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On an extension of semigroups 

M. B. SZENDREI 

1. Since the appearance of N. R. REILLY'S paper [13] in 1966 a number of 
structure theorems has been proved for regular semigroups. In the paper [13] it is 
proved that a semigroup is a ^-simple regular co-semigroup if and only if it is iso-
morphic to a Bruck semigroup over a group ([12]). This result was generalized by 
B. P. KOCIN ([4]) a n d W . D . MUNN ([9]) by showing t h a t a s e m i g r o u p is a s imple 
regular co-semigroup if and only if it is a Bruck semigroup over a finite chain of 
groups. The structure of a 0-^-simple orthodox semigroup the subsemigroup of 
idempotents of which is isomorphic to the direct product of a descending co-chain 
and a rectangular 0-band whose non-zero idempotents form a subsemigroup, has 
been descr ibed by G . LALLEMENT a n d M . PETRICH in [6]. 

In order to generalize these constructions we define the concept of the (0-) exten-
sion of a semigroup 2 by a semigroup S. The sets of nonzero elements of S and 
Z will be denoted by S0 and Zm, their zero elements by o and co, respectively. Let 
S'0

2> be the subset of S0XS0 consisting of all those pairs (.?, t) of elements for which 
st£S0. Let C be a cancellative monoid. Its identity element will be denoted by 1. 
L e t / , g: S^2)C be a pair of functions with the following properties: 

whenever rst£S0. Moreover, let a homomorphism x of C into the endomorphism 
monoid of I be given. 

D e f i n i t i o n . Define a multiplication on the set SoX-E^UO by 

(1) 

(2) 
(3) 

r,St9 

{st,a{fSitx)z{gSi,x)) if st£S0 a n d c ( f S i , x ) T { g s , t x ) e Z , 

0 otherwise, 
(s, er)0 = 0(s, ff) = 0 - 0 = 0. 
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The groupoid obtained in this way is a semigroup, denoted by £f°(S, I, C,f, g, x) 
and called a 0-extension of I by S over C. 

If none of S and I has zero elements then £f°(S, I, C, f, g, x)\0 is a semigroup. 
This will be denoted by I, C, f g, x) and called the extension of I by S 
over C. 

For example, the Bruck semigroup 38(1, n) over the monoid I is the extension 
£f(B, I, №,f*, g*\ x) of 2 by the bicyclic semigroup B, where № is the additive 
monoid of nonnegative integers, B ^ N ° X № with the multiplication defined by 

(m, n) (p, q) = ( m - f p - m i n (n, p),n + q-mm(n, p)), 

f*,g*:BxB-~№ are defined as follows: 

f(m, n), (p, q) = J>-min (n, p), g*m,n)Ap,q) = n—min (n, p), 

and x is the homomorphism of № into the monoid of endomorphisms of I mapping 
k into nk. Note that the func t ions /* and g* have the properties (1)—(3). 

It is clear that it suffices to investigate the properties of the semigroup 
Sf°(S, I, C,f, g, x) because the properties of ¿f(S, I, C,f, g, x) can be deduced 
from those of £f\S, I, C,f, g, x). 

Define an equivalence relation on £f°(S, I, C,f, g, x) such that 0 # 0 and 
(r, Q)^(S, O) if and only if r=s. The relation ^ is a O-congruence in the sense that 
if (r, Q)<#(S, <r) and 0 ' , Q'Y€(S\ a') then 0 , QW, (S, a)(s', imply 
('•, e)(r', Q'ms, o)(s', a'). 

The pair of functions f g: S^^C is said to be trivial if S^f= S™g=1. In this 
case £f\S, I, C,f,g, x) is the 0-direct product of S and I. Note that the semi-
direct product of I by S introduced by K. KROHN and J. RHODES in [5] can be con-
sidered to be an extension of I by S over the free monoid FJ generated by 
the set S where f, g: SxS-*-F| are defined as follows: (SX5)» = 1 w h i l e / depends 
on its second variable only and is a homomorphism. 

The constructions used in [15] and [16] by R. J. WARNE to describe the structure 
of ^-simple and simple regular /-semigroups, are extensions of a group and of 
a finite chain of groups, respectively, by the extended bicyclic semigroup if and 
only if they have trivial distinguished elements. Construction / applied in [1] and 
[2] by J. E. AULT and M. PETRICH to give the structure of 0-simple co-regular semi-
groups, is a. O-extension of a finite chain of groups by the 0-^-simple co-regular 
semigroup with trivial ^"-equivalence if and only if the maximal idempotents 
belong to the same ^-class. 

The aim of this paper is to investigate the properties of (0-) extensions. In sec-
tion 2 we deal with functions / , g: S^—C satisfying (1)—(3). The main result of 
this section is Theorem 2.3 characterizing these functions when S has an identity 
element and C is a monoid embeddable in a group. In Theorem 2.4 a necessary 
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and sufficient condition is given for / and g enabling us to extend their definitions 
to Se. Finally, applying Theorem 2.3, we describe the structure of those 0-^-simple 
semigroups with identity which admit f, g of a special type. In section 3 we prove 
criteria for £f°(S, E, C,f,g, x) to be regular or inverse. We investigate Green's 
relations, ideals and homomorphisms of O-extensions. We introduce a concept 
of equivalent O-extensions and give conditions for O-extensions to be equivalent. 
These results are essentially independent of the results of section 2. Theorem 2.3 is 
needed only in Theorems 3.9 and 3.11. 

For brevity, if we consider functions f,g: C or a O-extension Sf°(S, I, C, 
/> g, we always assume conditions (1)—(3) to be satisfied. We shall write lower 
case Roman letters for the elements of S, in particular e for its identity element, and 
lower case Greek letters to denote the elements of I , in particular e to denote its 
identity element. 

S0 together with the multiplication in S restricted to S0 is a partial semigroup. 
By a right [left] ideal of S0 we mean a non-empty subset R [L] of S0 with the property 
that r£R [l£L] implies rs£R [,y/ÇL] for any elements of S0 whenever the product 
is defined. Analogously, a homomorphism of S0 into a semigroup T is a mapping 
(p\ S0-*T such that for all elements s, t in S0 we have (st)(p=scp • t<p provided st is 
defined. 

For convenience, we use the expressions "if s = o " and "if s ^ o " also in the 
case when S has no zero element. If this is the case then s = o is false, s^o is true 
for every 5 in S. 

The results and notations of [3] will be used without any comments. 

2. In this section we investigate the properties of functions / , g: 
satisfying conditions (1)—(3). 

L e m m a 2.1. If x, s are elements of S0 such that sx=s, then fSiX=1, and if 
xs=s, then gx>„= 1. 

P r o o f . Assume that sx=s. Applying conditions (1) and (2) we get 

f s , s f s 2 , X f s , s a n d & s , s f s 2 , X f s , x S s , s ' 

Since C is a cancellative monoid,/S2 X = 1 follows from the first equality and fSiX=1 
from the second one. The second half of the lemma follows by duality. 

L e m m a 2.2. Let s,s',t,t' be elements of S0 such that sS£s\ tSftt' and st^o. 
Then we have 

(0 fs,t®fs,f and gs,tS?gs.tt; 

(ii) if the group of units of C is trivial, then fSi, = ,, and gs,t—gs-,t'-
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P r o o f . Suppose t^t'. Then there exist u, v in S such that tu=t' and t'v=t. 
Clearly, st'^o. Condition (1) implies the following equalities: 

fs, , uv = /«r , u fstu, V • 

For stuv = st Lemma 2.1 shows that f s t , u v = 1. Hence f s t u has an inverse in C, 
which implies that f S i , £ % f s t , . If the group of units of C is trivial, then the second 
equality implies that f s t > u — 1 and the first one that f S i t ' ~ f s , t - Moreover, if s ^ s ' , 
then xs=s', ys'=s for some x and y in S. We have yxs=s, so it follows f rom 
Lemma 2.1 that ^ ) S = 1 . (3) implies 

Syx,s 8x,s8y,xs> 

which gives g , ; s = l . Analogously, one can show that gx>s,- = 1. By condition (2) 
we have 

&x,sfs'tt' fs,t'Sx,st'i 

that is, / s - _ = f S i t, =fSit. The proof for g is similar. 
In what follows we assume that C can be embedded in a group. It is well known 

that if this is the case then C can be embedded in the group of right quotients which 
will be denoted by C *. Let us identify C with its image under this embedding. 
If two functions Xi> X2• S0-*C a r e given, let X\ll%- >*>0—C* be the mapping defined 
by .v/i/Z2= 'sZi('%)-1- The next theorem characterizes the functions f, g: 
by functions of one variable provided S has an identity element. 

T h e o r e m 2.3. (i) Let S be an arbitrary semigroup and X\, /2: two func-

tions such that Rj={s£ is a right ideal in S0, LI—{s£S0\sx2£l} is a left 
ideal in S0 for every right ideal I of C, moreover, the mapping (p = Xi/Xz- S0 — C* 
is a homomorphism. Then the functions f,g: S^ C defined by 

(5) /,,1 = (sZi)_1(sOZi and gs, t = ( tya)"1^ OZa 

satisfy conditions (1)—(3). 
(ii) If S has an identity element e then for all f g: ,S^—C with properties (1)—(3) 

there exists a unique pair of functions Xi, "fa So -+C with ey^=ey^=\ such that (5) 
holds. They are 

(6) sxi =fe,s and SX2 = gs,e-

Furthermore, these functions satisfy the conditions required in (i). 

P r o o f . Since the facts that RSXlc a right ideal and L t x^ c is a left ideal of 
e n s u r e ^ C and gSjt£Cfor every (s, t)£Sj?\ (i) can be checked by simple calcu-
lation. 

In proving (ii) suppose S has an identity e and eyA=ey^=\. Then (5) implies (6). 
Because of (i), it is sufficient to show that (5) holds and the conditions required in (i) 
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are satisfied by the functions /1> X2 defined by (6). Clearly, (5) is an immediate con-
sequence of (1) and (3). On the other hand, (2) and s t ^ o imply 

(7) fs,t8s,t — 8s, e fe, t • 

Applying (5) and (6), this yields 

OO/iilOO^)-1 = s z i t e r ^ / i t e ) " 1 , 
that is, that X1/X2 is a homomorphism. Finally, if I is a right ideal of C and s£R,, 
then 00Xi— sXifs,t£l f ° r every t provided that st^o. Hence R, is a right ideal. 
Dually, L j is a left ideal. 

We have seen that the pair of functions / , g can be simply characterized if 
S has an identity element. Now it is natural to raise the problem of finding conditions 
under which the definition of / and g can be extended to Se. Before treating this 
question we introduce some notations. 

Let S be a semigroup. Denote the right and left annihilator ideals of S by 
Z r and ZM respectively. If S does not contain a zero element, then Z r = Z , = • . 
Further, h: S(

0
2)^C* will denote the mapping defined by hSil=fSilg~f provided 

f , g : S P - ~ C are defined and C £ C * . 

T h e o r e m 2.4. Suppose the semigroup S has the properties that Z r = Z , (which 

will be denoted by Z) and for any elements s, s', t, t' in S, the relations st, st', s't^o 

imply s't'^o. Let f, g: be given, where C is a monoid embeddable in a group. 

The definition of /, g can be extended to Se if and only if 

(a) for each element q in S \ Z 

j q = n p s : ; n c ) i , M n c 
s,t 

sttsq^o 

is not empty, and for arbitrary p, q, s, td S \ Z 

(b) h S : t h - ] h P i q h - l = l 

provided st,pt,pq,sq^o. 

R e m a r k . The definition of fig can be extended to Se if we require (a) and 
(b) to hold only for the elements p and q of some subsets P and Q of S\Z, respec-
tively, where P and Q have the following property: For each s, t, t' not contained 
in Z we have sq^o for some q in Q and pt,pt' ^o for some p in P. 

P r o o f . If / and g are defined on Se then, applying the foregoing results, we have 

hs,thp,\hpiqhS)q — (gs,e fe,t)(fe,t gp,e) igp,efe,q) (fe,q8s,e) ^ 
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for every p, q, s, t in S\Z with st,pt,pq, sq^o. Furthermore, if q£ S\Z, then there 
•exists an element s such that sq^o. If st^o, then we have 

fe,q = Ss.e^s.q = 8s,e^s,tb p.t^p.g ~ fe.t^1 P^p,q ~ fe.t^s.t 

Hence / e , and the proof of necessity is complete. 
As for sufficiency we prove the stronger statement formulated in the Remark. 

Suppose that (a) and (b) hold for some subsets P and Q of S \ Z . We define a rela-
tion ~ on S by writing s~s' if and only if s=s' or ts and ts' ^o for some t in S. 
Clearly, this relation is reflexive and symmetric. If s~s' and s'~s", then ts, ts', 
t's',t's"^o for some t and / ' i n S. But then t's^o, that is, s~s". Hence ~ is an 
equivalence relation. We restrict this relation to Q and choose an element q° f rom 
each equivalence class of Q and an element cQ„ f rom Jq0. If and q^q°,then, 
by the definition of P, we have pq°, pq^o for some p in P. Now we define cq by the 
equality cq=cqoh~^,hp q. Since cQ0£Jg0 and C is cancellative, there exists a unique 
•element c in C such that cq0=ch~1

qhp q0 and ch^—c^h'^C. Clearly, c=cq and 
hence cq£C. Let $ be an element of S\Z such that sq°o. Since pq,pq°^o, 
we have sq\±o and (b) implies h~^,hp>qh~q = Thus we have 

Cqhs,q = Cqof1p,1q0^lp,q^ls,q = Cq0^s,q<>-

Hence c 9 £J , r Relation (b) ensures that cq is welldefined. Let s,t be elements of 
S not contained in Z. Then, on the one hand, there exists an element q in Q such that 
sq^o and, on the other hand, there is an element p in P such that pt^o and 
hence an element q' such that pq'^o. Let us define fe,n gs.e to be the uniquely 
determined elements of C such that 

fe,tKhhP,q, = Cq' a n d 8s, e K « = C4 • 

•(b) implies that / c > ( and gse are well defined. If z £ Z , then fe z and gz e can be 
arbitrarily defined. By Theorem 2.3 it suffices to check (5) for the mappings defined 
by (6) and to check (7). Let s, t be elements of S with st^o. Then pst^o for some 
p in P and pq'^o for some q' in Q. Clearly, ps^o and we have 

fe,sfe,st = hp,shp,q'Cq' Cq'hp,q'hpst = gp,sfp,sfp,stgp,st = 

8p,sfp5,t8p,st f s , f 

In the last two equalities conditions (1) and (2) are applied. Analogously, we have 
g^egst,e=gs,t if st9^0. Finally, if st^o, then sq^o for a q in Q and hence pt, pq^o 
for some p in P. Applying (b), we have 

e~1f = h h =h os,eJe,t "stq^q vqnp,qnp,t "s,<> 

a s was to be proved. 



O n an extension o f semigroups 373 

It is easy to see that for any elements p, q, s,toiS and x, y, u, v of Se 

h h~vh h'1 — h h h h-1 ns.t'lp,t"p,q'ls,q — "us,tv''xp,tv'lxp,qy"us,qy 

provided ustv, xptv, xpqy, usqy^o. One has only to observe that 

hs,t fs,tSs,t fs,tofst,vfst,v&s,tvft,v hs,tvft,v 
and dually 

^s, t Su,s^us,f 

A subset M of S\Zr will be called left O-reversible if for any pair s, s' of elements 
of S the existence of elements m in M and t in S with st, sm, s't, s'm^o implies the 
existence of an element x in /SPIES'such that sx and s'x^o. It follows by straight-
forward calculation that in this case 

K,,h?SK',mKm = KxK-}xK',xK,x = 1-

Hence Theorem 2.4 implies the following 

C o r o l l a r y 2.5. Suppose Z = Z , = Z , holds in the semigroup S. Assume, further-
more, that S has the property that for any elements s, s', t, t' the relations st, st', s't 
imply s't' j^o and S contains a left O-reversible subset M such that for every element 
s of S not belonging to Z the set M has an element m with sm^o. Then the definition 
of fig: can be extended to Se if and only if for each element m of M 

jm= n (Ch~l nc)fiwnc 
s,t 

st,sm^o 
is not empty. 

The assumption of Corollary 2.5 is satisfied for example if S is an inverse semi-
group in which the semilattice of idempotents is an orthogonal sum of semilattices. 
M can be chosen to be the set of idempotents. If 5 has no zero element then in 
Theorem 2.4 P and Q can be chosen to be singletons. In this case the assumption 
of Corollary 2.5 means that S contains a left reversible element m. 

Evidently, condition (a) of Theorem 2.4 is satisfied if C is a group. 
The following example shows that there exist functions f,g: which 

cannot be extended to Se, while considered as functions / , g: Sj^^-C* they can be 
extended. Let S be the extended bicyclic semigroup defined by R. J. WARNE in [14]. 
We denote the set of integers by I. S is the set / X / equipped with the multiplication 

( U ) (k> 0 = (j + fe-min (;', k), l+j-mm (j, /<)). 

Clearly,/ , g: SXS^N0 defined by / ( i i J h ( f c i t ) = k - m i n (j, k), g0J),ik>l)=j-min(J,k) 
satisfy (1)—(3), while 7(to ,o) is empty for every (k0, /„). On the other hand, S is 
an inverse semigroup without zero, hence the definition of f g can be extended to 
Se if negative integers are allowed to be used. 
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Now we determine all the pairs of functions fig:FxxFx—C which can be 
defined on the free semigroup freely generated by its subset X. 

T h e o r e m 2.6. Let C be a monoid embeddable in a group and let Xi, /y. Fx—C 
be two functions such that Xx1=X%2=l, R]={s£Fx\sx1£l} is a right ideal, Lj = 
= {s£Fx\sXz£l} is a left Med °f Fx for every right ideal I of C and the mapping 
<P=XilX2 satisfies the following condition: for all ... x„£Fx\X, where x^X 
( i = l , . . . , n), we have 

(8) s<p = (x 1 ; x2)(p(x2x3)(p...(xn_lxn)(p. 

Then fig: FxXFx^C defined by 

(9) fs,< = (Vi)_1(sOZi> gs,, = ifi^ist)^ 

have the properties (1)—(3). Conversely, for any fig: FxXFx-*C satisfying (1)—(3) 
there exists a unique pair of functions Xi> X2' ^ V • C with the above properties. These 

functions are defined on Fx\X by 

(10) sxi =/Xl> « . . . I , ) sX.2 = Sx i . . . x „ _ i , x „ 

where xt, ..., xn£X and ... x„. 

Proof . Since Rs%lC is a right ideal and Lt~c is a left ideal of Fx, we have 
/s>( and gStt£C for all s, t in Fx. The first statement of the theorem can be 
verified by calculation. 

Now let/ , g be given with properties (1)—(3). Relations (9) ensure that the only 
functions Xi, X2 with XyA = X/2 = 1 are the ones defined by (10). All we need to prove 
is that these functions have the required properties. (9) is implied immediately by 
(1) and (3). If I is a right ideal of C, s^R^ t£Fx, then ( . y O / ? i t h a t is, 
Rj is a right ideal of Fx. Dually, Lj is a left ideal of Fx. Let x l f ...,x„£X, where 
«S3 . Applying (9) and (10), relation (2) implies that 

, X 2 . . . X „ 8 X 1 . . . X „ ~ 1 , X „ f x i , X i S x i , X 2 f x 2 , X 3 — X „ S x 2 . . . X „ - l , X „ ^ 

that is, we have 
(x1...x„)q) = (x^cpixi.-.x^cp. 

By induction on « one can show that (8) holds, which completes the proof. 
Now it is easy to construct a pair of functions on a free semigroup such that its 

definition cannot be extended to the free monoid generated by the same set. Let 
X be the two-element set {x, y}, C the cancellative monoid of non-negative integers 
with the usual addition. Define }A in the following way: let x2/1=y2/a=0, (xy)x 1 = 
= (^)Xi= : land(x1 . . .x„)x1 = (xax2)x1 + . . .+(xn_1xn)xiif « S 3 and x1; . . . ,x„€{x, y). 
Let X2 be identically 0. Obviously, these functions have the required properties 
enabling us to define fig: FxXFx-*C by (5). However, hy<y-hxy+hxx—hyx =—2. 
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In what follows we prove a structure theorem for 0-^-simple semigroups 
with identity on which a nontrivial pair of functions / , g: is defined where 
TV° denotes the additive semigroup of nonnegative integers. The operation in № 
will be denoted by + . Clearly, № * is the infinite cyclic group. 

L e m m a 2.7. Let the semigroup S have an identity e and two elements a, b such 
that ba=e. If fe,a=n (n£№), then for all nonnegative integers k and m 

fe,akbm = 8akbm,e = 

P r o o f . Since ba=e, we have bkak=e for all k in № . Hence akSCe and bk2%e. 
This implies by Lemmas 2.2 (ii) and 2.1 that 

/C,&*=/e,e 1 = 0 a n d Sa«,e = 8e.e = 

Using the homomorphism cp defined in Theorem 2.3 we have 

fe,ak =fe,a«-gax,e = <¡«9 = H ^ P ) = Hfe,a~8a,e) = kfe,a = kn. 

On the other hand, we have 

0 = e(p=(ba)(p = b<p + aq> =-gb,e+fe,a 

whence gb,e=n. In the same way as above one can prove that ghk e=kn. Since 
for all k,m in № we have ak^akbm^bm, Lemma 2.2 (ii) ensures that f e t a u b m = 

=fe,a" = k n a n d 8akbm,e = 8bm, e
 = m n -

An immediate consequence of this lemma is 

C o r o l l a r y 2.8. The functions f, g: BXB-»№ definable on the bicyclic semi-
group B are exactly the constant multiples of f* and g* (see § 1.). 

Let S be a semigroup with identity e and zero element 0 on which a nontrivial 
pair of functions / , g: S(

a
2) -+№ is given. Let 

Fi = {sdS0\fe,s = i), Gi = {s£S0\gs,e = i} 

for all i in № . {F.ji'gTV0} and {<7,1/€ A^0} are partitions of S0. The equivalence rela-
tions induced by them will be denoted by !F and respectively. Let J f = J * 7 f l 
Clearly, its equivalence classes are the sets Kitj = FiC\Gj. 

OO CO 

We remark that Rk+No= U Fi and Lk+N0= (J Gt where Rk+N0 and Lk+N0 
i=k i = k 

denote the right and left ideals of S0 respectively used in Theorem 2.3. Since q> defined 
oo 

in the same theorem is a homomorphism, (J Kt {U 0 is a subsemigroup of S for 
l = k 

every k in № . Lemma 2.2 (ii) implies that MQ^ and ££<^<8. Hence if S is 
0-^-simple, then the following holds: hr=r\rh—r\ for all r in F^Gj], whenever 
hk=k[kh—k] for all k in Kuj. These facts will be used without reference. To 
prove Theorem 2.10 we need 
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L e m m a 2.9. Assume that nontrivial functions f, g: are given on a 

0-3)-simple semigroup S with identity e such that the subsemigroup ( J Kt f U 0 has 
¡=i 

an identity element ev Let e1£Kn n. If ex=ab with .ba=e, then <Fbm is the identity 

element of Q tfMUO. i = mn 
(m + l ) n - l 

P r o o f . We prove by induction on m that r£ U implies ambmr=r. 
i = mn 

(m + l ) n - l 

Clearly, this holds for m—0 and/- dK„i0 implies abr=r. Suppose that r£ |J Kt0 

implies dnbmr=r for all m smaller than m' ( m ' s l ) and r£Km.„i0 implies cF'bm'r=r. 
o o 

Now let r£K, n, where m'n<j^(m' + l)n. Since ab is an identity element of (J Kt ¡, 
¡=i 

we have abr=r. Hence br££r, that is, br£G0. On the other hand, we have 

(br)<p = b(p + rq> = —n+j, 

whence br€K_n+j0. By assumption, (d"'~1bm'~1)br=br, that is, 

r-abr = aam'~1bm'~1br = am'bm'r. 

Moreover, if j=(m' + \)n, i.e. —n+j=m'n, then br={am'bm')br and 

r = abr = am+1bm'+1r. 
oo 

This completes the proof of the fact that cTbm is a left identity element in (J Kit f U 0. 
i — mn 

Dually, it follows that it is also a right identity. 

T h e o r e m 2.10. Let a nontrivial pair of functions f g : S^^-N0 be given on 
o o 

the 0-2i-simple semigroup S with identity e such that the subsemigroup ( J Kt t U 0 
¡=i 

has an identity element ex. Assume that e^K^ ^. Then 

(i) the ranges of f and g are the set of multiples of n. 
(ii) If, moreover, is a subsemigroup of S and ei^0,o = ^n.n» 

then S= №,f*, g*, x), where B denotes the bicyclic semigroup and the 
endomorphism 7i = lx preserves e. 

P r o o f . Since e1£F„, the number n is the least positive integer with F ^ n . 
The semigroup S is 0-^-simple, hence e££a0lex for some a and since S is regular, 
there exists an inverse b of a such that ba=e, ab=ex. Suppose that in contrast to (i), 
Fp^ • for some p, where n\p. Let d be the greatest common divisor of n and p. 
Then up—vn=d for some positive integers u, v. Let c be an element of Fp such that 
eS£c. By Lemma 2.7 we have cu£Kup Q, and since up>vn, Lemma 2.9 implies 
avb"cu=cu. Hence b"cuSCcu <£e. However, we have 

(bvc")(p = v(b(p) + u(cq>) = —vn + up = d, 
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whence it follows that b"c"£Kd%0 with d < n , a contradiction. On the other hand, 
cf"£Fmn by Lemma 2.7, which proves (i) for / . Dually, one can show (i) for g. 

Turning to (ii), we first show that all the elements of 5"0 can be uniquely re-
presented in the form akhbm, where h£K0i0. Let s£Kk„imn. Since S is 0-^-simple,. 
Green's lemma ensures that s=akh'bm for some ak, bm and h' such that e£?ak0ls, 
efflbm£fs and h'Jfe. Applying Lemma 2.9 we obtain 

Since ak£Kk„ 0, the equality akbkak=ak holds. Hence bkak£Cak, that is, bkak£G0. 
Moreover, (bkak)cp = —kn+kn=0, whence bkak£K0 0. The fact that bmcf£K0^ 
can be proved similarly. By assumption is a subsemigroup of S. This implies 
that h=(bkak)h'(bm<f)6KQ 0and h^O because s^O. We haveobtained that s=akhbm. 
To prove uniqueness suppose that we have 

we have k—m=k'—m', that i s , k — k ' = m — m ' = r . Without loss of generality we can 
assume that r is nonnegative. Multiplying the equality above by bk' on the left and 
by ¿f' on the right it yields efhbr=h'. Hence h'cfbr=ti. Should r > 0 hold, then 
dbr would belong to L1+N0 implying h'£L1+N0. Since h'£K0t0, we have r = 0 and 
h=h', as was to be proved. 

Let h be any element of Since (bh)(p—bq>+h(p = —n we have either 
bh^K0 „ or bh£Ln+1+N0. The latter would imply abh=e1h£Ln+1+m, contrary to 
the assumption e-Ji£K„in. Hence bh6K0t„ and by the foregoing bh = fib for the 
unique element fi=bha of K0i0. Similarly, we have ha£Kni0 and hence ha=(ab)ha— 
=afi. If h=0, then h=0 is the unique element such that bh=fib and ha=afi. The 
mapping % sending h into ft is an endomorphism of K° 0 as we have 

[(gh)n]b = b(gh) = (bg)h = (gn)bh = (gn)(h7i)b, 

whence (gh)n=(gn)(/m). Obviously, en=e. Using these results we obtain the product 
of any two elements of S0 in the form 

(am gb") (ap hbq) = am gb—r a"~r fib" = am ga"~r bn~r hbq = 

= am+p-r(gnp-rhTin-r)bn+q-r, 

where /-=min (n,p). In the second step we made use of the equality b"~rap~'= 
=ap~rbn~r implied by the fact that at least one of the exponents equals 0. This 
implies that the mapping $ defined by 

s = akbksambm = ak(bkak)h'(bmam)bm. 

akhbm= ak'h'bm' 
for some h, h' in K0i 0 . Since 

(akhbm)cp = (k-m)n, (ak'h'bm')cp = (k'-m')n, 

(m,h,n) if s 7s 0 a n d s = amhb", h£K0,0 

0 if s = 0 
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is an isomorphism of S onto Sf°(B, Kg0, C,f*,g*, x), where x is the homomorphism 
of № into the endomorphism monoid of K° 0 mapping k into nk. 

C o r o l l a r y 2.11. In a semigroup S satisfying the conditions of Theorem 2 .10 
the relations and Jf" are 0-congruences. 

Now we construct a ^-simple semigroup S with identity and a pair of func-
tions fg: SxS—№ with range № which fail to have the property that the sub-

eo 
semigroup (J KT; has an identity element. We shall use the notions and results of 

¡=i 
W . D . MUNN'S p a p e r [8]. 

The descending co-chain as a meet semilattice is isomorphic to the semilattice 
№a with underlying set № and operation defined by 

m A n = max (m, ri). 

Let E be the direct product N°AXN°A. The semilattice Eis uniform and has a greatest 
element (0, 0). The set TE of all isomorphisms of a principal ideal of E onto another 
one considered as partial mappings of E together with the usual multiplication is 
a ^-simple inverse semigroup with the semilattice of idempotenfs isomorphic to E. 
The principal ideal of E generated by (m, ri) will be denoted by [m,«]. For each 
pair of elements (m, ri), (p, q) of E there exist two isomorphisms <*(„,,,), (p,9> and 
%,„),(„.„) of [m, n] onto [p, q] defined by 

(m +1, n +_ / )a * m i „)( p > — (p + i, q -t - j) , (m + i,n +j) ot(minj(p> 

where i,j=0. Let us define the functions Xi and y_2- TE-*№ as follows: 

a'm, B), (p, «> Xi = m + n, a"(m> n)> (Pi q)x2 = P + <7, 

where tj may be + as well as - . Since a,^ n)i (p_ q) TE g aj^ n<) ^ TE if and only 
if (m,ri)^(m',ri) in E, the set Rk+^={P£TE\fiy_1£k+N'i} is a right ideal 
of TE. Dually, Lk+m= {P£TE\Px2£k+№} is a left ideal of TE. Furthermore, denoting 
X1/X2 by cp, we have 

(« (m, n), (p, q) <*(m'. n'), (p\q')) f ~ 

- - ( m - L | i + ( p A m ' - p ) + (qAn'-q))-(p' + q' + (pAm'-m') + {qhn'-n')) = 

= (m + n)-(p + q) + (m' + ri)-(p' + q') = 

= a(m, n), (p, q)<P + a(m'. n'), (p',«') <P-

Hence (p is a homomorphism. Theorem 2.3 implies that f,g: TEXTE-*-№ defined 
by (5) have the desired properties (1)—(3). There are two idempotents in Kltl which 
are dual atoms in the semilattice of idempotents: a(t,i),(o,i)> au.o),(i o)- Con-
sequently, the subsemigroup 1J KT T has no identity element. 

/=1 
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3. In the present section we deal with the properties of O-extensions y°(S, E, 
C,f, g, %) of a semigroup E by S. We state a proposition on the O-congruence induced 
by the O-extension. Necessary and sufficient conditions are given for £f°(S, E, C, 
/, g, x) to have an identity, to be a regular or an inverse semigroup. We investigate 
its Green's relations and ideals, too. The homomorphisms of a semigroup 
Sf°(S, I, C,f, g, x) into Sf°(S, E, C, /, g, x) are investigated in some special cases. 
We introduce a concept of equivalence between the O-extensions of a semigroup 
E by another one denoted by S and deal with the equivalent O-extensions. This 
section is mostly independent of section 2, the main result of which, Theorem 2.3, 
is used in Theorems 3.9 and 3.11 only. 

Let the semigroups S and E be given. Consider a O-extension ¿7°(S, E, C,f g, x) 
of E by 5 over the cancellative monoid C. For brevity, denote ¿f°(S, E, C,fg, x) 
by S. 

The O-congruence induced by the O-extension S will be denoted by  <6. Its 
congruence classes are C r = {(r, Ea} and C 0 = {0}. Denote C r U 0 by Cr°. 

P r o p o s i t i o n 3.1. (i) All congruence classes C° with 0 adjointed corresponding 

to nonzero idempotents of S are subsemigroups of S isomorphic to Em. 

(ii) If E has an idempotent element i preserved by all the endomorphisms in 

{ f s , , , teS, styio}x then 

{(s,i)\siS0}\JO 

is a subsemigroup of S isomorphic to S°. 

P r o o f . Since, by Lemma 2.\, fhi=gui = \ we have 

, w N i iUQo) if Qa^o) 

{0 otherwise 
and 

(i, e)0 = 0(i, = 0 - 0 = 0. 

Hence CP is isomorphic to Ea. As for (ii) if i has the required property then 

f (st, i) if st o 
( S , 0 ( M ) = | o o t h e r w i s e 

and 
(s, i)0 = 0(s, ,) = 0 - 0 = 0. 

Hence {(5, j ) k ^ o } U 0 is a subsemigroup ismorphic to 5°. 

P r o p o s i t i o n 3.2. (i) An element (i, 1) of S is idempotent if and only if i and 1 

are idempotents in S and E, respectively. 

12 
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(ii) The element (e, e) of S is the identity of S if and only if e, t are the identities 

of S and I , respectively, and the endomorphisms of I contained in {/s>,, S, 

st^o}x preserve e. 

P r o o f . Using the definition of S, the element (/, i) is idempotent if and only if 

i'2 = i and i(fux)i(g,t,x) = i. 

By Lemma 2.1, iz=i implies f ¡=gl ¡=1. Thus the above condition is equivalent 
to the following one: i2=i and i2—i. Similarly, (e, s) is an identity if and only 
if for any s, a 

se = es = s and o(fStex)e(gSiex) = e(fetSx)a(getSx) = a. 

Lemma 2.1 ensures fs,e=ge,s—1> s o that the latter equality says that 

rofc.e*) = e(fe,sX)a = a 

for any s, o. Taking s=e this yields that s is the identity of I. But then e(fe,sx) = 
=£(gS ( ,)=e for all s?±o. Let J, t be any elements of S such that st^o. Applying (1) 
and the fact that x is a homomorphism we have 

and similarly, by (3), we have E=e(gSi,x). Conversely, if e and s are identities of 
S and I and x has the desired property, then (e, e) is clearly an identity. 

T h e o r e m 3.3. (i) The semigroup S is regular if and only if bot'i S and I are 
regular. 

(ii) S is an inverse semigroup if and only if both S and I are inverse semigroups. 

P r o o f . We show that two elements (r, q) and (s, a) of S are inverses of each 
other if and only if r, s and Q, O(FS rgR>SRX) are inverses of each other in S and S, 
respectively, where fs>rgr>„x is an automorphism of I. This proves the theorem. 
By definition (r, Q) and (s, A) are inverses of each other if and only if 

(11) rsr = r, srs = s, 

(12) e(Jr,srX)<r(f,,rgr,srX)Q(grs,rK) = ^(fs,rs^)8(fr,sgs,rs^)^(gsr.sx) = 

Using (2), (1) and (3), (11) implies that 

L.rgr, sr frtsfrs,rSs,rSr,sr fr,srSrs.t • 
It follows from Lemma 2.1 that fiSr=grs_r = / s , r s = g s r , s = 1 • Hence fr,srx= 
=grs,,>e=fs,rs>(=gsr,sx, the identity automorphisms of I and / r , s g s , „K, / s , r g r , s r x 
are automorphisms of I , inverses of ea.h other. Thus conditions (11), (12) are equi-
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valent to (11) and 

( 1 3 ) QG{fs,rgr,s,X)Q = e, v(fs,rgr,srX)Qv(fs,rgr,srX) = o(fs,rgr,sr><), 

as was to be proved. 
As for Green's relations and ideals of the semigroup S = £ f ° ( S , I, C,f, g, x) 

in general one cannot say more than the definitions of them. Therefore we deal with 
the case when S is regular. 

L e m m a 3.4. Let S be a regular semigroup. The principal left [right] ideal of 
S generated by (s, o) is contained in the one generated by (r, o) if and only if (r, Q)= 
= {s, a) or the following conditions are satisfied: 

(a) s<ESr[s€rS], 

(b) o£Xgn[a£gnI] where n — gxrx(xr = s)[7t = f,iX(rx — s)] 

is an endomorphism of I depending only on r and s. 

P r o o f . First we note that xr=s and x'r=s imply gxir=gx>tr. Indeed, if i is 
an idempotent in the if-class containing r, then ri=r and si=s. Thus by (3) we have 

gr,igx,r = gs,i and gr,igx-,r = gs,i. 

Since C is cancellative, gx,r=gx-,r-
By definition, (s, <r) £ S (r, Q) means that there exist elements x and £ in S and I, 

respectively, such that 

(14) xr = s, Z(fx,r>c)Q(gXirx) = a. 

Hence the necessity of (a), (b) is proved. Conversely, assume that (a), (b) hold, 
that is, there exist x and £,' in S and I, respectively, such that 

xr = s, £'QTI = a. 

Since S is regular, x can be chosen to satisfy xSis. If j is an idempotent belonging 
to the ^-class of s, then j=sw for some w and the equality 

f j , xfX, r f s , W f j , s f s , W f j , j 1 

follows from (1) and Lemma 2.1. Hence fx r is in the group of units of C and fx rx 
is an automorphism. Thus £'=i(fx,rx) for some ¿J, that is, by (14), (.?, cr)£S(r, q). 
The statement for right ideals can be proved dually. 

The next theorem deals with Green's relations of S. 

T h e o r e m 3.5. Let S be a regular semigroup. Two distinct elements (r, Q) and 
(s, a) of S are £P[!%]-equivalent if and only if 

(a) r£Cs[r^s] in S and 
(b) A (I Iga, QOL£ Ia[O£ QTXL, QU£OZ] where OL—gXfx (xr=s) [a =friXx(rx—s)] 

is an automorphism of I depending only on r and s. 

12• 
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Note that if the group of units of C is trivial, then gx,,= l[fr,x=\], whence 
a is the identity automorphism. 

P r o o f . By Lemma 3.4. all we need to show is that if xr=s,ys=r then gx>rx 
and g},tSy. are automorphisms of I being inverses of each other. To prove this one 
has only to observe that we have 

Ex, rSy,s 8>x,rSy,xr Syx,r 1 

by (3) and Lemma 2.1. 
An immediate consequence of this theorem is 

C o r o l l a r y 3.6. Let S be regular and I have the property that a£olC\ Xo for 

all elements a in I . 

(i) The distinct elements (/•, Q) and (s, <r) of S are equivalent if and only if 

rSfis and there exists an element t in S such that r3?t§fcs and Qa3>oP, where a=gx^ric, 

P=fsyy.(xr=sy = t) are automorphisms of I depending only on r, s and t. 

(ii) If both S and I are -simple, then S is also 0-&-simple. 

(iii) If the group of units of C is trivial, then S is 0-^-simple if and only if S and 

I are (0-)S>-simple. 

To make the formulation of the theorem on the ideals of S easier we introduce 
the following notations. If C is a subset of S containing the 0 element let 

C = {s€S|3ff€2;(s,o)€C} 

provided S has no zero element and adjoin o to C if o 6 S. 
For all c in C different from o define Tc as 

rc={aiZ\(c,a)iC} 

if 1 has no zero element and adjoin (o to Tc if co 61 . 
In particular, the subsets corresponding to the subsets of S denoted by L, R 

a n d D are d e n o t e d by L, At(l^L,l^o), R, Pr(r^R,r^o) a n d D,Ad(d£D, d^o), 

respectively. 

T h e o r e m 3.7. Let S be a regular semigroup. A subset L [ R ] of the semigroup 

S containing the 0 element is a left [right] ideal if and only if 

(a) L[R] is a left [right] ideal of S and 

(b) for all elements I of L[r of R], T of SI [r' of /-5] different from o and X of 

A,[Q of P,] I/.N^A^ONX^P,] holds where n=gx>,x(xl = l')[n =/r>x*(rx = r')] is 

an endomorphism of I depending only on I and l'[r and r']. 

The proof of this theorem is easy thanks to Lemma 3.4, therefore it is left to 
the reader. 
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C o r o l l a r y 3.8. Suppose the semigroup S is regular. The semigroup S is 0-simple 
if and only if S is (0-)simple and 

( 1 6 ) Z = U i « 2 
n € £ » 

for all s, t and a different from o and co, respectively, where 

E? = {(gx,Jxs,y)x\x!%t£>y and xsy = t). 

P r o o f . S is 0-simple if and only if for every element (s, o) in it the ideal 
D = S ( s , ct)S is equal to S itself. By the last theorem this means that S is (O-)simple 
and A , = I for every t ^ o . So it is sufficient to prove that the right side of the equality 
(16) is equal to A,. Theorem 3.7 (b) ensures that IJ ZonXQA,. Conversely, since 

the nonzero elements of D have the form (x', £)(s, <?)(y', rj), A, is contained in the 
ideal U Xo(gx.,sfx.s>y)xX. Let and i2 be idempotents such that ixSit¿¡fi2 and let 

x',y' 
x'sy' = t 

x=itx', y=y'i2. Obviously, x3kti£y and xsy=t. Applying identities (1)—(3) and 
Lemma 2.1, we see that 

Sx' ,sfx's,y' 8x',sfx's,y'&ii,x'sy' Sx' ,sSi\,x'sfxs,y' Sx,sfxs,y' 

Ex,sfxs,y' fxsy'tiz £x,sfxs,y 

Hence (gX',sfx-s,y')x£E? and AtQ (J Ion I, which completes the proof. 

In what follows we deal with homomorphisms of a semigroup S =6f°(S, S, C, 
f,g,x) into another one S =£f°(S, I, C,J, g, x) in two special cases. In the first 
case we assume that Cx and Cx are contained in the group of automorphisms of 
I and I , respectively. Then without loss of generality we can assume C and C 
to be groups. In the alternative case we suppose that S and S are inverse semigroups. 

T h e o r e m 3.9. Suppose that C and C are groups and the definition of f g and 
/, g can be extended to Se and Se, respectively. Denote the suitable homomorphisms 
used in Theorem 2.3 by cp: Sg-»C and (j>:St-+C. Suppose four mappings m1:S°^S°, 

S°, m2: S°-*Ea and /i2: are given with the following properties: 

(a) om1 = cop1, om2 = o)fi2> o m f 1 = oim^1, dfix
 1 = cofi^1. 

(b) For any r, s, Q, a in S and I, respectively, 

(17) (rs)m1 = rmx • smx, 

(18) 
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if (rs)mlo and (go)^^o, furthermore 

(19) ( r s ) m 2 = rm2- sm^rm^x)-1, 

(20) (go) fi2 = qh 2 • on2(QHi V*)'1 

whenever (rs)m1 ¿¿o or rmx • smt ^ o and (go)pi ^ o or g^ • a ^ o. 
(c) For any r, g in S and Z, respectively, 

(21) rm1-gn1= g^rcpx)-1 rmx, 

rm2' gfi2(rm1^x)~1 - g{r(px)~1p2-rm2(g{rq>x)-1n1(px)-1 

if all the four elements are different from d and w, respectively. In addition, the left 
hand sides differ from zero if and only if the right hand sides do so. 

Define a mapping 4>: S->-S in the following way. Let 

(r, g)<p = (e'Hx • rmlt (g'p2 • rm2(g'^cpx)-1) (A^,.™^)), 

where e' = g(fe,Tx)~1, when both components on the right are nonzero and (r,g)<P = 0 
otherwise. Further, let 0<P = (omu om2) if om1 ^ o and 0 ^ = 0 otherwise. Then 

(i) the mapping $ is a homomorphism. 
(ii) 4> is an isomorphism if and only if 0<P = 0 and for all nonzero elements 

r-, g of S and Z, respectively, there exist uniquely determined elements r and g in 
S and Z such that 

f = gfix • rmx and G = QH2 • rm2(gfi^x)-1. 

(iii) If the semigroups S, S, Z and 1 have identity elements, then all the homo-
morphisms of S into S are of this form. 

P r o o f . I t is no t difficult to check s ta tement (i) by computa t ion , (ii) is implied 
immediately by the definition of <¡> a n d the fac t t ha t the e lements of Cx a n d Cx a r e 
au tomorph i sms . Turn ing to (iii), consider the semigroups S, S, Z, Z wi th identi ty. 
Since fe<tX is an au tomorph i sm, fo r any nonzero r, Q we have 

(r, e) = (e, g i f e ^ x ) - 1 ) (r , e). 

Hence all the nonzero elements of S can be uniquely wri t ten in the f o r m 
(e, g)(r, e), where {(e, Q)\Q£ £ r a } U 0 and {(r, e)\r£ S o } U 0 are subsemigroups i somor-
phic to Zm and S°, respectively. Let S — S be a h o m o m o r p h i s m . Def ine the m a p -
pings mx: S°—S°, m- m2: /¡2: Xco—Z® as follows. Let om^co/x^d, 
om2 — con2 = o5 if 0Í> = 0 a n d om1 = a>p1 = r, om2 = (on2 = g if 0<P = (e, g)(r, s). Le t 
rm1 = o, rm2=w if (r,e)$ = 0 and gfi 1=d, gn2 = co if (e, g)<P=0, respectively. I n 
the opposi te case, let 

(r , s)<P = (e, rm2) {rm1, e) = ( r m 1 ; r m 2 ( / ? > r m i x)), 

(e, Q)$ = (e, qh2) (qhI, e) = {qhI, QH2(Is.*))• 
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Clearly, om1=a>[il, om2=a>n2, om1
1=a>m2

 1 and on1
l=a>ni

1. Relations (1), (3) 
and the fact that ^ is a homomorphism yield that for any r, s with fs^o we have 

Je,fJr,s Je,rs* 
(22) 

fe,sSf,s=Ie,sSs,l8f3,e = S<K™Z>)-1 /,.„ = 

Since « is a homomorphism, we have 

(r,e)<2>-(s, e)<2> = ( r m ^ s m i , rrn2(/girmiji)(/rmiiSmij<) •sm2(/gjSmiK)(grmi,jmi>i)) = 

= (rwii • swh, (rm2 • sm2(rm1 (px)'1) j-e, rmi ,smi *) 

for every pair r, j , whenever both components on the right side are nonzero and 
(r, e)$-(s, e ) $ = 0 in the opposite case. The same equality holds if (r, e) or (s, e) 
is replaced by 0, that is, if r=o or s=o. But $ is a homomorphism, (r, s)<P • (s, e)<P = 
=(rs, e)$, which proves that (17) and (19) hold under the conditions mentioned 
in the theorem. Investigating <P restricted to the subsemigroup {{e, 6)|e€ ¿"m}U0 
one can verify (18) and (20). Observe that for any r and Q 

(r, s) (e, &) = (e, g(ripx)-1) (r, e). 

Hence (r, e)$(e, g)<P=(e, gircpx)'1)^ • (r, that is, denoting by 
s and Q(R(PX)~XN2 by 5, we have 

(rmi • Qnlt (rm2 • Qfi^rm^x)-1) (Js,rmveillx)) = (s • rmu (a - rm^sipx)-1^.^)) 

if all the components are nonzero. Moreover, if a component is zero on one side, 
then so is one on the other side. This is equivalent to condition (21), which comple-
tes the proof. 

In the next theorem we use the notation only if fTS is contained in the 
group of units of C. If r is an element of an inverse semigroup the unique idempotent 
belonging to the 52-class containing r will be denoted by [>]. 

T h e o r e m 3.10. Let S and S be inverse semigroups, E and E the semilattices 

of their idempotents, respectively. Assume that mappings m1: S0—S°, m2: 5"°—T™, 
p[: p'2: Za—Ea are given such that they have the following properties. 

(a) For each i in E0 we have om2=mn2, dm^1=mm2
1 and o(p'1)~1= 

(b) For any r,s, Q,a in S and 1, respectively, and i in E0 we have 

(rs) mx = rmt • smx, 

{QO)H\ = qiA-CIA 
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if (rs)m1 ^ o and (Q0)11^0. Further we have 

(rs)m2 = rrn2(Jlrmilt[rmv!!m{ix) • smj^^^^/f^.^j,™,;™,]))«), 

(go)/.4 = eA4(/[wa i[№ ' l .„„a>0• ((#<,„',M]f(e l[ a^M[„„<])*) 

if (rs)m19£o or rm1-sm1?£d arid (go)ii[?io or - op^d. 

(c) For any r, g in S and I and i in E0 

r w x • gn[ = e((gr,if[~ii),n)x)Hiri}' (ri)m„ 

rml(firm,],[rm,.ep'i] *) ' S t i ( ( S r m i , [ w i r f ™ ! wil.rm,[„„<])*) = 

if all the four elements are different from zero. Moreover, the left hand sides of the 

equalities differ from zero if and only if the right hand sides do so, too. In the second 

equality Q'=Q((g,_f^ri)x)- Define a mapping <P: S-+S in the following way. Let 

(r, e ) 0 = (an[ r ] • rwij, ( < 7 / 4 ' ] ( / [ ^ ^ i j , ^ m . ^ x ) • 

vvAere o=g(f^rx), whenever both components are different from zero, (r, g)$=0 

otherwise. Further, put 0$=(om1, om2) if om^o and 0cp=0 otherwise. Then 

(i) the mapping <P is a homomorphism, 

(ii) if the semigroups I and I have identity elements preserved by all endo-

morphisms f,tSx,grsx and Jf,sx, gf-5x, respectively, then all homomorphisms of 

S into S are of this form. 

P r o o f , (i) c a n b e verif ied by c o m p u t a t i o n . I f S is a n inverse s e m i g r o u p a n d 
I h a s a n iden t i ty preserved by the e n d o m o r p h i s m s fr>sx a n d gr-sx, t h e n a l l t h e 
n o n z e r o e l emen t s (r, g) of S c an b e uniquely wr i t t en in t h e f o r m fl>], g')(r, e) w i t h 
g'=g(f^rx) because / w > 1 . is in t h e g r o u p of un i t s of C by L e m m a s 2 .2 a n d 2.1 
a n d hence /¿ j , 1 ,« is a n a u t o m o r p h i s m . Since t h e p r o o f of (ii) is s imi lar t o t h a t 
of T h e o r e m 3.9 (iii), i t is l e f t t o t h e reader . W e n o t e on ly t h a t by (1)—(3) w e h a v e 

/ [r] , rfr.s — /[r], rs = / [r] , [re] /[re], re • 

Since [ r i ] = r i i - 1 r - 1 , we h a v e [ r ^ ] r = r a n d 

/[rs],r[s]/[rs]r[s],s/rs,s- 1 r~1 /[rs], rs frs, s~ 1 r~ 1 /[re], [re] !• 

H e n c e /[PS],r[5] is in t h e g r o u p of un i t s of C a n d w e h a v e 

/is], sSr,s Sr, is] fr [s], s — Sr, [S] /[rs], r [s] firs], rs • 
L e t S a n d I b e t w o semig roups a n d cons ide r t w o O-extensions S=£7°(S, I , C, 

f g, x) a n d I , CJ, g, x) of I by 
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D e f i n i t i o n . The O-extension S is said to be equivalent to S ' if for every s in 
S0 there exists an automorphism \j/s of E such that the mapping f : S—S' defined 
by OÍP=Ö, (s,a)W — (s,<7\j/s) is an isomorphism. 

This definition clearly determines an equivalence relation on the eláss of 0-ex-
tensions of I by S. 

In the next theorems we investigate the equivalent O-extensions. 
Before formulating the first one we note that if the images of the functions 

fx and gx are contained in the group of automorphisms of E, then Theorem 2.3 
applies to them provided S has an identity. The homomorphism used in this theorem 
will be denoted by <px. 

T h e o r e m 3.11. Let S be a semigroup with identity and E a reductive semigroup. 

Assume that the images of fx and gx are in the group of automorphisms of E. The 

O-extension S is equivalent to S ' if and only if the images fx and gx are included in 

the group of automorphisms of E and q>x = (px11 for some inner automorphism 21 of 

the group of automorphisms of E. 

P r o o f . Suppose S and S ' are equivalent. This means that for any r, s in S 
with rs^ o and q, a in E we have 

( r , 0i/rr) (s, aips) = (rs, (e(/r,s*Mgr,s>:))>/'rS) 

provided they are nonzero or else both of them are zero. In both cases we have 

etrtfr.sfynl'Agr.sK) = 

For r=e this yields 
Q^e (fe, s K) = Q if e,s ^s^s-

E is reductive and ij/s is an automorphism. Hence for any s^o we have 

Dually, one can see that 
gs^eÁSseX) = 0 ) < A S 

for s^-o. From these equalities it follows that fe>sx and gs>ex are automorphisms 
for all sjío, which implies by (1) and (3) that so are/,. jSji and gr<sx, where rs^o. 
Moreover, we have 

sip* = \l/;1(s(px)\j/e, 

which completes the proof of the only if part. Conversely, suppose that the conditions 
of the theorem are satisfied. Denote the automorphism of E inducing 91 by 
Define i//s by 

Making use of the equalities (22) and the fact that scp*^-^(p^ holds for every 
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s^o, one can obtain by computation 

tr(fr,sX) = (fr,sx)*l>rs, tfrsigr.sX) = {gr.s^rs, 
whenever rs^o. 

T h e o r e m 3.12. Consider a regular semigroup S and a reductive semigroup 

The 0 -extensions S and S ' are equivalent if and only if there exist automorphisms 

ij/i of E indexed by the idempotents of S0 such that for every pair i, i' of idempotents 

i'i—i' and i'i=i' imply 

(23) - = and (grjxWr = "A; 

respectively, and i£>i' implies that 

(24) U c M i i h , * ) = ( g r M M S r . i ' * ) 

for any r such that ifflrSPi'. 

P r o o f . In the proof of the last theorem we saw that the O-extensions are equiv-
alent if and only if the equality 

Q$r(Jr,sX)<nl'Mr,sX) = etfr.sXWrsGigr.sXWrs 

holds for any r, s such that rs^o and for arbitrary Q, a in E. If ir=r, this implies 
by Lemma 2.1 that 

' = Qifi.r^r • o^r-

Since E is reductive we have 
(fi.r^r = fitfi.r*)-

Dually, we can obtain that 
= <Pr(gr,i><) 

if ri'=r. In particular, this yields (23) if r is an idempotent. If №r£Pi', then, as 
it has been verified above, fUr and gr<v belong to the group of units of C. Hence 
fiirx and gr>i>x are automorphisms and it follows f rom the foregoing tha t 

(25) iK = { S u M i i J u r * ) = ( g ; h ) M g r , i ' * ) -
Conversely, assume that the conditions of the theorem hold for some automorphisms 

Let r be an element of S0 and i, i' idempotents such that MrSCi'. Define ij/r by 
(25). Obviously, ij/r is well defined. If j is an idempotent such that ji=i, then applying 
(1) and (23) we have 

Cf,.r*Wr = {(fj.rfiTr^WIi.r*) = (fj.^iifi.r*) = 

= "A; ((/;, i It, ,) *) = 4>j ( h . r 
Hence if r, s are elements of S'such that rs^o, then denoting an idempotent in the 
¿2-class of r by i, we have 

= (fi7r1x)M(Ii,rJrjK) = (JiTr^mlursX) = 

= ( ( / , > . / ; , « ) > # « = (fr.s^rs-
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Similarly, one can show that ^/s(gr<3x)=(gr,sx)\j/rs. This completes the proof. 
Note that if S is (O-)^-simple and C has a trivial group of units, then (24) implies 

that all \j/1 are equal. Conversely, if all t/rf coincide, then, denoting (i£E0) by ¡¡/, (23) 
implies 

J i , rx = *l>~1(fi,rx)>l' and grJx = ^/-1igrJie)\l/, 

whenever ir=r and rj—r, respectively. Hence (24) holds trivially. Thus we have 
proved the following 

C o r o l l a r y 3.13. If S is a (0-)3i-simple regular semigroup and Z is reductive, 

then the O-extensions S and S ' are equivalent if and only if there exists an automorphism 

^ of Z such that for all idempotents i, i' the equalities 

J. ¡.p. = xj/^ifij.x)^ and gv,ix = ^-\gi.ijx)\li 

are implied by ii'=i' and i'i=i', respectively. 
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