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Endomorphism and snbalgebra structure; 
a concrete characterization 

N. SAUER and M. G. STONE 

§ 1. Introduction 

In [5] the following abstract structure problem is solved: For what semigroups 
S and what lattices L does there exist an algebra 91 with S^ End 91, the endomor-
phisms of 91, a n d L ^ S u 91 the lattice of subalgebras of 91? Here we provide a solu-
tion to the corresponding concrete representation problem, where isomorphism 
is replaced by equality. Thus let SQAa be a given transformation monoid and 
LQ2A a set lattice. It is well known that Z,=Su 91 for some algebra 91 over the set 
A iff L is complete and compactly generated [2]; such lattices are called algebraic. 
In [4] necessary and sufficient conditions for S = E n d 91 for some algebra 91 over 
the set A are given; such transformation semigroups are called algebraic. A similar 
characterization is given in [4] for semigroups of partial functions. We make use 
of the latter result by representing subalgebras with partial identity functions to 
derive a simultaneous characterization for S and L. Our characterization, like 
that for the endomorphisms alone involves the solutions to systems of linear 
equations. 

If M is a set of partial functions on A to A with id € M the identity function 
on A, a system of linear equations Z over M is a set of f u n c t i o n a l equa t i ons each 
of the general form: fx=y, or fx=g with fig£M, together with a specified solution 
variable Xs. An assignment OL for I is a map from the variables of Z to partial func-
tions on A to A with a common domain. The assignment a satisfies Z at d£A. 
prov ided f(ax(d))=oiy(d) whenever fx=y£Z a n d f(ax(d))=g(d) whenever fx=g£Z. 

The assignment a satisfies Z on DQ A iff a satisfies Z at d for each d£D. If X1 is 
the specified solution variable we say / is a solution to Z on D provided there is 
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an assignment a which satisfies I on D and a(Xr)=f. A solution / t o E on D is unique 
provided f \D=h\D whenever h is any solution to E on D. The support of a system 
E is the set of all d£A for which there exists a solution to E at d. We write 5 = S p t E 
if B is the support of E. 

Denote by the algebra of all finitary operations which admit each / 6 M a 
a homomorphism. M is the set of all partial endomorphisms of 2IM and M is the 
set of all (total) functions which are endomorphisms of 3IM. As usual a partial 
function g is a homomorphism with respect to an operation P of rank v provided 
gP(x) is defined and equals P(gx) whenever gx is defined for x£Av. A total function 
is one whose domain is all of A. We will use: 

P r o p o s i t i o n 1. gÇAB belongs to M iff 2?€Su9I M and for each finite DQB 
there is a system E over M with g a unique solution to E on D. 

13 r o o f. Take n = i n Theorem 2 of [4]. • 

§ 2. The subalgebras of 9IM 

We first establish some easy facts about the support of systems E over M. 

L e m m a 1. If C = S p t E then there is an assignment a which satisfies E on C. 

P r o o f . For each d£C there is an assignment ccd which satisfies E a t d. Define 
a for a variable x of E by: 

f a d x ( d ) if d£C 

ax (d) — otherwise. 

It is straightforward to verify that a satisfies E on C. • 

L e m m a 2. If C = S p t I then there is a system F and an assignment p which 
satisfies r on C a n d C = S p t T and P(Xr)=id \ C is a unique solution to T on C. 

P r o o f . Let r have one additional new variable Xr not among those of E and 
let the equations of T consist of those of E together with the new equation X r = i d . 
By Lemma 1 there is an assignment a which satisfies E on C. Let P extend a by 
assigning id C to Xr. Clearly p satisfies r on C and C = S p t JT. If g is any solution 
to r on C then for dec, g(d)=d so g \ C=P(Xr)=id \ C thus id ï C is a unique 
solution to r on C. • 

L e m m a 3. Let each C^êF be the support of some system rc. Then f~) C is 

also the support of some system F. 
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P r o o f . Assume without loss of generality that each pair of systems r c , F D 

have no variables in common for C^D and let Xr be a new variable distinct f rom 
all of those of the r c . By Lemma 2 we may further assume that id t C is a unique 
solution to r c on C for each Form r ~ ( (J r c ) U {Z r =id} . We claim 

Icejr ) 

D C = S p t r. If i / g S p t r , say a satisfies T at d, then clearly a c , the restriction 

of a to the variables of r c , satisfies f c at d for each J5" so d € H C. If on the 

other hand d£ H C and ac satisfies r c at d then let aX=acX \ p | C for a variable 

X in rc and let a X r = i d \ f | c Clearly a satisfies r on f | C so ¿£Spt T. Thus 
sptr= n c. 

L e m m a 4. For DQA the operation defined by D= H S p t I is a closure 
DgSpt2 . 

operator. 

P r o o f . Clevarly D g D, and [C Q D => C Q D]. To show D=D it is only necessary 
to see then that DQD. By Lemma 3 there is some system F with D= f l Spt 1 = 

_ DgSpti 
= S p t r . Clearly D= f ) SptI=Sptr=D. 

BE Spt2 

L e m m a 5. For DQA the operation defined by D= ( J € is a closure 
Cfinite.Cgi) 

operator. 

P r o o f . Since d£D=>de{d}QD we have DQD. Further [CQD=>CQD] 

since each finite subset of C is also a finite subset of D. To show D=D it remains 
only to see D Q D . Suppose b % D \ then there is some a d D with a $ D . We will 
show this leads to a contradiction. Since a£D there is some BQD, B finite, with 
a£B. Thus f l Spt I, and say B— b„}. From BQD we have each 

Bgspt z 
_ n 

bK£D, say bK£CK for some CKQD, CK finite, K= 1, ..., n. Then C= | J CKis a finite 
K = 1 

subset of D, so CQB. NOW BQ (J Q g (J CK so a£BQ (J CK = | J CK = CQD. 
__ K = 1 K = 1 _ K = 1 K = 1 

Thus a£D, contrary to the original choice a({D, the desired contradiction. 
We can now describe explicitly the subalgebras of 2lM : 

T h e o r e m 1. 5GSu S&M iff B= U D. 
D finite, D£B 

P r o o f . Let B= 1J D. We first consider the case B=Q. Thus for each 
_Z> finite, DgjB 

DQB, D=0 and D = 0 so D = f | Spt I. If 9IM has any miliary operations 
0gSpt2 

(constants) a£A we claim a£Spz I for every system I. To see this let a be the as-
signment which associates with every variable the constant function f :A --{a}. 
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Note a satisfies arbitrary I at a, since each g£M must have a as a fixed point. 
Thus from 5 = 0 we conclude 2iM has no nullary operations, whence B = 0 £ . 
€Su 9IM. Now if 1M0, fix an operation P of 9lM of rank n, and ax, a2,..., a„£B. 
It suffices to show that P(alt ...,an)€{au ...,an) since ...,an}^B. Let D = 
= {<*!, ..., a„}. If P(alt ...,an)$D then there is some Z with Z>Q Spt Z and 
P(au ..., a„)$Spt Z. By Lemma 1 we may assume that there is an assignment a 
which satisfies Z on Spt Z. We use a to produce an assignment a' which satisfies 
Z at d—P(px, ...,an) and thus obtain P(au ...,a„)£Spt Z contradicting the hypo-
thesis that P(au ..., an)$D. For a variable x in £ let a'x be defined by 

a.'x(d\ = [ax{~d) 

\P(ux(ad,...,ax(aJ) if d = P(a1} ..., aB). 

We claim a' satisfies Z at d=P(au ..., a„). To see this consider an equation fx=y 
in Z: 

fr'x{d) = P(fctx(aj), ...Jax(aJ) = P{g(aJ,..., g(an)) = g j > ( f l l > . . . , a j = g(d) . 

Thus d£ Spt Z and we must conclude P{au ..., a„)£{a1,..., a„), so B= |J D=> 
D finite, D S B _ 

=*2?€Su 9lM. To prove the converse, we suppose B£Su 9IM. By Lemma 5 B<^B= 
= (J D so it remains only to show B^B. We proceed again by contradiction. 

D finite,DQB 

Let a£B and suppose aSince a£B there is some finite CQB with a£C. From 
the first part of the theorem we know C£Su 9lM. In fact C is the subalgebra of 
9IM generated by C, for if Su 9IM and CQD then by the first part of our Theorem 1, 
D = (J G so CQD. Thus C is the smallest subalgebra of 2IM which contains C. 

G finite,GQD 

Now a£C so a=P(cx, ...,c„) for some operation P in 9IM and some sequence 
c 1 ; . . . , c„ from C. But 5 6 S u 9ÍM so B is closed under P, and C^B. Thus 
a=P(c x c„)£B. It follows that B^B and thus B£Su 5IM=>.B= |J D. • 

D finite, DQB 

§ 3. Characterization Theorems 

For LQ2A let x(L)={f£AB\B£L, / = i d \ B} be the set o f characteristic func-

tions of L. In general a function f£AB will be called a characteristic function if 
f=id[B. Recall (§1) that when M is a set of partial functions, M denotes the set 
of all partial endomorphisms of the algebra of all finitary operations which admit 
each f(LM as a partial endomorphism. In what follows LQ2A and 
M=SUx(L). 

T h e o r e m 2. <S=End 91 and Z , = S u 91 for some algebra 91 iff fd contains no total 

functions other than S and i t contains no characteristic functions other than x(L)-
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P r o o f , Assume End 91 and L=Su 91 for some algebra 91. L e t / € ^ , /<f S. 
Since 5 '=End 91 some operation of 91 destroys / ; thisisame operation must admit 
each map in %(L) since Z = S u 91 so the operation is among those of 9IM. Thus the 
only total functions in M are the members of S. Now let g£AB with g = i d [ B, 
B$L, be a characteristic function. Then i?(£Su9I so there is some operation P in 
91 and a finite sequence blt ..., b„£B with P(blt ..., b„)$B. This same operation P is 
again among the operations of 9IM . But P does not admit g as a partial endo-
morphism since gP(bi, ..., b„) is undefined. Thus the only characteristic functions 
in i t are members of %(L). This proves one direction of the Theorem. To complete 
the proof let M= S U y_{L) and assume that M contains no total functions other than 
S and no characteristic functions other than x(L). Let 9 I=9I M . Since M is the set 
of all partial endomorphisms of 9IM we have 5=End9T . Moreover if 2?GSu9IM 

then id \ B is a partial endomorphism of 9IM so id \ B£ fit, thus id t B£-/_(L) so 
BeL. Thus £ = S u 9 I . • 

We now combine Theorem 2 with Proposition 1 and Theorem 1 to obtain an 
equational condition for S and L to be jointly algebraic. The characterization theorem 
which follows says roughly that S must contain all functions which are unique solu-
tions to systems of equations over M=SU"/(L) and that the support of every such 
system must belong to L. (For A finite the theorem says exactly that ; the more 
general statement involves only additional "compactness" conditions which are 
"local" analogs of the above properties.) 

(1) 

and 

T h e o r e m 3. S = E n d 91 and L=Su 91 for some algebra 91 iff 

g€S. 
V finite DQA3 system I over M with 
g i D the unique solution to I on D 

(2) B = (J i f l s p t l ^ £ € £ . 
D f i n i t e D g B ( D E S p t Z . i o v e r M ) 

P r o o f . From Theorem 2 we know S = E n d 91 and L = S u 21 for some algebra 
91 iff 

(i) g € A A and gÇJ&=>gÇS, and (ii) id\B£M => B^L. 

By Proposition 1 of § 1, (i) is equivalent to (1). Again by Proposition 1 of § 1, (ii) is 
equivalent to : 

(ii') 
5 € S u 9 I M and V finite D Q B 3 system I 
over M with (id \ B)\ D the unique solution to I on D B£L. 

Furthermore the system I : {A' i=id} has id f D as a unique solution on each D , 
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thus (liO is equivalent to : [ f i g S u 3IM=>fl£Z,], and by Theorem 1 this is equivalent t o : 

(2) B = U i D )=>B£L. 
D finitcDSB v " = S p t r , I o v e r M / 

Thus 5 = E n d 21 and L=Su 21 iff (1) and (2) hold. • 
F o r A finite Theorem 3 can be restated simply and complete ly as: 

C o r o l l a r y 1. If A is finite and i d £ S Q A a and LQ2A then S = E n d 21 and 

L = S u 21 for some algebra 2t iff 

(1) g£ S whenever g is the unique solution to some system of equations with 

coefficients from SUx(L), and 

(2) B£L whenever B is the support of any system of equations with coefficients 

from S\Jx(L). 

Bibliography 

[1] M. ARMBRUST and J. SCHMIDT, Zum Cayleyschen Darstellungsatz, Math. Anrtalen, 154 (1964), 
70—72. 

[2] G. BIRKHOFF and O. FRINK, Representations of lattices by sets, Trans. Amer. Math. Soc., 64 
(1948), 299—316. 

[3] G. GRATZER, Universal Algebra. Van Nostrand (Princeton, 1968). 
[4] N. SAUER and M. G. STONE, The algebraic closure of a semigroup of functions (To appear). 
[5] M. G. STONE, Subalgebra and automorphism structure in Universal Algebras, a concrete 

characterization, Acta Sci. Math., 33 (1972), 45—48. 

DEPT. MATHEMATICS A N D STATISTICS 
UNIVERSITY OF CALGARY 
2920 24 AVE. N.W. 
CALGARY, CANADA T2N 1N4 


