента $u \in F_{\alpha\beta}$ или $uM_{\alpha\beta} \subseteq M_{\alpha\beta}$ и тогда ux = x при всех $x \in F_{\alpha\beta}$ (обозначим множество таких элементов u через $U_{\alpha\beta}^{(\alpha)}$) или $uM_{\alpha\beta} \subseteq T$ и тогда $ux \in T$ при всех $x \in F_{\alpha\beta}$ (такие элементы u образуют множества $V_{\alpha\beta}^{(\alpha)}$). Если $uy \in M_{\alpha\beta}$ т. е. $u \in U_{\alpha\beta}^{(\alpha)}$, $y \in M_{\alpha\beta}$, то uy = (wu)y = w(uy) при любых $w \in L \cup M_{\alpha\beta} \cup U_{\alpha\beta}^{(\alpha)}$. Отсюда следует, что

элементы множества $N_{\alpha\beta}^{(a)} \in U_{\alpha\beta}^{(a)} M_{\alpha\beta}$ являются правыми нулями в $L \cup M_{\alpha\beta} \cup U_{\alpha\beta}^{(a)}$. Легко проверяется, что $L \cup M_{\alpha\beta} \cup U_{\alpha\beta}^{(a)}$ является полугруппой.

Аналогично доказывается, что элементы $N^{(\beta)}_{\alpha\beta} = M_{\alpha\beta} \, U^{(\beta)}_{\alpha\beta}$ являются левыми нулями в полугруппе $L \cup M_{\alpha\beta} \cup U^{(\beta)}_{\alpha\beta}$. Отсюда следует, что в случае $U^{(\alpha)}_{\alpha\beta} \neq \emptyset$ множества $N^{(\alpha)}_{\alpha\beta}$ и $N^{(\beta)}_{\alpha\beta}$ совпадают и состоят только из одного элемента, который является нулем в $L \cup M_{\alpha\beta}$.

Замечание. В случае $M_{\alpha\beta} \neq \emptyset$ $M_{\beta\alpha} \neq \emptyset$ из леммы 2 следует, что либо $F_{\alpha\beta} = = V_{\alpha\beta}^{(\alpha)} = V_{\beta\alpha}^{(\alpha)} = V_{\beta\alpha}^{(\alpha)} = U_{\beta\alpha}^{(\alpha)} = U_{\beta\alpha}^{(\alpha)} = \emptyset$), либо $F_{\alpha\beta} = U_{\alpha\beta}^{(\alpha)} = U_{\beta\alpha}^{(\alpha)} = \langle a \rangle$, т. е. $F_{\alpha\beta}$ состоит из одного элемента a. Этот последний случай возможен только тогда, когда $K_{\alpha\beta}$ является особой р. е. и. подполугруппой в A_{α} (это доказано в 2.1 в статье [4]). (Определение особой р. е. и. подполугруппы см. в §2.) Таким образом, этот случай не может иметь места, если A_{α} содержит только один T-элемент. Из леммы 2 вытекает следующая

Теорема 1. Пусть A — слабо ассоциативная амальгама двух полугрупп A_{α} , A_{β} ; независимо вложимая в некоторую полугруппу. Если A содержит M-элементы u не более чем один T-элемент то возможны следующие случаи:

- 1) В А нет Т-элемента. $M_{\beta\alpha} = \emptyset$ и $L \cup M_{\alpha\beta}$ полугруппа с нулем O_M , $F_{\alpha\beta}$ полугруппа правых нулей, $F_{\beta\alpha}$ полугруппа левых нулей и имеют место соотношения: $xz = O_M$, $zy = O_M$ при всех $z \in M_{\alpha\beta}$, $x \in F_{\alpha\beta}$, $y \in F_{\beta\alpha}$.
- 2) A содержит один T-элемент. Этот элемент: 0 является нулем и в A_a и в A_b . Возможны следующие случаи:
 - a) $(F_{\alpha\beta} \cup M_{\beta\alpha})(F_{\alpha\beta} \cup M_{\alpha\beta}) = 0$, $(F_{\beta\alpha} \cup M_{\alpha\beta})(F_{\beta\alpha} \cup M_{\beta\alpha}) = 0$.
- 6) $M_{\alpha\beta}\neq\emptyset$, $M_{\beta\alpha}=\emptyset$, $(F_{\beta\alpha}\cup M_{\alpha\beta})F_{\beta\alpha}=0$, $F_{\alpha\beta}=U_{\alpha\beta}^{(\alpha)}\cup V_{\alpha\beta}^{(\alpha)}\cup (U_{\alpha\beta}^{(\alpha)}\cap V_{\alpha\beta}^{(\alpha)}=\emptyset)$ где ux=x, vx=0, $uM_{\alpha\beta}\subseteq M_{\alpha\beta}$, $vM_{\alpha\beta}=0$ при всех $u\in U_{\alpha\beta}^{(\alpha)}$, $v\in V_{\alpha\beta}^{(\alpha)}$, $x\in F_{\alpha\beta}$ и элементы множества $N_{\alpha\beta}^{(\alpha)}=U_{\alpha\beta}^{(\alpha)}M_{\alpha\beta}$ являются правыми нулями в $L\cup M_{\alpha\beta}\cup U_{\alpha\beta}^{(\alpha)}$.
- в) $M_{\alpha\beta} \neq \emptyset$, $M_{\beta\alpha} = \emptyset$. Имеют место разбиения $F_{\alpha\beta} = U_{\alpha\beta}^{(a)} \cup V_{\alpha\beta}^{(a)}$, $F_{\beta\alpha} = U_{\alpha\beta}^{(\beta)} \cup V_{\alpha\beta}^{(\beta)}$ такие, что ux = x, vx = 0, $vM_{\alpha\beta} = 0$ при всех $x \in F_{\alpha\beta}$, $u \in U_{\alpha\beta}^{(a)}$, $v \in V_{\alpha\beta}^{(a)}$; $u \neq v = 0$, $M_{\alpha\beta} v = 0$ при всех $y \in F_{\beta\alpha}$, $u \in U_{\alpha\beta}^{(\beta)}$, $v \in V_{\alpha\beta}^{(\beta)}$. Далее, $L \cup M_{\alpha\beta}$ обладает нулем O_M $u \cup U_{\alpha\beta}^{(a)} M_{\alpha\beta} = O_M$, $M_{\alpha\beta} U_{\alpha\beta}^{(\beta)} = O_M$.

Дальнейшие свойства L-, M-элементов во всех случаях следуют из их определений, или из свойств *-связки. Остальные возможности получаются из приведенных выше из соображений двойственности.

Лемма 3. Если ϱ_M -класс R_k состоит не только из двух индексов, то каждая $K_{\alpha\beta}$ (α , $\beta \in R_k$) может содержать не более чем одну M-компоненту и существуют подмножества $R_k^{(l)}$, $R_k^{(r)}$ класса R_k ($R_k = R_k^{(l)} \cup R_k^{(r)}$; $R_k^{(l)} \cap R_k^{(r)} = \emptyset$) такие, что для всех $M_{\alpha\beta}$ (α , $\beta \in R_k$) имеет место $\alpha \in R_k^{(l)}$, $\beta \in R_k^{(r)}$.

Доказательство. Пусть α , $\beta \in R_k$. Если в $K_{\alpha\beta}$ две M-компоненты $M_{\alpha\beta}$, $M_{\beta\alpha}$ непусты, то R_k состоит только из индексов α , β . Действительно, если $M_{\alpha\gamma} \neq \emptyset$

 $(\gamma \in R_k)$, то существование элементов $y \in M_{\theta\alpha}$ и $z \in M_{\alpha\gamma}$, для которых по определению $\hat{y} = (\beta, \alpha) \ \hat{z} = (\alpha, \gamma)$, противоречит свойству γ . Предположим, что A_{α} содержит M-компоненту в $K_{\alpha\beta}$ и в $K_{\alpha\xi_1}$, $K_{\alpha\xi_2}$, ... $(\alpha, \beta, \xi_1, \xi_2, ... \in R_k)$. Если в $K_{\alpha\beta}$ подполугруппа $M_{\alpha\beta} \neq \emptyset$, то другими \hat{M} -компонентами в A_{α} будут $M_{\alpha\xi_{\bullet}}, M_{\alpha\xi_{\bullet}}, \dots$ (согласно γ) и в этом случае $\alpha \in R_k^{(l)}$; если же $M_{\beta\alpha} \neq \emptyset$ в $K_{\alpha\beta}$, то остальные M-компоненты B A_{α} — $M_{\xi,\alpha}$, $M_{\xi_{\alpha}\alpha}$, ... T. e. $\alpha \in R_k^{(r)}$.

Пемма 4. Пусть $R_k - \varrho_M$ -класс, для которого $|R_k| \ge 3$ и пусть $A_a(\alpha \in R_k)$ такая полугруппа, которая содержит более одной М-компоненты.

- 1) Множество Da обладает
- а) или разбиением таким $D_a = U_a^{(1)} \cup V_a^{(1)}$ (если $\alpha \in R_k^{(1)}$), что $M_a \subseteq U_a^{(1)}$, $ux = x, vx \in T, lx = x, yl = y$ для всех $u \in U_a^{(l)}, v \in V_a^{(l)}, l \in L_a, x \in D_a, y \in V_a^{(l)} \cup (U_a^{(l)} \setminus M_a);$ 6) или таким разбиением $D_a = U_a^{(r)} \cup V_a^{(r)}$ (если $\alpha \in R_k^{(r)}$), что $M_a \subseteq U_a^{(r)}$,
- $xu=x, xv\in T, xl=x, ly=l$ dar scex $u\in U_a^{(r)}, v\in V_a^{(r)}, l\in L_a, x\in D_a, y\in V_a^{(r)}\cup (U_a^{(r)}\setminus M_a).$
- 2) Множество $M_{lpha eta}$ (или $M_{eta lpha}$) только в том случае состоит не более чем из одного элемента если Ав содержит только одну М-компоненту (именно $M_{\alpha\beta}$ или $M_{\beta\alpha}$) и одновременно $F_{\beta\alpha}F_{\beta\alpha}\subseteq T$, (т. е. $U_{\alpha\beta}^{(\beta)}=U_{\beta\alpha}^{(\beta)}=\emptyset$).
- 3) L-компонента для всех пересечений $K_{\varrho\sigma} = A_{\varrho} \cap A_{\sigma}$ (ϱ , $\sigma \in R_k$) одна и та же L_k (= L_{α}). L-компонента пересечений $K_{\varrho\xi}$ ($\varrho\in R_k$, $\xi\in\mathscr{I}$, $\xi\overline{\in}R_k$) является подмножеством L_k . Далее, $M_{\alpha\beta}L_k \subseteq M_{\alpha\beta}$ (и аналогично $L_k M_{\beta\alpha} \subseteq M_{\beta\alpha}$) ($\beta \in R_k$) для всех непустых M-компонент $M_{\alpha\beta}$ $(M_{\beta\alpha})$ в A_{α} .

Доказательство. Пусть α , $\beta \in R_k$; $|R_k| \ge 3$. Пусть A_α полугруппа, которая содержит более одной M-компоненты. Можно предположить, что $\alpha \in R_k^{(1)}$ и в силу леммы 3 можно считать что в A_{α} существуют M-компоненты $M_{\alpha\beta}$, M_{av} (β , $\gamma \in R_k$). Применим лемму 2. Так как za=a при $z \in M_{\alpha\beta} \cup M_{\alpha\gamma}$ и $a \in A_{\alpha} \setminus$ $(K_{\alpha\beta} \cup K_{\alpha\gamma})$, то $M_{\alpha\gamma} \subset U_{\alpha\beta}^{(\alpha)}$, $M_{\alpha\beta} \subset U_{\alpha\gamma}^{(\alpha)}$. Следовательно $M_{\alpha\beta}$, $M_{\alpha\gamma}$ является полугруппой правых нулей, и $N_{\alpha\beta}^{(a)} = M_{\alpha\beta}$, $N_{\alpha\gamma}^{(a)} = M_{\alpha\gamma}$. Пусть $U_{\alpha}^{(l)} = M_{\alpha\beta} \cup U_{\alpha\beta}^{(a)} = M_{\alpha\gamma} \cup U_{\alpha\gamma}^{(a)}$ и $V_{a}^{(l)} = V_{ab}^{(a)}$, тогда согласно лемме 2 и определению L-компоненты выполняются все требования утверждения 1. (Равенства lx=x, yl=y ($x\in D_a$, $y\in V_a^{(l)}\cup (U_a^{(l)}\setminus M_a)$) получаются только при $x \in L$, но из утверждения 3 будет следовать $L = L_a$.)

Рассмотрим теперь те условия, при которых $M_{\alpha\beta}$ состоит более чем из одного элемента. В этом случае $U_{\alpha\beta}^{(\beta)} = \emptyset$ так как согласно утверждению 3 леммы 2 из $U_{\alpha\beta}^{(\beta)} \neq \emptyset$ следует, что $M_{\alpha\beta} = N_{\alpha\beta}^{(\alpha)}$ состоит только из одного элемента. Как мы доказали выше, если в A_{β} есть не только одна M-компонента то $U_{\alpha\beta}^{(\beta)} \neq \emptyset$. Отсюда вытекает второе утверждение леммы.

Для 3) мы покажем, что L-компонента пересечения $K_{o\tau}$ является подмножеством L-компоненты $K_{\rho\sigma}$, если $M_{\rho\sigma}\neq\emptyset$ ($\varrho,\sigma\in R_k,\ \tau\in\mathscr{I},\ \tau\neq\sigma$). Пусть x— L-элемент, $x \in K_{o\tau}$. Если $x \in K_{o\sigma}$, то для всякого $z \in M_{o\sigma}$ имеем zx = x (так как z — M-элемент) и zx=z (так как x — L-элемент и $z \in K_{oz}$). Отсюда следует, что L-компонента $K_{\alpha\beta}$ и $K_{\alpha\gamma}$ если $M_{\alpha\beta}\neq\emptyset$, $M_{\alpha\gamma}\neq\emptyset$ (α , $\beta\in R_k$), одна и та же полугруппа: L_k , и L-компонента $K_{\beta\gamma}$ является подмножеством L_k . С другой стороны, $L_k \subseteq K_{\alpha\beta} \cap K_{\alpha\gamma}$, т. е. L_k — подмножество L-компоненты $K_{\beta\gamma}$. Значит L_k совпадает с L-компонентой $K_{\beta\gamma}$ (независимо от того, что имеет $K_{\beta\gamma}$ M-компоненту или нет). Из этих рассуждений вытекает утверждение 3. ($M_{\alpha\beta}L_k \subseteq M_{\alpha\beta}$ следует из свойств *-связки.)

§ 2. Особые р. е. и. подполугруппы

Определение. Р. е. и. подполугруппа K полугруппы S называется особой р. е. и. подполугруппой в S, если T-компонента полугруппы K не является двусторонним идеалом в S.

Доказанная в статье [4] теорема 1.4. дает необходимое и достаточное условие для того, чтобы р. е. и. подполугруппа K являлась в S особой. В частности, доказывается, что если K — особая р. е. и. подполугруппа в S, то M^1 -и M^r -компонента подполугруппы K непусты, и $S \setminus K$ состоит только из одного элемента. Если $S \setminus K = a$, то возможны два случая: или $a^2 = a$ или a^2 содержится в T-компоненте K (см. § 5. в [4]).

Далее, из того, что р. е. и. подполугруппа $K_{\alpha\beta} = A_{\alpha} \cap A_{\beta}$ в A_{α} является особой, не следует что $K_{\alpha\beta}$ особая и в A_{β} (пример 5 в [5]).

Если $K_{\alpha\beta}$ особая и в A_{α} , и в A_{β} , то возможен каждый из следующих случаев: $(A_{\alpha} \setminus K_{\alpha\beta} = F_{\alpha\beta} = a, A_{\beta} \setminus K_{\alpha\beta} = F_{\beta\alpha} = b)$

- 1) $a^2 = a$, $b^2 = b$,
- 2) $a^2 = a$, $b^2 \in T$,
- 3) $a^2 \in T$, $b^2 = b$,
- 4) $a^2 \in T$, $b^2 \in T$ (примеры 2, 3, 4 в [5]).

Определение. Пусть $K_{\alpha\beta} = A_{\alpha} \cap A_{\beta}$ особая р. е. и. подполугруппа в A_{α} и пусть $a = F_{\alpha\beta}$. Назовем T^* -компонентой (и обозначим через T^*) множество всех элементов t из T-компоненты подполугруппы $K_{\alpha\beta}$, для которых $w_1 t w_2 \in T$ для всех слов w_1 , w_2 из элементов $a \cup F_{\beta\alpha}$ (одно из слов w_1 или w_2 может быть пустым). Множество $T \setminus T^*$ будем называть $(T \setminus T^*)$ -компонентой полугруппы $K_{\alpha\beta}$ в A_{α} .

Теорема 2. Пусть A слабо ассоциативная амальгама двух полугрупп A_{α} , A_{β} , независимо вложимая в некоторую полугруппу и пусть $K_{\alpha\beta} = A_{\alpha} \cap A_{\beta}$ особая p.~e.~u. подполугруппа в A_{α} . Если T^* -компонента подполугруппы $K_{\alpha\beta}$ непуста, то она является двусторонним идеалом и в A_{α} , и в A_{β} .

Доказательство. Достаточно показать, что если $t \in T^*$, $x \in A_\alpha \cup A_\beta$ то $xt \in T^*$. Очевидно, что $xt \in T^*$, если $x = a = F_{\alpha\beta}$ или $x \in F_{\beta\alpha}$. Пусть $x \in K_{\alpha\beta}$, и рас-

смотрим w_1xtw_2 , где w_1 , w_2 слова элементов $a \cup F_{\beta\alpha}$. Если w_1 пустое, то утверждение следует из свойств *-связки. Пусть c — последний элемент в слове w_1 . Так как $K_{\alpha\beta}$ р. е. и. подполугруппа, то или cx=c, или $cx\in K_{\alpha\beta}$. Продолжая этот процесс, получаем: или w_1x является первой частью w_0 слова w_1 и в этом случае очевидно, что $w_1xtw_2=w_0tw_2\in T$, или $w_1x\in K_{\alpha\beta}$, и так как $tw_2\in T$, то из свойств *-связки следует, что $w_1xtw_2\in T$.

Лемма 5. Если $K_{\alpha\beta}$ особая р. е. и. подполугруппа в A_{α} , то T-элементы пересечения $K_{\alpha\beta} \cap K_{\alpha\xi}$ ($\alpha,\beta,\xi\in\mathscr{I}$) необходимо принадлежат T^* -компоненте полугруппы $K_{\alpha\beta}$.

Замечание. В статье [5] приводятся примеры 2 и 3, в которых T^* пусто, и примеры 4 и 5, в которых T^* непусто.

§ 3. Построение полугруппы всех L-элементов полугрупп $A_{\xi}(\xi \in P_i)$

Следуя работе [1], введем следующее:

Определение. Будем говорить что полугруппа S разлагается в *после-довательно аннулирующее объединение* подполугрупп $S_{\xi}(\xi \in \mathscr{J})$, если эта совокупность $S_{\xi}(\xi \in \mathscr{J})$ линейно упорядочена при помощи индексов, причем выполнены следующие условия:

- 1) $\bigcup_{\xi \in \mathcal{I}} S_{\xi} = S$,
- 2) для любых $x \in S_{\varrho}$, $y \in S_{\sigma}$ ($\varrho < \sigma$; ϱ , $\sigma \in \mathscr{J}$) имеет место xy = yx = x,
- 3) если $\varrho < \sigma$ и $S_{\varrho} \cap S_{\sigma} \neq \emptyset$, то ϱ , σ соседние элементы упорядоченного множества \mathscr{J} , далее пересечение $S_{\varrho} \cap S_{\sigma}$ может состоить только из одного элемента, который является в S_{ϱ} единицей, а в S_{σ} нулем.

Введем еще следующее:

Определение. Пусть S полугруппа с единицей e. Будем говорить, что единица e неприсоединена (к полугруппе S), если существуют отличные от e элементы $a, b \in S$, для которых ab = e.

Замечание. Если xy=e и $x\neq e$, $y\neq e$, где $x,y\in S$ и e — единица в S, то элементы x,y порождают бициклическую полугруппу в S или нетривиальный гомоморфный образ бициклической полугруппы, которая, как известно, может быть только циклической группой (см. леммы 1.31, 1.32 в [2]).

Теорема 3. Пусть A слабо ассоциативная амальгама полугрупп A_{ξ} ($\xi \in \mathcal{I}$), независимо вложимая в некоторую полугруппу. Пусть $P_i - \varrho_L$ -класс индексов, и L^* — множество всех L-элементов $\bigcup_{\eta \in P_i} A_{\eta}$. Тогда L^* является последовательно аннулирующим объединением полугрупп S_{ϱ} ($\varrho \in \mathcal{I}$. где \mathcal{I} некоторое линейно упорядоченное множество), и имеют место следующие утверждения:

- 1) Для всякого $\mu \in \mathcal{J}$ существует по крайней мере одна такая полугруппа $A_{\alpha}(\alpha \in P_i)$, что $L_{\alpha} = \bigcup_{\varrho \cong \mu} S_{\varrho}$ и обратно, в каждой полугруппе A_{ξ} множество L_{ξ} представимо в виде $L_{\xi} = \bigcup_{\varrho \geq \tau} S_{\varrho}$ для некоторого $\tau \in \mathcal{J}$.
- 2) Если S_{ϱ} , S_{σ} содержит общий элемент: O_{σ} ($\varrho < \sigma$; ϱ , $\sigma \in \mathcal{J}$ и ϱ , σ соседние), то O_{σ} является неприсоединенной к S_{ϱ} единицей.
- 3) Если в A_{α} ($\alpha \in P_i$) полугруппа $\{B_{\alpha}\}$, порожденная множеством $B_{\alpha}==A_{\alpha}\bigcup_{\xi \in \mathcal{F}-\langle \alpha \rangle}K_{\alpha\xi}$ содержит и L-элежент (в этом сучае $M_{\alpha}=\emptyset$), то $\{B_{\alpha}\}$ может содержать только один L-элемент, а именно нуль множества $L_{\alpha}=\bigcup_{\varrho \geq \mu}S_{\varrho}$ (который содержитя в S_{μ}) и является неприсоединенной к $\{B_{\alpha}\}$ единицей.

Доказательство. Пусть $P_i - \varrho_L$ -класс, L^* — множество всех L-элементов $\bigcup_{\xi \in P_i} A_{\xi}$. Из свойства β следует, что для $x_1, x_2 \in L^*$ либо $\bar{x}_1 \subseteq \bar{x}_2$, либо $\bar{x}_2 \subseteq \bar{x}_1$. Поэтому можно разбить множество L^* на такие подмножества S_q^* ($\varrho \in \mathscr{J}$), что каждое S_q^* может иметь только такие L-элементы, которые содержится в точно тех же полугруппах из $A_{\xi}(\xi \in \mathscr{J})$ и совокупность S_q^* ($\varrho \in \mathscr{J}$) линейно упорядочена при помощи индексов, таким образом, что в случае $\varrho < \tau$ ($\varrho, \tau \in \mathscr{J}$) $\bar{x} \subset \bar{y}$ (но $\bar{x} \neq \bar{y}$) при всех $x \in S_q^*$, $y \in S_\tau^*$. Из β следует, что xy = yx = x если $x \in S_q^*$, $y \in S_\tau^*$ ($\varrho < \tau$; $\varrho, \tau \in \mathscr{J}$). Это же свойство β показывает, что для всех $x_1, x_2 \in S_q^*$ произведение $x_1 x_2 \in S_q$ где $\sigma \succeq \varrho$ ($\sigma \in \mathscr{J}$). Предположим, что существует η , для которого $\varrho < \eta < \sigma$. Так как $\varrho < \eta$, то $zx_1 = x_1$, $x_2 = x_2$ при всех $z \in S_\eta^*$, значит $zx_1x_2 = x_1x_2z = x_1x_2$ далее, из $\eta < \sigma$ следует $zx_1x_2 = x_1x_2z = z$. Это противоречие показывает, что либо $\sigma = \varrho$, либо σ и ϱ соседние элементы из \mathscr{J} . Если $x_1, x_2 \in S_q^*$ и $x_1x_2 = O_\sigma \in S_\sigma^*$ ($\varrho < \sigma$ и ϱ , σ соседние g g), то g является нулем

в S_{σ}^* , так как для всякого $y \in S_{\sigma}^*$ имеет место $yx_1 = x_1$, $x_2y = x_2$, т. е. $yx_1x_2 = x_1x_2y = x_1x_2$ и одновременно $O_{\sigma}x = xO_{\sigma} = x$ при всех $x \in S_{\sigma}^*$ (в силу $\varrho < \sigma$).

Теперь определим полугруппу S_{ϱ} ($\varrho \in \mathscr{J}$) следующим образом:

- а) $S_{\varrho} = S_{\varrho}^*$ если S_{ϱ}^* полугруппа,
- б) $S_{\varrho} = S_{\varrho}^* \cup O_{\sigma}$ (где ϱ , σ соседние в \mathscr{J} ; $\varrho < \sigma$) и O_{σ} является нулем в S_{σ}^* и неприсоединенной единицей в полугруппе $S_{\varrho} = S_{\varrho}^* \cup O_{\sigma}$.

Легко проверяется, что L^* разлагается в последовательно аннулирующее объединение подполугрупп S_ϱ ($\varrho \in \mathscr{J}$) и все требования утверждения 1 и 2 выполняются.

Пусть теперь $A_{\alpha}(\alpha \in P_i)$ — полугруппа и $B_{\alpha} = A_{\alpha} \bigvee_{\xi \in \mathscr{F} - \langle \alpha \rangle} K_{\alpha \xi}$. Из (1) следует, что в случае $M_{\alpha} \neq \emptyset$ полугруппа $\{B_{\alpha}\}$, порожденная множеством B_{α} , не содержит L-элементов. Предположим, что $M_{\alpha} = \emptyset$ и существуют элементы a, b из B_{α} , для которых произведение $ab \in L_{\alpha}$. Очевидно, что ab является нулем в L_{α} (так как la = a, bl = b, следовательно, lab = abl = ab при всех $l \in L_{\alpha}$). Если $L_{\alpha} = \bigcup_{\alpha \geq \mu} S_{\alpha}$ (для некоторого $\mu \in \mathscr{J}$), то $ab = O_{\mu} \in S_{\mu}$. Так как O_{μ} L-элемент, поэтому $ab = O_{\mu}$ является единицей в $\{B_{\alpha}\}$. Очевидно, что O_{μ} — неприсоединена к $\{B_{\alpha}\}$.

§ 4. Построение амальгамы полугрупи, содержащих не более одного *Т*-элемента

Определение. Пусть A — амальгама полугрупп A_{ξ} ($\xi \in \mathscr{I}$). Амальгаму A^* будем называть сокращенной амальгамой данной амальгамы A, если A^* содержит:

- 1) все L- и M-элементы амальгамы A;
- 2) все элементы, входящие только в одну из полугрупп A_{ξ} ($\xi \in \mathscr{I}$),
- 3) все T-элементы, которые в особой р. е. и. подполугруппе $K_{\alpha\beta}$ в A_{α} принадлежат ($T \setminus T^*$)-компоненте ($\alpha, \beta \in \mathcal{I}$), (при этом действия для этих элементов сохраняются),
- 4) по одному новому элементу, который является общим нулем для всех A_{ε} ($\xi \in Q_i$) для каждого ϱ_T -класса Q_i .

Очевидно, что сокращенная амальгама действительно является амальгамой. Из теоремы 2, леммы 5 и из теоремы 1.4 в [2] следует:

Теорема 4. Сокращенная амальгама является гомоморфным образом исходной амальгамы. Если слабо ассоциативная амальгама удовлетворяет условиям теоремы 3 в [6], то и ее сокращенная амальгама также удовлетворяет этим условиям.

Рассмотрим теперь амальгамы, в которых каждая полугруппа может содержать не более одного Т-элемента. Легко показать, что эти амальгамы

совпадают с такими сокращенными амальгамами, в которых ни одно пересечение $K_{\alpha\beta}$ не является особой р. е. и. подполугруппой ни в A_{α} , ни в A_{β} .

Приведем две теоремы, которые вытекают из вышеуказанной части работы.

Теорема 5. Пусть A — слабо ассоциативная амальгама полугрупп $A_{\xi}(\xi \in \mathcal{I})$, независимо вложимая в некоторую полугруппу, и которая в пересечениях полугрупп $A_{\xi}(\xi \in \mathcal{I})$ содержит только M- и L-элементы. Тогда для произвольной полугруппы A_{α} ($\alpha \in \mathcal{I}$) имеет место одно из следующих утверждений:

- 1) A_{α} не содержит M-элементов (т. е. $M_{\alpha}=\emptyset$). (Описание построения полугруппы A_{α} следует из теоремы 3)
- 2) A_{α} содержит M-элементы, которые все входят в $K_{\alpha\beta} = A_{\alpha} \cap A_{\beta}$ (т. е. α , $\beta \in R_k$, $|R_k| = 2$) (Описание построения полугрупп A_{α} , A_{β} см. в пункте I теоремы I. Непустые пересечения $K_{\alpha\xi}$, $K_{\beta\xi}$ ($\xi \in \mathcal{I}$, $\xi \neq \alpha$, β) содержат только L-элементы (см. теорему 3)).
- 3) $\alpha \in R_k$, для которого $|R_k| \ge 3$. $A_\alpha \setminus L_\alpha$ (допускается и $L_\alpha = \emptyset$) является полугруппой правых (или левых) нулей, и имеет место la = al = a при всех $a \in A_\alpha \setminus L_\alpha$, $l \in L_\alpha$. Каждое пересечение $K_{\alpha\xi}(\xi \in \mathscr{I})$ имеет вид: или $K_{\alpha\xi} = a_\xi \cup L_\alpha$ (где $a_\xi \in A_\alpha \setminus L_\alpha$) и в этом случае $A_\xi \setminus L_\alpha$ является полугруппой левых (соответственно правых) нулей, или $K_{\alpha\xi} = L_\xi$, где $L_\xi \subseteq L_\alpha$.

Теорема 6. Пусть A — слабо ассоциативная амальгама полугрупп A_{ξ} ($\xi \in \mathcal{I}$), независимо вложимая в некоторую полугруппу, каждая полугруппа A_{ξ} которой содержит не более одного T-элемента. Тогда для произвольной полугруппы A_{α} ($\alpha \in \mathcal{I}$) имеет место одно из следующих утверждений:

- 1) Подмножество $\bigcup_{\xi \in \mathscr{I} \langle \alpha \rangle} K_{\alpha \xi}$ полугруппы A_{α} может содержать
 - а) только L-элементы,
 - б) один Т-элемент и L-элементы,
- в) *M-и L-элементы.* (Описание см. в теоремах 3,5.)
- 2) $\alpha \in R_k$ где $|R_k| = 2$, $R_k = \langle \alpha, \beta \rangle$; A_α , A_β содержит один T-элемент: 0. Описание построений полугрупп A_α , A_β см. в теореме 1 в пункте 2. (Непустые пересечения $K_{\alpha\xi}$, $K_{\beta\xi}$ ($\xi \in \mathcal{I}$, $\xi \neq \alpha$, β) содержат 0 и L-элементы (см. теорему 3).)
- 3) $\alpha \in R_k$, где $|R_k| \ge 3$. В A_α находится T-элемент 0, который является нулем. A_α содержит одну M-компоненту $M_{\alpha\beta}$, $(M_{\beta\alpha})$ $(\beta \in R_k)$, которая является полугруппой левых (правых) нулей. Имеет место $xx_1=0$, lx=xl=x, xy=0, yx=x, yl=y, $L_\alpha M_{\alpha\beta} \subseteq M_{\alpha\beta}$ при всех x, $x_1 \in F_{\alpha\beta} = A_\alpha \setminus K_{\alpha\beta}$, $y \in M_{\alpha\beta}$, $l \in L_\alpha$, (или соответственно $xx_1=0$, lx=xl=x, yx=0, xy=x, ly=y, $M_{\beta\alpha}L_\alpha \subseteq M_{\beta\alpha}$ при всех x, $x_1 \in F_{\alpha\beta}$, $y \in M_{\beta\alpha}$, $l \in L_\alpha$). (Допускается и $L_\alpha=\emptyset$.)

 $K_{\alpha\beta} = L_{\alpha} \cup M_{\alpha\beta} \cup 0$ (или соответственно $K_{\alpha\beta} = L_{\alpha} \cup M_{\beta\alpha} \cup 0$) и A_{β} — такая полугруппа, построение которой описано в пункте 4.

Другие пересечения: $K_{\alpha\xi} = L_{\dot{\alpha}} \cup 0$, если $\xi \in R_{\dot{k}}$, и $K_{\dot{\alpha}\xi} \subseteq L_{\dot{\alpha}} \cup 0$ если $\xi \in \mathscr{I}$, $\xi \in R_{\dot{k}}$.

4) $\alpha \in R_k$, где $|R_k| \ge 3$, B A_α находится T-элемент 0, который является нулем. Существует разбиение множества $D_\alpha = U_\alpha^{(l)} \cup V_\alpha^{(l)}$ где $D_\alpha = A_\alpha \setminus (L_\alpha \cup 0)$ такое, что $M_\alpha \subseteq U_\alpha^{(l)}$ и ux = x, lx = x, vx = 0, yl = y при всех $u \in U_\alpha^{(l)}$, $v \in V_\alpha^{(l)}$, $x \in D_\alpha$, $l \in L_\alpha$, $y \in V_\alpha^{(l)} \cup (U_\alpha^{(l)} \setminus M_\alpha)$ (или разбиение $D_\alpha = U_\alpha^{(r)} \cup V_\alpha^{(r)}$ такое, что $M_\alpha \subseteq U_\alpha^{(r)}$, x = x, xl = x, xv = 0, ly = y при всех $u \in U_\alpha^{(r)}$, $v \in V_\alpha^{(r)}$, $x \in D_\alpha$, $l \in L_\alpha$, $y \in V_\alpha^{(r)} \cup (U_\alpha^{(r)} \setminus M_\alpha)$).

Если $\beta \in R_k$, то либо

- а) $K_{\alpha\beta} = L_{\alpha} \cup M_{\alpha\beta} \cup 0$ (или соответственно $K_{\alpha\beta} = L_{\alpha} \cup M_{\alpha\beta} \cup 0$) имеет место включение $M_{\alpha\beta}L_{\alpha} \subseteq M_{\alpha\beta}$ ($L_{\alpha}M_{\beta\alpha} \subseteq M_{\beta\alpha}$) и если $M_{\alpha\beta}$ ($M_{\beta\alpha}$) состоит не только из одного элемента, то A_{β} такая полугруппа, построение которой описано в пункте 3, либо
 - 6) $K_{\alpha\beta} = L_{\alpha} \cup 0$. $E_{C,R} \in \mathcal{I}, \ \xi \in R_k, \ mo \ K_{\alpha\xi} \subseteq L_{\alpha} \cup 0$.

Замечание 1. Во всех случаях для L-элементов некоторого пересечения $K_{\alpha\beta}$ нужно иметь в виду теорему 3, дающую соответствующие построения.

Замечание 2. Теоремы 1, 3, 5, 6 дают метод, позволяющий строить амальгамы удовлетворяющие условиям теоремы 3 в [6] в многочисленных случаях.

Литература

- [1] А. М. Кауфман, Последовательно уничтожающиеся суммы ассоциативных систем, Уч. зап. ЛГПИ им. А. И. Герцена, 88 (1949), 145—165.
- [2] А. Клиффорд, Г. Престон, Алгебраическан теория полугрупп, Мир (Москва, 1972).
- [3] Е. С. Ляпин, Единично идеальные подполугруппы полугрупп, Матем. зап. Уральск. ун-та, 7 (1970), 119—128.
- [4] Л. Медеши, Расширение полугрупп при помощи разделяющейся единично идеальной подполугруппы, Современная алгебра, 2 (1974), 72—97.
- [5] Л. Медеши, Две проблемы расширения полугрупп, Современная алгебра, 2 (1974), 98—108.
- [6] Л. Медеши, О вложении полугрупп в полугруппу, в которой исходные полугруппы являются независимы, *Acta Sci. Math.*, 39 (1977), 329—340.

BOLYAI INTÉZET. ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY