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Compact Operator Ranges and Reductive Algebras 
A. A. JAFARIAN and H. RADJAVI 

1. Introduction. Let si be an arbitrary subalgebra of — the algebra of 
all (bounded) operators on the (complex) Hilbert space A sufficient condition 
that si be strongly dense in was found by FOIA§ [4]; it requires that si have 
no invariant operator ranges other than {0} and This requirement is stronger 
than that of (topological) transitivity for si, i.e., the hypothesis that si has no 
non-trivial invariant (closed) subspaces. This result was generalized in [5] to the 
theorem that if every proper operator range invariant under the transitive algebra 
si is the range of a compact operator, then si is strongly dense. One of the purposes 
of the present paper is to demonstrate that this generalization is not vacuous, and 
that in fact there exist proper, dense subalgebras of 3S(9Y) leaving invariant an 
abundance of compact operator ranges but no other operator ranges. 

The second purpose of this paper is to give an extension of the above result 
to reductive subalgebras of i.e., those algebras whose invariant subspaces 
are all reducing. The new result, also shown to be non-vacuous, states that if the 
invariant operator ranges of a reductive algebra si are all "compact perturbations" 
of its invariant subspaces, in a certain sense, then si is strongly dense in a self-
adjoint algebra. This also strengthens the theorem in [2] with the same conclusion 
but requiring that all invariant operator ranges be closed. 

Algebras considered will be assumed to contain the identity, although this 
is not at all essential; the trivial modification necessary for the general case will 
be obvious to the reader. 

2. Algebras with Invariant Compact Operator Ranges. We start with the follow-
ing lemma whose proof can be found in [4]. 

Lemma 1. Let Si be a uniformly closed subalgebra of 38(5)) which leaves the 
range of an injective operator S invariant. Then there exists M > 0 such that 
IIS"1 BS\\^M\\B\\ for every 
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Theorem 2. Let Kbea compact operator with dense range. Let si be the (transi-
tive) algebra of all operators leaving Kit) invariant. Then every proper operator range 
invariant under s4 is the range of a compact operator. 

(We remark that every ^/-invariant operator range has to contain K9) by a 
result of [7].) 

Proof . Assume, with no loss of generality, that O s A ^ l . Fix A with 0<A<1, 
and let P, be the finite-dimensional spectral projection of K corresponding to all 
the eigenvalues in the interval (X\ Ai_1]. Let 9~ denote the algebra of all upper-block-

triangular operators relative to the decomposition ^ of It follows from 
¡=i 

the characterization of si given in [7] that ST^si. We must prove that if S is an 
operator such that S § is invariant under si and S 9 t h e n S is compact. Again 
we assume, with no loss of generality, that S is positive. This implies, since S§> 
is dense in that S is also injective. 

Assume S is not compact. Then there is e > 0 and an infinite-dimensional 
spectral subspace 9Ji for S such that S|50lS£ (and thus ,S9Jl=931). Now, since 
the subspace 2 has finite codimension, it interscets 9Jt nontrivially for 

i = n + l 
every n. Pick a unit vector x in this intersection. Observe that if y is an arbitrary 

n 
unit vector in f ° r a n y w> then there exists T^ST with [| T\\ = 1 such that 

¡=i 
Tx=y. This is so because the subset 

[ z ® p \ A 2 ©¿>¡1 
V|=1 / Vi=„+1 i 

eo n 
of 2T contains all bounded linar transformations from 2 into 2 ® 

i = n + l i = l 

and, in particular, the rank-one operator that sends x to y and {x}x to {0}. Hence 
y£TS$QS$i and 

IIS-^II = \\S-lTS(S^x\\ ^ Iis-^ran/e. 

Since | |5 , _ 1 r5 | | is bounded on the unit ball of si (Lemma 1), we conclude that oo n 
S - 1 is bounded on the dense linear manifold | J Thus S " 1 is bounded 

n = l i = l 
and S w h i c h is a contradiction. This completes the proof. 

We note here that the algebra si of the above theorem has many invariant 
operator ranges, e.g., the range of Kr for 0 < r < 1. It also has mutually non-
comparable invariant operator ranges (See [4] and [7].) 

3. Reductive Algebras. A natural first question on reductive algebras suggested 
by the above-mentioned result of [5] is: What happens if it is assumed that every 
proper operator range invariant under the (infinite-dimensional) reductive algebra 
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si is a compact operator range? It is very easy to see that such an si is actually 
transitive and thus strongly dense by [5]. The next question is: What if we replace 
"proper" by "non-closed" in the above question? The answer is as expected: Such 
an algebra will have to be strongly dense in a self-adjoint algebra. But we shall prove 
a stronger result. 

In what follows, by a compact perturbation of a subspace 9K of § we shall 
mean the range of any operator of the form P+K, where P is the orthogonal pro-
jection on 9JI and A' is a compact operator with KP=PK=0. We allow P or K 
to be trivial. If PS) and K§> are both infinite-dimensional, this type of operator ranges 
are called class 2b ranges by Dixmier [1]. (See also [3].) An invariant subspace 391 
of an algebra si is an atom if is transitive. 

T h e o r e m 3. Let si be a reductive algebra on § such that every invariant operator 
range of si is a compact perturbation of a subspace of (not necessarily invariant 
under si). Then § is a finite direct sum of atoms for si. 

Proof . Any infinite chain (under inclusion) of subspaces of §> contains either 
a subchain isomorphic to the integers or one anti-isomorphic to the integers. Now 
pick a maximal chain C of invariant subspaces of si. If C is infinite, then, by the above 
remark and by the reductivity of si, we obtain infinitely many, mutually orthogonal 
invariant subspaces for si. If some or all of these subspaces are finite-dimensional, 
we rearrange them in a double sequence and let 2(1;=^ffiWy. Thus we can 

j 
BO 

assume § = ^ffiSJi;, where each is an infinite-dimensional invariant subspace 
¡=i 

oo 

for si. Then the operator J£ffi(l/0^i> where 7f is the identity on 9Mf commutes 
(=i 

with (every member of) si, and thus its range is invariant under si. But this range 
is not closed and is easily seen not to be a compact perturbation of any subspace, 
because every eigenvalue 1 \i has infinite multiplicity. It follows from the hypotheses 
that C is finite. By the reductivity of si this chain gives rise to a finite number of 
atoms 5>i for si with §>— 2!®§>i-

In the rest of the paper we shall freely use the notation and terminology of 
[8] with one exception: we do not assume, as part of definition, that a reductive 
algebra is closed under any topology. The symbol si will consistently denote a 
reductive algebra. 

We need the following lemmas in the proof of the main result of this section. 

L e m m a 4. Let § = § i f f i . . . f f i § m , where each is an atom for si. Let X£ Lat 
s f w and assume X is (a graph subspace) of the form 

X = {(C u x©. . . © Clmx) ©... ® (C u xQ. . . © Ckmx): *€ £}, 
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where ® is a nonzero linear manifold in each Ci7- is a (not necessarily bounded) 
linear transformation with the common domain 35 and range in and Cn is the 
identity on Then there exists bounded linear transformations Z)y from into 

such that 
3E = {{DVLy®...®Dimy)®...@(Day®...®Dtayy.y^. 

Proof . Since 35 is the domain of the closed operator 

defined by Tx—Cnx ©... ©C k mx, it is also the range of a bounded injective oper-
ator S (Theorem 1.1 of [3]). Thus TS is a closed operator defined on 
and hence bounded by the Closed Graph Theorem. It follows that the transforma-
tions Dtj = Cij S are all bounded on and satisfy the requirements of the lemma. 

The following lemma is easily verified; its proof is also given, e.g., in [8, Proof 
of Theorem 9.11]. 

Lemma 5. Let si be a reductive algebra on $ = § i © § 2 ond let and §2 

be atoms for si. Assume T is a bounded linear transformation from into §2 whose 
graph is in Lat si. Then T is a scalar multiple of an isometry U of onto §2 and, 
consequently, A\Sr>2=U(A\5)/)U* for all A£si. 

It is convenient to introduce another ad-hoc definition: a subspace N of 
(Si©."©Sm)w will be called special if there exist scalars a l 5 ..., ak, and an integer 
i, l s / ^ m such that 

91 = {(0©...ffi0©a1xffi0ffi...©0)ffi...©(0ffi...ffi0ffia ) ixffi0©...©0):x€$ i}, 
where in each pair of parantheses the component a7 x occurs at the i-th place. 

Lemma 6. Let si be a reductive algebra on ...ffi§m, where each 
1 ^i^m, is an atom for si, and for no pair (/, j), i^j, there is an isometry U 

from §>i onto §>j such that 
A\§} = U(A\^U*, for all Atsi. 

Suppose also that the only proper operator ranges invariant under si\ are ranges 
of compact operators. Let Hi £ Lat si(k\ so that every has mk components yj 
relative to (§iffi...ffi|)m)w. Assume that there is a subset J of the integers 1, .. , mk 
such that yimplies y^0 forjdJ and yj=0 otherwise. Then 91 is a special 
subspace. 

Proof . Suppose 91 ,¿{0}; otherwise the conclusion holds. From the hypo-
thesis on 91 one can easily conclude that for any ,j>€9l, y^O, all the mk components 
of y can be uniquely (and hence linearly) determined by any nonzero one. Assume, 
with no loss of generality, that y ^ O for all .yd 91. Then Lemma 4 yields 

91 = {(£>ux©...ffii) lmx)©...©(i)nx©...©£>feBx) - x i S J , 
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where Du and hence all the nonzero DtJ are injective bounded linear transforma-
tions, by hypothesis. Since the range of each Du is invariant under s i i t follows 
that every nonzero Di} is either compact or bijective. 

If every Dij is compact, then the operator 
R: x - (Z>ux©... ©D l mx)©. . .®(D k lx®.. . ®Dkmx) 

is also compact and thus 91 is the range of a compact operator; since it is closed 
it must be finite-dimensional, and thus the nonzero D y are surjective. If 91 is in-
finite-dimensional, then at least one D y should be surjective. Hence in all cases we 
can assume, with no loss of generality again, that Dn is surjective. Replacing x by 

and putting E i — D ^ D ^ yields 
M±{(y®...®Elmy)®...®(Ekly®...®Ekmy):yi§>1}. 

The proof will be complete if we show that 
(a) Eu = 0 for j V 1, and (b) Ea = aj, i = 1,2, . . . , k. 

To prove (a) we note that if Eu ^ 0 for some / and/ with yV 1, then { x S ^ x i x e ^ J 
will be an invariant graph subspace for the reductive algebra si !(§!©§;) (cf. [8, 
Lemma 9.1]). Hence, by Lemma 5 there is an isometry U of § x onto 5)j with 
A\9)j=U{A\U*, contradicting the hypotheses. 

To show (b) we observe that 91€Lat si(k) implies EilA1=A1Ea for all A1 

in stf Since si is strongly dense in 88(5)J (by Theorem 2 of [5]) En must 
be scalar. 

Theorem 7. Let si be as in the above lemma and k an arbitrary positive integer. 
Then every invariant subspace of si(K> is the orthogonal direct sum of (at most mk) 
special subspaces, and si is strongly dense in ... 

Proof . Let 916Latsiw , 91 ̂ {0}. Let yi be a nonzero element of 91 with max-
imal number of zeros among its mk components. Let 9lx be the invariant subspace 
of sigenerated by ylt i.e., 

^^{A^y^.A^si}-. 
Since 9i1g9l, every nonzero member of 9lx has the same nonzero components 
as y t . Lemma 6 implies that 9lx is a special subspace of ( § ! © . . . © § J 0 0 . But every 
special subspace is invariant under the algebra [^(§i)ffi...ffl^(§ ra)]№) and, hence, 
so is its orthogonal complement, because this algebra is self-adjoint. Thus 
91^6 Lat siCk) and consequently 91 ©9^6 Lat si™. 

If 9i©9t1?i{0}, we repeat the process and find a special subspace 9l2=9i©9l1 

and so on. Since (Si©...ffiSm)№) is the orthogonal direct sum of at most mk special 
subspaces, it follows that this process terminates after a finite number of steps and 
we obtain 

91 = g ^ f f i . . ^ , . , 
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where each 91, is a special subspace invariant not only under siik) but actually under 
(SL) ©... © ̂  (§J] ( t ) . Thus we have shown that 

Lat^<*> g L a t [ ^ ( ^ © . . . © ^ ( S J p ) 

for every integer k; it follows from a result of [9] that the strong closure of si is 
)© . - © ^ ( § J as asserted. 

We now consider the most general reductive algebra whose invariant operator 
ranges are compact perturbations of its invariant subspaces. This can be done, 
in view of Theorem 3, by allowing isometries of the sort excluded in Lemma 6. 
Then si is easily seen to be unitarily equivalent to an algebra (denoted by si again) 
of the following form: The underlying space § is expressed as SiP l )©.. .ff i§^ r ) ; 
for each i, si \ = w h e r e s4% is a transitive algebra on whose proper 
invariant operator ranges are all compact operator ranges. Furthermore for no 
pair i, j with iVy, there is an isometry U such that A~ UAi U*, A^si^ A^sij. 
(All such unitarily equivalent summands of si have already been put in the r 
"bunches".) 

Theo rem 8. If all the invariant operator ranges of a reductive algebra si are 
compact perturbations of its invariant subspaces, then its strong closure is self-adjoint. 
More precisely, si is strongly dense in an algebra of the form 

modulo a suitable unitary equivalence. 

Proof . Let and pt be as in the paragraph preceding the theorem, after 
a suitable unitarily equivalent form of si is chosen. Take a "representative of each 
bunch" and form the subspace 

Then .s/|ft and ft satisfy all the hypotheses of theorem 7 and, hence, st\S< is strongly 
dense in ^ ( S ^ © . . . © ^ ^ , ) . It follows that si is strongly dense in an algebra 
of the form exhibited above. 

We can use Theorem 2 to construct non-trivial examples of reductive algebras 
satisfying the hypotheses of Theorem 8. 

Example . For each i, l s i s n , let si-, be the algebra of all operators on $ 
leaving the range of an injective compact operator Kt invariant. Let si be the 
algebra 

{A1@...@A„:Al€sii, i = l,...,n}. 

It can be verified that si is reductive and that if X is an operator range in-
variant under si, then X is the range of an operator of the form B1®...®£„, where 
each B, is O, I, or a non-zero compact operator (by Theorem 2). 
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We conclude the paper with a question: can one get a density result for the 
reductive algebra si by merely assuming that its invariant operator ranges are 
all compact perturbations of arbitrary (not necessarily ¿/-invariant) subspaces? 
We observe that, even in the special case where si is transitive, the question seems 
to be non-trivial. 
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