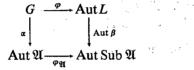
On automorphisms of the subalgebra lattice induced by automorphisms of the algebra

E. FRIED and G. GRÄTZER*

1. Introduction. We are going to prove the following result:

Theorem. Let G be a group, L an algebraic lattice with more than one element, and let φ be a homomorphism of G into Aut L. Then there exists an algebra \mathfrak{A} such that there are isomorphisms $\alpha: G \rightarrow \operatorname{Aut} \mathfrak{A}$ and $\beta: L \rightarrow \operatorname{Sub} \mathfrak{A}$ satisfying (see Figure) $\alpha \varphi_{\mathfrak{A}} = \varphi \operatorname{Aut} \beta$, where Aut β is the isomorphism of Aut L and Aut Sub \mathfrak{A} induced by β .



To put it simply, $\langle \operatorname{Aut} \mathfrak{A}, \operatorname{Sub} \mathfrak{A}, \varphi_{\mathfrak{A}} \rangle$ is characterized as $\langle G, L, \varphi \rangle$. The exception is that we have to assume that |L| > 1. Indeed, if |L| = 1, then A is the only subalgebra of \mathfrak{A} , that is, every element is an algebraic constant. In this case, |G| = 1. Thus $\langle \operatorname{Aut} \mathfrak{A}, \operatorname{Sub} \mathfrak{A}, \varphi_{\mathfrak{A}} \rangle$ is just as independent as $\langle \operatorname{Aut} \mathfrak{A}, \operatorname{Sub} \mathfrak{A} \rangle$ is.

Corollary. (E. T. SCHMIDT [7]) Given a group G and an algebraic lattice L with more than one element, there exists an algebra \mathfrak{A} satisfying $G \cong \operatorname{Aut} \mathfrak{A}$ and $L \cong \operatorname{Sub} \mathfrak{A}$.

Proof. Let φ map all of G into the identity element of Aut L. Then the algebra \mathfrak{A} we obtain from the Theorem yields the Corollary.

This Corollary contains earlier results of G. BIRKHOFF [1] characterizing automorphis groups of algebras and of G. BIRKHOFF and O. FRINK [2] characterizing the subalgebra lattices of algebras.

It may be of some interest to note that in Schmidt's construction φ is indeed the constant map. If in our proof φ is the constant map, we obtain a somewhat simplified proof of Schmidt's result.

4

Received September 11, 1976.

^{*} Research supported by the National Research Council of Canada.

2. The construction. Let G, L, and φ be given as in the Theorem. Let C be the set of all compact elements of L. Then C is a join-semilattice with zero, and the ideal lattice, Id C, of C is isomorphic to L (see, for instance, [5]). It is also trivial that Aut C and Aut L are isomorphic, hence we can assume that φ is a homomorphism of G into Aut C.

Set $A = (G \times (C - \{0\})) \cup \{0\}$. We define some operations on A $(\alpha, \beta \in G, a, b \in C - \{0\})$:

k is a constant operation with value 0;

V is a binary operation defined by

$$0 \vee 0 = 0, \quad 0 \vee \langle \alpha, a \rangle = \langle \alpha, a \rangle \vee 0 = \langle \alpha, a \rangle, \quad \langle \alpha, a \rangle \vee \langle \beta, b \rangle = \langle \alpha, a \vee b \rangle;$$

 $f_{a,a}$ is a unary operation: $f_{a,a}(0)=0$ and

$$f_{\alpha,a}(\langle \beta, b \rangle) = \begin{cases} \langle \alpha \beta, a(\beta \varphi) \rangle & \text{if } a(\beta \varphi) \leq b, \\ \langle \alpha \beta, b \rangle & \text{if } b \leq a(\beta \varphi), \\ 0 & \text{otherwise.} \end{cases}$$

Observe that if $a \neq 0$, then $a(\beta \varphi)$ is the image of *a* under the automorphism $\beta \varphi$ of *C*, hence $a(\beta \varphi) \neq 0$. Thus $f_{\alpha, \alpha}$ is an operation on *A*.

Let F consist of k, V, and all the $f_{\alpha,a}$, $\alpha \in G$, $a \in C - \{0\}$ and set $\mathfrak{A} = \langle A; F \rangle$.

3. Verification. Now we prove that \mathfrak{A} satisfies the conditions of the Theorem.

Claim 1. Let $B \subseteq A$. B is closed under all the operations in F iff $B = = (G \times (I - \{0\})) \cup \{0\}$, where $I \in Id C$.

Proof. Checking the definition of the operations, it is clear that, for $I \in Id C$,

$$(G \times (I - \{0\})) \cup \{0\}$$

is closed under all the operations in F.

Now let $B \subseteq A$ and let B be closed under all the operations in F. Since $k \in F$, we obtain $0 \in B$. Define

 $I = \{a \mid a \in C \text{ and } \langle \alpha, a \rangle \in B \text{ for some } \alpha \in G\} \cup \{0\}.$

If $B = \{0\}$, then $I = \{0\}$ is an ideal. Now let $B \neq \{0\}$. Obviously, if $a, b \in I$, then $a \lor b \in I$. Let $b \in I$ and $c \leq b$; we wish to prove that $c \in I$. If c = 0, then $0 \in I$ by definition. If $c \neq 0$, then $b \neq 0$, hence we can choose a $\beta \in G$ such that $\langle \beta, b \rangle \in B$ by the definition of I. Thus, for any $\alpha \in G$,

$$f_{\alpha\beta^{-1}, c(\beta\varphi)^{-1}}(\langle \beta, b \rangle) = \langle \alpha, c \rangle,$$

since $c(\beta \varphi)^{-1}(\beta \varphi) = c \leq b$. We conclude that $\langle \alpha, c \rangle \in B$, since $c \in I$. Therefore, $I \in Id C$. Since we have $\langle \alpha, c \rangle \in B$ for all $\alpha \in G$, we also conclude that $B = (G \times (I - \{0\})) \cup \{0\}$, verifying the claim. Claim 2. Sub $\mathfrak{A} \cong L$.

Proof. It is clear from Claim 1 that $I \rightarrow (G \times (I - \{0\})) \cup \{0\}$ is an isomorphism between Id C and Sub \mathfrak{A} . Since Id $C \cong L$, the claim follows.

Claim 3. For every $\gamma \in G$, the map $T_{\gamma}: \langle \beta, b \rangle \rightarrow \langle \beta \gamma, b(\gamma \phi) \rangle$, $0 \rightarrow 0$ is an automorphism of \mathfrak{A} .

Proof. It is trivial that $0T_{\gamma}=0$, $(x \lor y)T_{\gamma}=xT_{\gamma}\lor yT_{\gamma}$, for $x, y \in A$. Since right-multiplication of G and $\gamma\varphi$ on C are permutations, so is T_{γ} . It remains to prove that $f_{\alpha,\alpha}(xT_{\gamma})=f_{\alpha,\alpha}(x)T_{\gamma}$. This is obvious for x=0. Now let $x=\langle\beta,b\rangle$. If $a(\beta\varphi)$ and b are not comparable, then $(a(\beta\varphi))(\gamma\varphi)$ and $b(\gamma\varphi)$ are not comparable, that is, $a((\beta\gamma)\varphi)$ and $b(\gamma\varphi)$ are not comparable, hence

$$f_{a,a}(\langle \beta, b \rangle)T_{\gamma} = 0T_{\gamma} = 0 = f_{a,a}(\langle \beta\gamma, b(\gamma\varphi) \rangle) = f_{a,a}(\langle \beta, b \rangle T_{\gamma}).$$

The other two cases $(a(\beta\varphi) \le b \text{ and } b \le a(\beta\varphi))$ are similar.

Claim 4. Every automorphism of \mathfrak{A} is of the form T_{γ} for a unique $\gamma \in G$.

Proof. Let T be an automorphism of \mathfrak{A} . Define the functions f and g on $C-\{0\}$ by

$$\langle 1, c \rangle T = \langle f(c), g(c) \rangle,$$

where 1 is the identity of G. Then, for $c, d \in C - \{0\}$,

 $\langle f(c \lor d), g(c \lor d) \rangle = \langle 1, c \lor d \rangle T = (\langle 1, c \rangle \lor \langle 1, d \rangle) T =$ $= \langle 1, c \rangle T \lor \langle 1, d \rangle T = \langle f(c), g(c) \rangle \lor \langle f(d), g(d) \rangle = \langle f(c), g(c) \lor g(d) \rangle.$ Thus, for any c, $d \in C - \{0\}$,

$$f(c) = f(c \lor d) = f(d),$$

that is, f(c) is a constant function, $f(c)=f\in C-\{0\}$. Thus $\langle 1, c\rangle T=\langle f, g(c)\rangle$ and $g(c\vee d)=g(c)\vee g(d)$, implying that g is an automorphism of $C-\{0\}$. Set $c=a\vee g^{-1}(a(f\varphi))$. Since $a\leq c$ the first clause of the definition of $f_{\alpha,a}$ applies so we have

$$\langle \alpha, a \rangle T = f_{\alpha,a}(\langle 1, c \rangle) T = f_{\alpha,a}(\langle 1, c \rangle T) = f_{\alpha,a}(\langle f, g(c) \rangle) = \langle \alpha f, a(f\varphi) \rangle,$$

where, in the last step, the first clause of the definition of $f_{a,a}$ again applies since $a(f\varphi) \leq g(c)$.

This proves that $T=T_f$ since they agree on $A-\{0\}$, and obviously agree at 0. The uniqueness of f is obvious.

Claim 5. $G \cong \operatorname{Aut} \mathfrak{A}$.

Proof. $f \rightarrow T_f$ is the required isomorphism by Claims 3 and 4.

We have verified all but the last statement of the Theorem. Let $\alpha: G \rightarrow \operatorname{Aut} \mathfrak{A}$ and $\beta: L \rightarrow \operatorname{Sub} \mathfrak{A}$ be defined as in Claim 5 and Claim 2. Let $\gamma \in G$. Then $\gamma \varphi$ is an 4° automorphism of C. An ideal I of C is carried to $(G \times (I - \{0\})) \cup \{0\}$ by Aut β and thus $(\gamma \varphi)$ Aut β is an automorphism of Sub \mathfrak{A} mapping $(G \times (I - \{0\})) \cup \{0\}$ to $(G \times (I(\gamma \varphi) - \{0\})) \cup \{0\}$. Now $\gamma \alpha$ is an automorphism of \mathfrak{A} , namely, T_{γ} . Thus $(\gamma \alpha) \varphi_{\mathfrak{A}}$ is an automorphism of Sub \mathfrak{A} carrying a subalgebra B to BT_{γ} , that is, $(G \times (I - \{0\})) \cup \{0\}$ to $((G \times (I - \{0\})) \cup \{0\}) T_{\gamma} = (G \times (I(\gamma \varphi) - \{0\})) \cup \{0\}$ (this equality follows from the definition of T_{γ}). This completes the proof of the Theorem.

4. Concluding remarks. Let m be an infinite regular cardinal. The finitary concepts $(m = \aleph_0)$ of the Theorem generalize naturally (see G. GRÄTZER [3] and [4]) to the concepts: m-algebraic lattice and algebra of characteristic m. Subalgebra lattices of algebras of characteristic m can be characterized, up to isomorphism, as m-algebraic lattices. The Theorem of this note generalizes to m-algebraic lattices and algebras of characteristic m. In the proof, it is only necessary to replace the binary operation \vee by infinitary joins of less than m elements.

It is a curious fact that the algebra \mathfrak{A} constructed has no endomorphisms other than the automorphisms.

Similarly to the definition of $\varphi_{\mathfrak{A}}$, we can define $\psi_{\mathfrak{A}}$: Aut $\mathfrak{A} \to \operatorname{Aut} \operatorname{Con} \mathfrak{A}$, where Con \mathfrak{A} is the congruence lattice of \mathfrak{A} and we can ask for a characterization of $\langle \operatorname{Aut} \mathfrak{A}, \operatorname{Con} \mathfrak{A}, \psi_{\mathfrak{A}} \rangle$. (For the most recent accounting of the characterization problems connected with Con \mathfrak{A} , see G. GRÄTZER and W. A. LAMPE [6].) Even harder is the characterization problem of

 $\langle \operatorname{Aut} \mathfrak{A}, \operatorname{Sub} \mathfrak{A}, \operatorname{Con} \mathfrak{A}, \varphi_{\mathfrak{A}}, \psi_{\mathfrak{A}} \rangle.$

References

- G. BIRKHOFF, On the combination of subalgebras, Proc. Cambridge Phil. Soc., 29 (1933), 441-464.
- [2] G. BIRKHOFF and O. FRINK, Representations of lattices by sets, Trans. Amer. Math. Soc., 64 (1948), 299-316.
- [3] G. GRÄTZER, On the family of certain subalgebras of a universal algebra, Nederl. Akad. Wetensch. Proc., Ser. A. 68 (1965), 790-802.
- [4] G. GRÄTZER, Universal Algebra, The University Series in Higher Mathematics, Van Nostrand (Princeton, N. J., 1968).
- [5] G. GRÄTZER, Lattice Theory. First Concepts and Distributive Lattices, W. H. Freeman and Co. (San Francisco, Cal., 1971).
- [6] G. GRÄTZER and W. A. LAMPE, Representation theorems related to congruence lattices of algebras, *Advances in Mathematics*, to appear.
- [7] E. T. SCHMIDT, Universale Algebren mit gegebenen Automorphismengruppen und Unteralgebraverbänden, Acta Sci. Math., 24 (1963), 251-254.

UNIVERSITY OF MANITOBA WINNIPEG, MANITOBA CANADA R3T 2N2