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Classical approximation processes in connection 
with Lax equivalence theorems with orders 

W. DICKMEIS and R. J. NESSEL 

1. Introduction 

In this note we continue our previous investigations [8], [10] on Lax equivalence 
theorems with orders in the setting of linear operators in Banach spaces. There 
we were concerned (compare also with [18a] as well as with [6] and the litera-
ture cited there) with a quantitative description of the approximation of the 
exact solution {E(t); iSO} of a properly posed initial value problem, being a 
(continuous) semigroup of class (C0), by some difference scheme {£"; n€P} consti-
tuting a family (0^t^<5) of discrete semigroups (with P the set of non-negative inte-
gers). According to the hierarchy of the various convergence theorems for families of 
semigroups as outlined by STRANG [20] (see also [2], [23]), one may then ask whether 
one can also equip more general theorems than the original Lax one with orders. 
To this problem Thm. 2 below will give a modest contribution inasmuch as the 
convergence of a family {Et(t)\ í^O}, O^t^S of continuous semigroups 
towards {£(0; ' = 0 } is considered with orders, but still in the Lax framework. 

There is another point which motivated the present studies. In [14] GROETSCH— 
KING outlined an interesting interconnection between Bernstein polynomials and 
the convergence of a certain difference scheme (see Sec. 3, Ex. A) which was then 
continued in [15] with respect to some quantitative results. The procedure, how-
ever, looks somewhat isolated so as to be particularly taylored to Bernstein polynomi-
als. Thus the question arises whether there are further classical noncommutative 
processes in approximation theory of the type 

2№n)Qk,n{x), 
the convergence of which may be interpreted from this numerical point of view. 
This is indeed the case and will be worked out explicitly for the familiar Szász— 
Mirakyan and Baskakov operators. But also the general class of approximation 
processes as introduced in [18] via the powers of certain functions fit into this 
program. In fact, it turns out that the procedure and results of [14] may be con-
sidered as a genuine application to our previous Lax equivalence theorem with 
orders. 
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In Sec. 2 we first treat two alternative forms of the (discrete) Lax equivalence 
theorem with orders, extending by the way those of [8], [10] slightly (cf. Thm. 1; 3). 
Correspondingly, the matter is considered in connection with a continuous version 
of the theorem of Lax on the convergence of families of semigroups (see Thm. 2; 4). 
The latter results are obtained by exploiting methods used in [13] to give an element-
ary proof of a weak (non-order) version of the Trotter theorem. In Sec. 3 the Lax 
theory for difference schemes (Thm. 1; 3 of Sec. 2) is applied to some examples of 
the form 

E,= 2 <pk(.X)ft (¿:=T/h), 
*=0 

where Thf(x):=f(x+h). For explicit difference schemes (Ex. A) the series is 
finite, whereas for implicit difference schemes (Ex. B and C) the series may be in-
finite (compare [5], [6]). Stability and consistency properties are given in terms of 
the (positive) functions (pk(X). As mentioned above, special choices of the <pk(X) 
lead to Bernstein polynomials, Baskakov operators, and the operators of Szász— 
Mirakyan. In Sec. 4 we consider the same examples from the point of view of the 
continuous semigroups {E'Jr; i sO} which interpolate the discrete ones {£"; w£P} 
used so far at the grid points m. In this situation the continuous versions of the 
Lax equivalence theorem with orders (cf. Thm. 2; 4 of Sec. 2) may be applied. 
Finally in Sec. 5, instead of reproducing the Ex. A—C via the interpolating semi-
groups {E'J1; / SO}, one may consider the family of semigroups {exp [t{Et—T)]m, t SO} 
being a familiar construction in the course of the proof of the original Trotter the-
orem. In this case one obtains a comparison between a given difference scheme 
and the corresponding line method which in turn implies a comparison theorem 
between the Bernstein polynomials and the operators of Szász—Mirakyan. 

Summarizing, the applications deliver pointwise direct approximation theorems 
for the Bernstein polynomials, the Baskakov, and the Szász—Mirakyan operators 
which are best possible, apart from constants. Though these direct theorems as 
such are of course well-known, they do not only show interesting interconnections 
between the Lax theorem in numerical analysis and the convergence of some classical 
approximation processes but they also indicate that the notions and results of the 
abstract theory in Sec. 2 seem to be adequate. 

The authors would like to extend their thanks to Prof. P. L. Butzer for his 
steady interest in this work, particularly for drawing our attention to the study 
of Lax equivalence theorems with orders. We also thank Dr. M. Becker for many 
valuable suggestions, in particular in connection with (3.10), as well as Prof. H. 
Esser for a critical reading of the manuscript. The contribution by W. Dickmeis 
was supported by a DFG research grant (Bu 166/26) which is gratefully acknow-
ledged. 
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2. General theory 

Let X be a Banach space (with norm || • H*) and [X] the space of bounded linear 
operators of X into itself. A (continuous) semigroup {£(0 ; (of class 
(C0)) is a one parameter family of operators satisfying: E(0)=I, the identity, 
E(h+Q=E(QE(tJ, and (lim | | . E ( 0 / - / l l x = 0 for each f£X. For a semi-
group of class (C0) there exist constants M s 1, a> SO such that (for the fundamentals 
of semigroup theory see [7]) 
(2.1) l |£(0llm Me0" (t S 0). 
Consider the initial value problem 
(2.2) d/dtu(t) = Au(t) for ¿ S O ; u(0)=f for f £ X , 
where A is a closed linear operator with domain D(A) dense in X and range in X, 
the given element / describing the initial state. The problem (2.2) is said to be pro-
perly (or correctly) posed if there exists a (continuous) semigroup {£(0 ; ' = 0 } 
(of class (C0)) such that each solution of (2.2) is of the form u(t)=E(t)f. In this 
case, A is the infinitesimal generator of the semigroup, i.e. the closed linear operator 
defined densely in X via 

Af:= Um t-i[E(t)-I]f, 

the domain D(A) consisting of all elements f£X for which the limit exists. 
In numerical analysis one is now interested in approximating the family 

of "exact" operators {£(?)} by powers of some finite difference operators 
{Ex\ 0S t^ (5}c [Z] , in particular to treat the error \\E"f—E(m)f\\x in dependence 
upon smoothness properties of f£X. In this connection the most important pro-
perties of the difference scheme are stability and consistency for which the follow-
ing definitions (with orders) were used in [8] (see also the literature cited there): 

D e f i n i t i o n 1. The difference scheme { E z \ i s said to be con-
sistent of order 0(<p(T)) on the linear manifold UcX with respect to the semi-
group {£(/); iSO} if there is a constant C > 0 such that for all f£U, f sO, 
OSt «5 
(2.3) m - m m m * == c M ^ i f i v 
where \ f \ v denotes a suitable seminorm on U. If U is dense in X and <p{x) in (2.3) 
is replaced by o(l), r->-0+, the difference scheme is said to be (ordinarily) con-
sistent. 

D e f i n i t i o n 2. The difference scheme {Ex\ is said to be stable 
of order 0(ip(T, I¡n)) if there is a constant 0 such that for all n£N (=set of 
natural numbers), O S r ^ S 
(2.4) ¡ | £ ? | | M S S/<A(T, l/n). 
and (ordinarily) stable if the right-hand side of (2.4) is replaced by 0(1), -r—0-f. 

3 
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Here cp(z) is some non-negative function on [0, <5] and y) a positive bounded 
function on [0, 5] X [0, 1] monotonely increasing in y and normalized via (cf. (2.1)) 

(2.5) Meanz =S S/\p{r, l/n) (0 = x = 8, n £N). 

In this terminology the Lax theorem in its original form reads (see [17], [19]) 

T h e o r e m L 1 (discrete version). Given the properly posed initial value problem 
(2.2) in X and a finite difference scheme {ist;0STS<5} satisfying the (ordinary) 
consistency condition, then (ordinary) stability is necessary and sufficient for (ordinary) 
convergence, i.e. for each f£X 

lim \\E?jf-E(t)f\\x = 0 
j—+oo J 

for each sequence T,)}JgN with 0 + , njZj—t^°° as j— 

Following [8], [10] one can equip this equivalence theorem with orders, smooth-
ness properties of the element f d X being measured in terms of the so-called modi-
fied isT-functional ( isO) 

(2.6) K{t,f) \= K(t,f\ X, U) •.= inf{||/—g||x- + i|g|i/}-
s€ V 

This is known to be a continuous and monotonely increasing function of t with 
lim K(t, / ) = 0 for all f£X if U is dense in X. One also has, in view of the 
definition, 

T h e o r e m 1. Let the finite difference scheme {Ez~, be consistent of 
order 0(q>(i)) on Uc: X with respect to the semigroup {E(t);t^ 0}. Then the follow-
ing assertions are equivalent: 

(a) \\E1f-E{nx)f\\x - * K((C/2)me0""cp(T),/),' 

25 \Mf, f£X 
(b) \ \ E ° f - E ( n m X ^ ^ l A o i ^ n ^ ^ W I / U W , 

(C) l|£t"lltx] s S/ijf(T, l/n), 
where Mf is a constant only depending onf (there is a slight abuse of the constants S). 

Proof . The implication (a)=>(b) follows by (2.7). Moreover, by the uniform 
boundedness principle one may replace the constant Mf by Cx || / | | x for some CX >0 . 
Together with (2.1) and (2.5) this shows (b)=>-(c). Concerning the proof (c)=>(a), 
in view of the identity 

(2.8) E»G-E{NT)g = "¿Er^H^-mmrig 
j=° 

one has for ¿ny g£U 
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n—i ST'nr 
\\E?g-E{m)g\\x ^ 2 (SM(t, (n-j-iy'))Cx<p(z)e^\g\v s- eam<prt\g\u, 

using stability and consistency with orders. Hence for any f£X it follows by (2.4), 
(2.5) that for any g£ U 

\\En
xf-E(m)f\\x s \\E?(f-g)\\x+\\E(tn)(f-g)||x + | |£ t

ng-£(nT)g| |x 

2 c 
- n C m ^ S h H m m e - ^ M v } . 

Taking the infimum over all gd U yields (a). This completes the proof. 
Up to this stage we approximated the exact solution {E(t) \ /SO} by some 

difference scheme, thus by some family (O^z^S) of discrete semigroups {Ex;n£ P}. 
Now we want to approximate the "exact" operators by a family of continuous 
semigroups {Ex(t)m, /SO, 0 S t S 5 } c [ Z ] of class (C0). Indeed, the most important 
properties determining the approximation error \\Et(t)f—E(t)f\\x are very similar 
to those given in Def. 1; 2. So one may formulate 

D e f i n i t i o n 3. The semigroup scheme {Et(t); 0> 0—*S<5} with infini-
tesimal generators Ax is said to be consistent of order O (<p (t)) on the linear manifold 
UaX with respect to the semigroup {£ ( / ) ; /S0} with generator A if E(t) Ucz 
czD(A)C\D(Ax) and there exists a constant C > 0 such that for all f£U, /SO, 
O^riSd 
(2.9) \\[A-A}E(t)f\\x £ Ce°*<p{t)\f\v. 

It is said to be (ordinarily) consistent if U is dense in X and <p (T) in (2.9) is replaced 
by 0(1). 

D e f i n i t i o n 4. The semigroup scheme {Ex(t); i sO, 0ST^<5} is said to be 
stable of order 0{Mxeu>*') if there are constants Mx and cot with M s M , and 
co=cot (cf. (2.1)) such that for all /SO, 0==t^<5 

(2.10) \\Ex{t)\\m^Mte°>S. 

It is said to be (ordinarily) stable if and <wtS<u0<°=>. 
Of course, since {£,(/); /SO} is assumed to be a semigroup of class (C0) 

for each 0^TS<5, property (2.1) always ensures the existence of constants Mx, cox 

such that (2.10) holds. So Def. 4 just states that it is appropriate to take Mxew 

as a substitute for S/ijj (z, l/n) in (2.4). 
In the above terminology one has the following continuous counterpart to Theo-

rem L 1 (cf. [2], [20]): 
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Theorem L 2 (continuous version). Let {Ez(t); t^O, 0^TS<5} be a semi-
group scheme (ordinarily) consistent with respect to {E(t)\ f£0}. Then (ordinary) 
stability is necessary and sufficient for (ordinary) convergence, i.e. for each f£X, fSO 

lim \\Ex(t)f-E(t)f\\x = 0. 
t - » 0 + 

Again this convergence theorem can be equipped with orders. 

Theorem 2. Let the semigroup scheme {Ez{t)\ f §0 , 0StS<5} be consistent 
of order 0(<jo(r)) on Uc.X with respect to the semigroup {£(0; Then the 
following assertions are equivalent: 

(a) \\Ex(t)f-E(t)f\\x S 2Mte*<'K((CI2)tcp(T), f ) , 

(b) ^ 

(c) \\Ez{t)\\m^Mze^'. 

Proof . By (2.7) we immediately obtain (a)=>(b). Then by the uniform boun-
dedness principle one may replace the constant M s by C i | | / | | x which together with 
(2.1) implies (b)=Kc). For the proof of (c)=>(a) it follows that for arbitrary g(i i / c 
cD{A)C\D{Ax) 

Ex(t)g-E(t)g = - f ^Ez(t-s)E(s)gds = 

= f [AxEx(t-s)E(s)g-Ex(t-s)AE(s)g]ds = f Ex(t-s)[Ax-A]E(s)gds 
o o 

which should be compared with (2.8), thus with (2.3) and (2.9), respectively. Hence 

\\Ex(t)g-E(t)g\\x^ f M^'-^C^(P{x)\g\lJds^MxCt^'q>{x)\g\v. o 
As in the proof of Thm. 1 we proceed for f£X, g£ U 

\\Ex{t)f-E(t)f\\x s | |£ t (0( / -g) l lx + l!£(0(/-g)llx + l l ^ ( 0 , g - £ ( 0 g l k ^ 

^ {Mxe^+MeM)\\f-g\\x+MxCte^q>{x)\g\v =s 

s2Mxe<°S{\\f-g\\x+(C/2)t<p(T)\g\u}. 

Taking the infimum over all g£U completes the proof. 
So far Thms. 1, 2 do have the structure of the original Lax equivalence theo-

rem, stating that stability is equivalent to convergence, provided the scheme is 
consistent. The adequacy of the notions with orders used above may also be 
illustrated by the fact that the alternative form is valid as well, namely that con-
vergence is equivalent to stability plus consistency, provided some weak additional 
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assumptions are made. First we claim the commutativity of seminorm and semi-
group, more specifically, we suppose that E(t)UaU and (cf. (2.1)) 

(2.11) \E(t)g\v^M^'\g\v ( ' S O ) 

for each g £ U (in [18a] problem (2.2) is then said to be strongly correctly posed). 
For example, inequality (2.11) obviously holds if |g|i;: = IMrg||x, U=D(Ar). 

T h e o r e m 3. Given the finite differenct icheme {ist; and the semi-
group {£(0; iSO}, suppose that (2.11) be valid and \jt(x, 1 ) S C 2 > 0 for all 
Then the following assertions are equivalent: 

29 
(a) \\E"tf-E(nz)f\\x S lln)K((C/2)nxe-"<p(T), f ) , 

IS \M,, f£X 
(b) 

(C) (i) \\E!\\m^ SIH*Mn), 

(ii) №-E(z)]E(t)f\\x ^ CeP*x<p(r)\f\u for all f£U, 

For a proof one may consult [8]. 

T h e o r e m 4. Given the semigroup scheme {£ t(i); 0, O S t ^ 5 } and the 
semigroup {E(t)', fSO}, suppose that inequality (2.11) be valid and M ^ J I / ^ » 
for all 0^tS<5. Then the following assertions are equivalent: 

(a) \\Ez(t)f-E{t)f\\x si 2Mtea*'K((C/2)tq>(x), / ) , 

(b) / € C / > 

(c) (i) \\Ez(t)\\m^ 

(ii) \\[A-A]E(t)f\\x^Ce^"q>(x)\f\v for all fiU,t S 0, 0 S t ^ S. 

Proo f . In view of the proof of Thm. 2 we only need to show (b)=>(c, ii). Let 
f=E(s)g for some g£U, s S 0 . Then (b) and (2.11) imply 

||Ex(t)f-E(t)f\\x S M^'CtyMlE^glv ^ MMXea*'Ct(p(T)eas\g\u. 

Therefore one has 

||Mt-^]^(s)gllx = Hm [ W ) " / ] - ^[£(0-/]]E(s)g\\x 

si MMZC(p(t)|g|y si C>(x )e™ |g|„ 

which completes the proof. 
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3. Applications to specific difference schemes 

An example of an initial value problem (2.2) is supplied by the hyperbolic 
differential equation 

(3.1) d/dt u(x,t) = d/dx u(x, t), x, t S 0; u(x, 0) = /(*), x S O , 

where / is an element of X\— UCB(R+), the Banach space of all bounded, uni-
formly continuous functions on [0, o°) with | | / | | x : = s u p | / (x) | . This problem 

x e o 
is properly posed, the solution operators E(t) being given via 

(3.2) «(* , / ) = £(*)/(*) = / ( * + ' ) . x , t s 0. 

Let us consider some examples of difference schemes applied in numerical analysis 
to approximate the exact solution (3.2). We use the notations 

(3.3) (Tkf)(x):=f(x+h), (Exu)(x, t) := u(x,t+t), A := x/h 

for the translation operator Th, AS0, the step operator Et, TSO, and the ratio 
ASO of the step sizes, respectively. 

E x a m p l e A. Instead of (3.1) we regard the problem 

T ^ M X , « + T ) - M ( X , I ) ] ^ ' = h'^uix+h, t)-u(x, t)]. 

This defines an explicit difference scheme with step operator 

(3.4) Ex = (\-X)I+kTh. 

E x a m p l e B. If we replace (3.1) by 

T - 1 [ U ( A T , t+x)-u(x, 0 ] = h~1[u(x+h, t+x)-u(x, / + R ) ] , 

the step operator is defined via 

Et-I = X[Th-l]Et. 

This leads to the implicit difference scheme 

E x a m p l e C. Replacing only d/dx in (3.1) by the corresponding difference 
quotient, one has to solve the initial value problem 

(3.6) d/dtu(x,t) = h-1[u(x+h,t)-u(x,t)]. 
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This line or semi-discrete method (cf. [21, p. 545] or [6, p 55]) leads to the step 
operator (see also Sec. 4) 

(3.7) Ez = e x p ( t / h ) [ T h - I ] = <rA Z ^ T l 
k=0 K! 

Obviously, each of these operators Et is of the form 

(3.8) 
k=0 

with certain real-valued functions <pk(X) defined on [0, To discuss stability and 
consistency, let us suppose that there exists an interval J a [0, «>) such that for 
all A£/, P 

(3.9) (i) (ii) - 2<Pk(V = h (i") 2 k(pkW = A (A€7). 
o fc=0 

In particular, (i) assumes the positivity of the operators Et which together with (ii) 
leads to stability since 

ll-E"ll[x] — ll^rllm = il-E'tllli = 1-

Concerning consistency let 

U:=UCB^:={feX;f',f"eX}, \f\v:= \\f"\\x. 

Then one has by (3.2), (3.8), (3.9) that for every f £ U 

(3.10) \Etu(x, t)—E{x)u(x, 0 | = 2 <Pk(X)[u(x+kh, t)—u(x, <+r)] 

2 (Pk (A) [ / ( x + / + t + ( f c / t - t )) - f ( x + f + r ) ] 
fc = 0 

kh—r s 
2 q>k{X){{kh-x)f'(x + t + x) + J ff"(v+x+t+x)dvds2 

t=o 

^ Wf'Wx 2<Pd№h-rTI2= (h2/2)o(X) \\f"\\x 

with second moment a (A) given via 

k=0 

Before giving an application of Thm. 1, let us recall that for the present choices 
of spaces X, U one may express the ^-functional K(t, /; UCB, UCB(2)) equivalently 
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in terms of moduli of continuity. Indeed, one has for any iSO (cf. [7, p. 192; 258], 
[9, p. 316]) 

(3.11) W 1 ' 2 , / ) S K(t, f ) S c2co2(t112, f ) 

where the (second) modulus of continuity is defined by 

co2(t,f) := sup \\f(x+2h)-2f(x+h)+f(x)\\x. 0 ghst 

Thus it follows by Thm. 1, (c)=>(a), that 

C o r o l l a r y 1. Concerning the convergence of the difference scheme (3.8) towards 
the exact solution (3.2) of the initial value problem (3.1) one has 

(3.12) \E?m-f(x+nx)\ S 2c2co2((h/2)[na(X)r\f) 

for any f£UCB(R+), XSO, « € N , TSO, and 

More specifically, this yields for the examples mentioned above: 

E x a m p l e A: In view of (3.4) we see that 

(pa (A) = 1 —A, <Pi(A) = A, <pt(A) = 0 for k S 2. 

Thus (cf. (3.9) (i)) one has / = [ 0 , 1] and <r(A)=A(l-A). Since for x = 0 , h = l/n 

[ E N J M = 1 ( ¡ J ) ( 1 - X ) - N K N , J ( 0 ) = J ( ^ ) ( 1 - A ) » " * A * / ( F C / N ) - B n ( f , A ) , 

Cor. 1 implies the following (pointwise) direct theorem for the Bernstein poly-
nomials. 

C o r o l l a r y 2. For any function f , continuous on [0, 1], one has for each 
A€[0, 1], n<EN 

IBB{f, A)-/(A)| C©2([A(1 — A)/n]1/2,/). 

The present procedure to prove this well-known direct estimate (cf. [4, p. 698], 
[12], and the literature cited there) is essentially contained in [14] (explicitly they 
prove the Weierstrass convergence theorem for twice differentiable functions, the 
domain x, f€[0, (cf. (3.1)) being replaced by x, t, x + f€[0, 1]). The argument 
was then refined in [15] in order to obtain an error estimate involving the first 
modulus of continuity of the first derivative / ' . 

E x a m p l e B. In view of (3.5) we see that 

^ T T x i i r x i 



Classical approximation processes 43 

Consequently, one has / = [ 0 , « ) and a(A)=A(l+A). Since for x=0 , h = ljn 

L E ; F M = ¡ ¡ I F [ ( ' - M - R * ) " / ] ( 0 ) = 

- ( T W , 1 ( " ' 1 ) ( t t i ) ' ^ - M M 

Cor. 1 yields the following direct estimate for the Baskakov operators M„(f A). 

Coro l l a ry 3. If fe UCB(R+), then for any n£ N, A s O 

I M „ ( / , A ) — / ( A ) | S cco2{W + A ) / « N / ) . 

As is well-known (cf. [1], [11, p. 39]), this is the correct estimate, apart from 
constants. 

Example C. Here we see from (3.7) that 

<pk(X) = e~xAk/k\ (fcsO). 

Thus 7=[0, co) and (t(A)=A. Since for x=0, h=l/n 

m m = exp [nX(Th—/)]/(0) = e-"* = Sn(f, A), 
k=0 Kl 

Cor. 1 delivers the following (pointwise) direct estimate for the operators of 
Szdsz—Mirakyan. 

Coro l l a ry 4. For any f£UCB(R+), AsO, N one has 

\Sn<f, A ) — / ( A ) | ^ C O > M L N R \ F ) . 

Again this is the correct estimate apart from constants. 
Regarding Cor. 2—4, let us again point out that these (pointwise) direct approxi-

mation theorems for the Bernstein polynomials, the Baskakov, and Szdsz—Mirakyan 
operators, respectively, are of course well-known. In fact, these results may be 
obtained even more directly and elementarily exploiting (cf. (3.10)) the second 
moment of the kernel (cf. [11, p. 39; 244], see also [3] for more intricate results in 
polynomial weight spaces). Concerning this note, however, they do not only show 
interesting interconnections between the Lax theorem in numerical analysis and 
the convergence of some classical approximation processes but also indicate that 
the notions and results of the abstract theory in Sec. 2 seem to be adequate. 
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4. Applications to semigroup schemes 

Let us regard Ex. C from another point of view. In order to obtain the differ-
ence scheme (3.7) one has to solve the initial value problem (3.6) for one time step 
t=T. Looking at the solution of (3.6) for any i=0 , however, delivers (continuous) 
semigroups {£"t(f);./sO}, T : = 1/JSO. Then (3.6) takes the form 

dldtE,(t)f=h-*[Th-I]Et(t)f.-" 

Thus the infinitesimal generators At of these semigroups are given via the bounded 
linear operators 
(4.1) Az = h-i[Th-I} 
so that one has 

(4.2) ET(t) = exp (tAJ = e~"h J ® 2?. 
k=0 Kl : • 

Obviously, for any / 6 U (:— i/C5 (2)(R+)) 

(4.3) Atf(x)=f'(x)+j-ffrOc+v)dvds. 
n 0 0 

Of course the infinitesimal generator of the solution semigroup {E(t); iSO} (cf. (3.2)) 
is given via Af{x)=f'(x). Moreover, since the present generators Ax commute 
with E(t), one has 

(4.4) || (A-A)E(t)f\\x == \№)\\m\\Azf-Af\\x = \\AJ-Af\\x. 

Therefore the error of consistency (2.9) for the semigroup scheme (4.2) may be 
estimated by 

\\(Ai-A)E(t)f\\x^(hl2)\\f"\\x 

for any / € U whereas stability follows from 

k=0 

Thus an application of Thm. 2, (c)=>(a), regains Cor. 1; 4, namely (with K(t, /):= 
=K(t, /; UCB, UCB<2>)) 

Coro l l a ry 5. For the semigroup scheme (4.2) one has 

\Et(t)f(x)-f(x+t)\ ^ 2K(htjA,f) for any feUCB, x, t,r,h^ 0. 

More generally, given a difference scheme {£ t; to each discrete 
semigroup {E"; «€P} one may associate a continuous one {£,(/); according 
to the formula (cf. (3.7), (4.2)) 

(4.5) Ez(t) := E'* 
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in case the right-hand side can be interpreted suitably. The resulting continuous 
semigroup then has the interpolation property 
(4.6) Et(m) = E»z. 

Let us continue with considering the matter in connection with Ex. A, B. First 
recall that for each a£R 

(4.7) ( l + u ) " = 

absolutely and uniformly for |w|-=l (and even for |m|^1 incase a>0). 

Example A. It follows from (3.4) that 

(4.8) £ r ( ? ) := ^ := (1 —A)'/r [ / + ^ Thf = (1 - A ^ f ('£) [ ^ J 

the series being convergent in the uniform operator topology for [0, 1/2]. For 
the corresponding infinitesimal generator Az one has 

^ ^ - T l k l r r ) f f f " ( x + v)dvds 

for any f£U. Therefore (cf. (4.4)) for any f£U, A€[0, 1/2) 

-X 
\\[Az-A]E(t)f\\xS^ 2 k 

¿A FC = O i - x 
Concerning stability, for some given i s O let m€P be such that m T ^ i = m i + t i < 
< M T + T . Then in view of the stability of the explicit difference scheme we see that 
(cf. (3.9), (4.5), (4.8)) 

| |£ ,(f) | |m == l l^imTiUmll^^l lm ^ I T O I I m = 

= (1 -X)-'z 2 (Y^X) I = 2 ( ! - ¿ ) " / r - 0 -2A)"/' = 2. 

Application of Thm. 2, (c)=*-(a), therefore gives 

\Ez(t)f(x)-f(x+t)\ ^ 4 , / ) (xm 1/2)) 

which is worse than Cor. 1 or 2, respectively. 

Example B. The interpolating semigroups (4.5) for the difference operators 
Ez of (3.5) are given by 

(4.9) 

= (iTl) JO( fel (T+T) n 
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the series being convergent in [A'] for each A SO. For the infinitesimal generators 
Ax one has 

1 » | / j n 1 
AJ(x)=f'(x)+j ^ H Y ^ J J f f f " ( x + v)dvds 

for any f£U. It follows that for any /€£/ , AsO 

\\[A-A]E(t)f\\x s A J k ^ j ' l i / " ^ = | (i +X)\)f"\\x. 

Since HZi^Oll^jSl, one has for the semigroup scheme (4.9) that 

\Ex(t)f(x)-f(x+t)\ & 2K(ht(l +A)/4,/) 

which reproduces the results of Cor. 1; 3 (upon setting t=nx=nhX). 
Summarizing, Thm. 2; 4 seem to be more appropriate for line methods (cf. 

treatment of Ex. C) whereas Thm. 1; 3 seem to be more suitable for genuine diffe-
rence schemes. 

5. A comparison theorem 

In the course of the proof of the familiar Trotter theorem (cf. [22], [16, p. 507 
if]) one makes use of just another method (than (4.5)) to associate a semigroup 
scheme {Et(t); /SO} to some given difference scheme {Ex}, 0<t^<5. Indeed, 
with the step operator Et£[X] one also has Bx:=(Ex—I)/x£[X] so that via (/SO) 

(5.1) Ex(t) := exp (tBT) := j? (tk/k\)Bx *=i 

there is defined a (continuous) semigroup of class (C0) for each 0<tS<5. Though 
{£,(/); / s 0 } does not have the interpolation property (4.6), one has (cf. 
[16, p. 508]): 

L e m m a 1. With {£t}c[A'], 0<xS<5, let £x{t) be given via (5.1). If there exist 
constants Mt such that \\E"\\iX^Mz uniformly for n€P, then also | |£ i

t(/) | | [X]^Af r 

uniformly for tSO and 

\\En
tf-£x(nx)f\\x =§ (1/2) Mtnxz\\B?f\\x for every f £ X , n£P, 0 < r S <5. 

This may be interpreted as a comparison theorem between a given difference 
scheme and the corresponding line method. Whenever a discretization of (2.2) 
is given via 

j[Ex-J]u(t) = Bxu(t) 
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with difference scheme {£ , ;0<TS5} satisfying the stability condition [| .E"| |m^MT , 
then the approximation error can be estimated according to 

(5.2) \\E?f-E{m)f\\x^\\Et{m)f-E(m)f\\xHmMxmHB\f\\x 

where £z(t):=exp (tBz) denotes the line method defined by 

(5.3) d/dtu(t) = Bzu{t). 

Concerning Ex. A, the operators Bz are given by 

Bt:=±[E-I] = j[T„-I) 

which are just the infinitesimal generators of the semigroup scheme in Ex. C. Thus 
Ez{t) is equal to Ex{t) from (4.2). Since WB] f\\xtk\\f"\\x for any f£U, in view of 
the stability and Lemma 1 this leads to (cf. proof of Thm. 1, (c)=>(a)) 

\\E»f-Ez{m)f\\x ^ 2K(m*l4,f) -

with Ez from (3.4) and Ez(t) from (4.2). Therefore, proceeding as in the previous 
sections, one obtains 

C o r o l l a r y 6. For /€ UCB one has the following comparison estimate between 
the Bernstein polynomials and operators of Szdsz—Mirakyan: 

\B„{f> V-S„(f, A)| ^ 2K(X*/4n,f) for all A€[0,1], «€N. 
Thus, though the individual operators behave like 0(A) at A = 0 + , their differ-

ence behaves like O (A2). 

Added in proof: For a (parallel to [14]) concrete discussion of the pure con-
vergence of the Bernstein and Baskakov operators in connection with the explicit 
and implicit difference scheme of Ex. A, B, respectively, see also G . C . P A P A N I C O L A U , 

Amer. Math. Monthly, 82 (1975), 674—676. 

References 

[1] V. A. BASKAKOV, An example of a sequence of linear positive operators in the space of conti-
nuous functions, Dokl. Akad. Nauk SSSR, 113 (1957), 249—251. 

[2] M. BECKER, Über den Satz von Trotter mit Anwendungen auf die Approximationstheorie, 
Forschungsberichte des Landes Nordrhein-Westfalen Nr. 2577, Westdeutscher Verlag Opladen, 
1—36 (1976). 

[3] M. BECKER, Umkehrsätze für positive lineare Operatoren. Dissertation, Aachen 1977. 
[4] H . BERENS, G . G . LORENTZ, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J., 

21 (1972), 693—708. 
[5] P . BRENNER, V . THOM£E, Stability and convergence rates in Lp for certain difference schemes, 

Math. Scattd., 2 7 (1970) , 5 — 2 3 . 



48 W. Dickmeis and R. J. Nessel: Classical approximation processes 

[6] P . BRENNER, V . THOMEE, L . WAHLBIN, Besov Spaces and Applications to Difference Methods 
for Initial Value Problems (Lecture Notes in Mathematics No. 434), Springer (Berlin—Heidel-
berg—New York, 1975). 

[7] P. L. BUTZER, H. BERENS, Semi-Groups of Operators and Approximation, Springer (Berlin— 
Heidelberg—New York, 1967). 

[8] P. L. BUTZER, W. DICKMEIS, H u . JANSEN, R. J . NESSEL, Alternative forms with orders of the 
Lax equivalence theorem in Banach spaces, Computing (Arch. Elektron. Rechnen), 17 
(1977), 335—342. 

[9] P . L . BUTZER, K . SCHERER, Jackson and Bernstein-type inequalities for families of commu-
tative operators in Banach spaces, J. Approximation Theory, 5 (1972), 308—342. 

[10] P . L. BUTZER, R . WEIS, On the Lax equivalence theorem equipped with orders, J. Approxi-
mation Theory, 19 (1977), 239—252. 

[11] R. A . DEVORE, The Approximation of Continuous Functions by Positive Linear Operators 
(Lecture Notes in Mathematics No. 293), Springer (Berlin—Heidelberg—New York, 1972). 

[12] H. ESSER, On pointwise convergence estimates for positive linear operators on C[a, b], Nederl. 
Akad. Wetensch., Indag. Math., 3 8 (1976) , 1 8 9 — 1 9 4 . 

[13] J. A. GOLDSTEIN, Semigroup-theoretic proofs of the central limit theorem and other theorems 
of analysis, Semigroup Forum, 12 (1976), 189—206, 388. 

[14] C . W . GROETSCH, J . T . KING, The Bernstein polynomials and finite differences, Math. Mag., 
46 (1973) , 2 8 0 — 2 8 2 . 

[15] C. W. GROETSCH, O. SHISHA, On the degree of approximation by Bernstein polynomials. 
J. Approximation Theory, 14 (1975), 317—318. 

[16] T. KATO, Perturbation Theory for Linear Operators, Springer (Berlin—Heidelberg—New York, 
1976). 

[17] P. D. LAX, R. D. RICHTMYER, Survey of the stability of linear finite difference equations, Comm. 
Pure Appl. Math., 9 (1956), 267—293. 

[18] P . K . MENON, A class of linear positive operators, J. Indian Math. Soc., 2 6 (1962) , 77—80. 
[18a] J . PEETRE, V . THOM£E, On the rate of convergence for discrete initial-value problems, 

Math. Scand., 2 1 (1967) , 1 5 9 — 1 7 6 . 

[19] R . D . RICHTMYER, K . W . MORTON, Difference Methods for Initial-Value Problems, Interscience 
(New York—London—Sydney, 1967). 

[20] G. STRANG, Approximating semigroups and the consistency of difference schemes, Proc. Amer. 
Math. Soc., 20 (1969), 1—7. 

[21] A . N . TICHONOV, A . A . SAMARSKIT, Equations of Mathematical Physics, Pergamon Press (Lon-
don—New York, 1963). 

[22] H . F . TROTTER, Approximation of semi-groups of operators, Pacific J. Math., 8 (1958) , 
887—919. 

[23] H. F. TROTTER, Approximation and perturbation of semigroups, in: Linear Operators and 
Approximation II (P. L. Butzer and B. Sz.-Nagy, Eds.), pp. 3—21, ISNM 25, Birkhäuser 
(Basel—Stuttgart, 1974). 

LEHRSTUHL A FÜR MAT. . 
TECHN. HOCHSCHULE 
51 AACHEN 
TEMPLERGRABEN 55 


