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On normal subgroups of semigroups with identity 
element 

MAGDA ROCKENBAUER' 

In the theory of semigroups, normality of subsemigroups has been defined 
in several different ways. L. REDEI [3] has introduced this concept by the following 
two definitions; 

D 1. The subsemigroup N of a semigroup S is called left normal if 
(i) t h e pa r t i t i on S=NUa1NUa2NU ...(alt a2,... € 5 ) is compa t ib le , a n d 

(ii) for each i and nt, n2£N, a1n1=a in2 implies n1=n2. 

Right normality is defined analogously. 

D 2. The subsemigroup N of a semigroup S is called normal, if it is both right 
and left normal. 

I. PEAK [2] has modified these definitions by omitting condition (ii). Let us 
denote the modified definitions by D ' 1 and D ' 2, respectively. 

The subgroup N of a semigroup 5 is called a normal subgroup of S if it is a 
normal subsemigroup in the sense of D 2 or D ' 2, respectively. 

The following example shows that Theorem 1 of [2] is false. 

E x a m p l e . Let S be the semigroup of transformations of a set of cardinal 2 
into itself. 

The mistake in Peak's proof is in the part that (A) implies (B) where he used 
that N is right normal, too. Therefore, only the following modification of Peak's 
theorem holds true: 

T h e o r e m 1. Let N be a subgroup of the semigroup S with identity element 

which contains the identity element of S. Then the following conditions are equivalent: 
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A) N is normal in the sense of D ' 2, 
B) for all aeS, aN=Na holds, 
C) the set of the right cosets of N coincides with the set of the right cosets of N. 

The following Theorem 2 is from [2], but the proof for MN is not correct there. 

T h e o r e m 2. Let S be a semigroup with identity element and let N and M be sub-
groups of S. If N and M are left normal in the sense of D ' 1, then MN is a left normal 
subgroup of S, and if S is also cancellative, then MC\N is a left normal subgroup 
of S in the sense o/D' 1, too. 

Theorem 2 can be generalized as follows: 

T h e o r e m 3. Let S be a semigroup and N and M subsemigroups of S containing 
an identity element. If N and M are left normal in the sense of D ' 1, then MN is a left 
normal subsemigroup of S in the sense o/D' 1, and if S is also left cancellative and 
MC\N is non-empty, then MON is a left normal subsemigroup of S in the sense 
of D' 1, too. 

P r o o f . It is well known that Mfl N is a subsemigroup. If M and N are sub-
groups then NC\ M is a subgroup. If 

\ • 
c£a(MC\N)b(MriN), 

then 
c£(abM)f)(abN), 

and thus there exist an m in M and an n in N such that 
c - abm = abn. 

If S has an identity element, then, since N and M are left normal, N and M contain 
the identity element of S. Since S is left cancellative the last equation implies 

c£ab(Mf)N). 

Let e be the identity element of N and let / be the identity element of M. Since M 
and N are left normal in the sense of D ' 1, ef=e and fe=f and MN with identity 
element/ is a subsemigroup of S. fN is a left normal subsemigroup of MN in the sen-
se of D ' 1. 

If M and N are subgroups of S then fN and MN/fN are groups, therefore 
MN is a group. 

MN is left normal, because if c£ (aMN) (bMN) then c=amnbm'n' holds for 
some m, m'£M and n,n'(LN. Thus 

ci(amN){bm'N). 

Since amebm'e=amfebm'e=ambm'e, 

(amN) (bm'N) = ambm'N 
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holds. Since M is left normal too, we have 

... ambm'N = abm"N £ abMN 

for m"€.M, and, consequently 
ctabMN. 

If e=f and M and N are subgroups of S then MN=NM. It follows that 
the first assertion of Theorem 2 is true. 

R e m a r k 1. If we replace D ' 1 by D 1 in the second assertions of Theorems 2 
and 3 then we can omit the condition that S be left cancellative. We introduce an 
equivalence relation (see LYAPIN [1]): 

Let S be a semigroup with identity element and N be a subgroup of S. We 
say that r is QN-equivalent to s, in symbols rgNs, if there exist elements n, m in N such 
that rn=ms. 

The following assertion is a modification of an assertion of PEAK [2], p. 349! 

The partition corresponding to the equivalence relation Qn coincides with the 
left (right) cosets of N if and only ifN is left (right) normal in the sense o / D ' 1. 

P r o o f . Suppose that N is left normal in the sense of D ' 1. Any two elements 
of a left coset of N are ^-equivalent because b£aN implies the existence of an 
element « in JV such that 

an = b = eb, whence agNb. 

On the other hand, any element c that is ^-equivalent to a belongs to the 
left coset aN, because the partition 

, S = N\Ja1N\JaiNU... 

is compatible. 
Conversely, suppose that the partition corresponding to Qn coincides with 

the left cosets of N. If c£N(aN) then cgNa. It follows that c£aN. Since e£N, 
we have (bN)(aN)=baN, as we wished to prove. 

Peak has also made the following assertion: 

Let N run over the set of all subgroups of a semigroup S with identity element, 
which are left normal in the sense of D ' 1 and contain the identity element of S. Then 
either each or none of the factor semigroups SjN is a group. 

Proof. If N is left normal in the sense of D'l and SjN is a group then S is 
a group. 
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