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Endomorphism and subalgebra structure;
a concrete characterization

N. SAUER and M. G. STONE

- § 1. Introduction

In [5] the following abstract structure problem is solved: For what semigroups
*S and what lattices L does there exist an algebra U with S=End U, the endomor-
phisms of U, and L == Su U the lattice of subalgebras of A? Here we provide a solu-
tion to the corresponding concrete representation problem, where isomorphism
is replaced by equality. Thus let SE 44 be a given transformation monoid and
LS 24 a set lattice. It is well known that L=Su ¥ for some algebra U over the set
A iff L is complete and compactly generated [2]; such lattices are called algebraic.
In [4] necessary and sufficient conditions for S=FEnd U for some algebra A over
the set A are given; such transformation semigroups are called algebraic. A similar
characterization is given in [4] for semigroups of partial functions. We make use
of the latter result by representing subalgebras with partial identity functions to
derive a simultaneous characterization for S and L. Our characterization, like
that for the endomorphisms alone involves the solutions to systems of linear
equations. ‘

If M is a set of partial functions on 4 to 4 with id € M the identity function
on A, a system of linear equations X over M is a set of functional equations each
of the general form: fx=y, or fx=g with f, g€ M, together with a specified solution
variable X *. An assignment o for X is a map from the variables of X to partial func-
tions on A to A with a common domain. The assignment a satisfies X at d€ A.
provided f(ax(d))=ay(d) whenever fx=y€ Z and f(ax(d))=g(d) whenever fx=g¢ X.
The assignment o satisfies ¥ on DS A iff « satisfies X at d for each deD. If X% is
the specified solution variable we say f is a solution to X on D provided there is
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an assignment o which satisfies £ on D and a(X*)=f. A solution fto £ on D is unique
provided ft D=ht D whenever £ is any solution to ¥ on D. The support of a system
Z is the set of all d€ A for which there exists a solution to Z at d. We write B=Spt ~
if B is the support of Z.

Denote by ,, the algebra of all finitary operatlons which admit each f€M a
a homomorphism. M is the set of all partial endomorphisms of ,, and M is the
set of all (total) functions which are endomorphisms of U,. -As usual a partial
function g is a homomorphism with respect to an operation P of rank v provided
gP(x) is defined and equals P(gx) whenever gx is defined for x€4". A total function
is one whose domain is all of 4. We will use:

Proposition 1. g€ A® belongs to M iff BcSuN,, and for each finite DS B
there is a system X over M with g a unique solution to X on D. '

©roof. Take u=g, in Theorem 2 of [4]. a

§2. The subalgebras of ,,

We first establish some easy facts about the support of systems X over M.
Lemma 1. If C=Spf Z then there is an assignment « which satisfies Z on C.

Proof. For each d€C there is an assignment o, which satisfies ¥ at d. Define
o for a variable x of Z by:

oux(d) if decC
d otherwise.

ax(d) = {

It is straightforward to verify that « satisfies ¥ on C. O

Lemma 2. If C=Spt X then there is a system I' and an assignment § which
satisfies T on C and C=SptT and B(X")=id } C is a unique solution to I on C.

Proof. Let I' have one additional new variable X7 not among those of Z and
let the equations of I consist of those of X together with the new equation XT=id.
By Lemma 1 there is an assignment o which satisfies ¥ on C. Let B extend o by
assigning id } C to X”. Clearly B satisfies I’ on C and C=Spt I. If g is any solution
to I on C then for d€C, g(d)=d so gt C=B(X")=id} C thus id } C is a unique
" solution to I' on C. a

Lemma 3. Let each CEF be the support of some system I'c. Then ‘ﬂ C is
Ces
also the support of some system I.
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Proof. Assume without loss of generality that each pair of systems I'¢, I'j
have no variables in common for C=D and let X7 be a new variable distinct from
all of those of the I'c. By Lemma 2 we may further assume that id} C is a unique
solution to I', on C for each C€#. Form rz[cLng: FC]U{X F=id}. We claim

(N C=SptI. If deSptTI', say « satisfies I' at d, then clearly «c, the restriction
g;'j;c to the variables of I'¢, satisfies I'c at d for each C¢# sod ¢ () C.Ifon the
other hand d¢ (N C and o, satisfies I'c at d then let aX=0 X} N (g?ora variable
X in I'c and lgt€ zX T=id} N C. Clearly a satisfies I on () chcf deSpt I'. Thus

Ceg Ces
SptI’'= N C.
CeF

Lemma 4. For DS A the operation defined by D= () SptZ is a closure

DESPLE .
operator.

Proof. Clevarly DS D, and [CS D= CZ D]. Toshow D=D it is only necessary
to see then that D D. By Lemma 3 there is some system I' with D= () SptZ=

- . DESptE
=SptI'. Clearly D= [\ SptXZ=SptI'=D.
DSSpt

Lemma 5. For DS A the operation defined by D= |J C is a closure
Cfinite, CED
operator.

Proof. Since déD=dc{d}SD we have DCD. Further [CSD=CCD]
since each finite subset of C is also a finite subset of D. To show D=D it remains
only to see DS D. Suppose DED; then there is some acD with a¢D. We will

show this leads to a contradiction. Since aElz) there is some BS D, B finite, with
acB. Thus a¢ () SptZ, and say B={b,,...,b,}). From BSD we have each

BESpt X

byeD, say bge Cy for some Cy S D, Cy finite, K=1, ..., n. Then C= O Cis a finite
K=1

subset of D, so CSD. Now BS 0 Cx S O CxsoacBC LD Cx = L’J Cx=Cch.
K=1 K=1 K=1 K=1

Thus acD, contrary to the original choice a¢.D, the desired contradiction.
We can now describe explicitly the subalgebras of U,,:

Theorem 1. BeSu Uy, if B= |J D.

Dfinite, D& B
Proof. Let B= U D. We first consider the case B=§. Thus for each
: Dfinite, DS B '
DC B, D=0 and D=0 so D= () SptX. If A, has any nullary operations
aSSpt X

(constants) a€ A we claim a€Spz XY for every system X. To see. this let « be the as-
signment which associates with-every variable the constant function f: 4—{a}.
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Note a satisfies arbitrary X at a, since each g€ M must have a as a fixed point.
Thus from D=9 we conclude 2,  has no nullary operations, whence B=0¢ .
€Su U,,. Now if B0, fix an operation P of U, of rank n, and a,, a,, ..., a,€B.

It suffices to show that P(a, ..., a,)€{ay, ..., a,} since {a,...,a,}EB. Let D=
={ay,...,a,}. If P(ay,...,a,)¢$D then there is some X with DCSpt X and
P(a,,...,a)¢Spt Z. By Lemma 1 we may assume that there is an assignment «
which satisfies Z on Spt X. We use o to produce an assignment «” which satisfies
X at d=P(ay, ..., a,) and thus obtain P(a, ..., a,)€Spt Z contradicting the hypo-
thesis that P(ay, ..., a,)¢ D. For a variable x in X let a’x be defined by

ox(d) if d##P(ay,...,a,)

@x(d) = {P(ax(al), wsax(a)) if d=P(a, ..., a,).

We claim o satisfies X at d=P(ay, ..., a,). To see this consider an equation fx=y
in 2:

f'x(d) = P(fox(ay, ..., fux(a,)) = P(g(ay), ..., g(a,) = gP(ay, ..., a,) = g(d).
Thus d¢€Spt ¥ and we must conclude P(ay, ...,a,)€{a, ...,a,},50 B= | D=

Dfinite, DEB -
=B€Su Uy. To prove the converse, we suppose BeSu A,,. By Lemma 5 BC B=

= U Dsoitremains only to show B2 B. We proceed again by contradiction.
Dfinite, DEB

Let ac B and suppose a¢ B. Since ac B there is some finite CS B with a€C. From
the first part of the theorem we know CcSu U,,. In fact C is the subalgebra of
A, generated by C, for if Dé Su Ay, and CE Dthen by the first part of our Theorem 1,

D= ﬁmU - G so CS D. Thus C is the smallest subalgebra of ,, which contains C.
G finite, GED

Now a€C so a=P(c,, ..., ¢,) for some operation P in %,, and some sequence
€ ..y ¢, from C. But Be€Su A, so B is closed under P, and CZ B. Thus
a=P(c, ..., c,)€B. It follows that B2 5B and thus B€SuU,=B= |J D.O

Dfinite, DCB

§ 3. Characterization Theorems

For LS 24 let x(L)={fc A®|BcL, f=id } B} be the set of characteristic func-
tions of L. In general a function f€A® will be called a characteristic function if
f=idt B. Recall (§ 1) that when M is a set of partial functions, M denotes the set
of all partial endomorphisms of the algebra of all finitary operations which admit
‘each f€M as a partial endomorphism. In what follows idc SS 44, LS24 and
M=SUyx(L).

Theorem2. S=End U and L=Su U for some algebra W iff M contains no total
functions other than S and M contains no characteristic functions other than y(L).
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Proof, Assume S=End % and L=Su ¥ for some algebra 2. Let fc 44, f¢ S.
Since S=End U some operation of ¥.destroys f; this:same operation must admit
each map in y(L) since L=Su A so the operation is among those of A,,. Thus the
only total functions in M are the members of S. Now let g€ A® with g=id B,
B¢ L, bea characteristic function. Then B¢Su ¥ so there is some operation P in
A and a finite sequence b, ..., b,€ B with P(b,, ..., b,) ¢ B. This same operation P is
again among the operations of ,,. But P does not admit g as a partial endo-
morphism since gP(b,, ..., b,) is undefined. Thus the only characteristic functions
in M are members of x(L). This proves one direction of the Theorem. To complete
the proof let M= SU (L) and assume that M contains no total functions other than
S and no characteristic functions other than x(L). Let A=%A,,. Since M is the set
of all partial endomorphisms of ¥U,, we have S=End A. Moreover if B¢Su A,
thenid } B is a. partial endomorphism of ,, so id } BEM, thus id } Bey(L) so
BeL. Thus L=Su . |

We now combine Theorem 2 with Proposition 1 and Theorem 1 to obtain an
equational condition for S and L to be jointly algebraic. The characterization theorem
which follows says roughly that S must contain all functions which are unique solu-
tions to systems of equations over M=SU y(L) and that the support of every such
system must belong to L. (For A finite the theorem says exactly that; the more
general statement involves only -additional “compactness” conditions which are
“local”” analogs of the above properties.)

Theorem 3. S=End A and L=Su U for some algebra W iff

a Y finite DE 4 3 system X over M with o geS )
gt D the unique solution to £ on D geo
and

@ B = spt Z] = B€L.

D finite DSB (DgSpt X, YoverM

Proof. From Theorem 2 we know S=End W and L=Su A for some algebra
A iff '

() g€d4* and geM= gcS, and (i) idt B€M = B¢L.
By Proposition 1 of § l,- (i) is equivalent to (1). Again by Proposition 1 of § 1, (ii) is
equivalent to:

(i) [BESu Ay and V finite DS B3I system X

over M with (id } B)} D the unique solution to Z on D] = BeL.

Furthermore the system X: {X*=id} has id } D as a unique solution on each D,
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thus (ii") is equivalent to: [B€Su Uy = BeL], and by Theorem 1 this is equivalent to:
2 B = ) = BecL.

D finite DEB (DCSpll IoverM
Thus S=End % and L=Su U iff (1) and (2) bold. a
For A finite Theorem 3 can be restated simply and completely as:

Corollary 1. If A is finite and ide SS A* and LS24 then S=End A and
L=Su U for some algebra W iff

(1) g€S whenever g is the unique solution to some system of equations with
coefficients from SU y(L), and

(2) B¢ L whenever B is the support of any system of equaiions with coefficients
Sfrom SU x(L).
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