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Change of the sum of digits by multiplication

1. KATAI

1. Introduction

Let N be a natural number and set &/y={0, 1, ..., 2Y —1}. Every n€ oy can be
written in the form

N—1 ,
(1.1) n= 2 g-2,
i=0

where ¢;=0 or 1 (i=0, 1, ..., N—1). This representation is unique. Let a(n) denote
the_ sum of the digits of n, i.e.

N-1
12 a(n) = > &
i=0
Let My(x) denote the number of those n¢ &, for which
oz(n): N/2 -
VNj2

Using the central limit theorem of probability theory in the simplest form, we have
that
27V My(x) = &(x) (N - )

for every real x, where

1 X
1.3 P (x) = — [ e~Phdt.
1.3 =" £
Furthermore, we have

2
N
(1.9 2-N (cx(n)——l-v—) =—.
nédy 2 4

It seems to be interesting to consider the distribution of the difference a(fr)—u(n),
ne oy for fixed h. This question is trivial for h=2, since a(2n) —a(n)=0.
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We shall be dealing with the case #=3. Let
(1.5) A(n) = a(3n)—a(n).
Our main result is the following

Theorem 1. Let Ky(x) denote the number of n€ sty for which

V34 _

(1.6) T

Then, for every real number x, we have
(1.7 27V Ky(x) ~ P(x) (N - ).

We can deduce a more pre015e result, with a remainder term, but now we do not
try to give the best one. . : : :

This and similar results may have some importance in thé prbbabilistic treat-
ment of rounding errors in numerical analysis.

2. The splitting of the binary representation of integers _ '

We define the sets 9, as follows. Let M, = {0}. The sets M, contain those integers
m,, for which 2¥~?=m, <2* and the binary representation of which does not contain
two consecutive zeros. Let m, denote a general element of M, and A4, the number
of its elements. It is obvious that 4,=1, 4,=1, 4,=2. We shall show that

2.1) A=Ay 1+ 4, (k=2).
Indeed, m, can be written as
nk = 2k-1+mk_1 or m,‘ = 2k—l+m,‘_2,

whence (2.1) immediately follows.

Let
2.2) F(2) = J A,z**?
k=0
By an easy calculation we get
ZB
2.3) F(z) = T

Let M= fimk. Assume that N=2. Then for every n€ Ay there exists a unique
k=0

element m, €I for which

(2.4) n= m,1+2'1+2u, ueAN—l;—Z'
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For N=0 or 1 we use the representation n=m,,. Repeating this, we get
.5 n=m+20+t2m + 202 {m o +2vew-rt2{m, 1))
So, for every n we order the sequence of elements of M. It is obvious that
(2.6) L+..+lLm+2(v(m)—1)=N—-1 or N.
Furthermore, from (2.4) we have

3n =3my,+24+2.(3u), 3m;, < 2h+2,
and so

.7 A(m) = A(m)+A(n).
Hence we have

v(n)
(2.8) A(n) = j;l A(my).

3. The distribution of the number of 9-components

Now we consider the number of those integers n€sfy for which v(n)=H.
For the sake of brevity we use the notation

G.1) =142,

So we write (2.6) in the form '

(3.2) ti+..+tg=N+2-6, 6=0 or 1.

Let 2V84(5) denote the number of n€ o for which v(n)=H and (3.2) holds. Since

12 220,49 1 if n=0
_i{; ¢ |10 if n=0, integer,
we get :
1/2 z H ]
3.3) Bu(d) = 22-¢ f F(E) czmN+2-0) 40 7 = g2mif,

—-1/2

. 1
First we integrate in the neighbourhood of #=0. By taking w=z—1, |o|= 5 we have

z) _ 22 0?2041 . .
lnF(Z) =l sy = In 77— = 60 +80°+0(),
w2

Inz=In(l+w) = 0o———+ 0(x®).

2
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Let
(3.4 Ap=6H—(N+2-5), By= 8H+NL§'3.
Then

ef z "

OE: F(i) z=¥+2-9) = exp (Agw+ By 0*+ O(Nw?).
Observing that w=27ni0—4n20%+0(6%), w?*= —4n202+0(6°), we get
3.5 g(2) = exp (2ni - Ay 0 —4n*(Ag + By) ) exp (O (NG?)).
Let
A

(36) A= [e@db, £H= [ g2,

—4 A<loi=3

where we choose A so that NA%2— o, NA3-0.
From (3.5) we get

(3.7) I = £+ 0(K),
where
A
(3.8) Sy = [ exp(2nidy0—4n*(4y+ By)6)do,
—A
A
(3.9) K= [ exp(—4n*(dg+ B, 6% NO*do.
-4

In what follows we assume that |dy|<<N??. Then H=%+O(N””), and so

By = % N+O(N?23),
Hence for % we easily get that

(3.10) & L

<< 'Flzl- << -]-v— .
To estimate 3, we use the following

Lemma 1. Let
A
J(4,B,A) = [ exp(idp—Bo»dg,
=4

A, B, A real numbers, B=0, A=>0. Then
J(4,B, 1) = exp(—iz)- E+0(B‘3/2]A|exp(—A“‘B))+
T 4B B

A2
+0 (B—I/Z €Xp (— E — A2 B])
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Proof.
e (12
J(4, B, A) = B~z exp (i—‘t—t"‘) dt =
: AVE ﬁ

L | o[£
= P( 4B] frexp([;;ﬁ+itj)d[ A]= P( 'B) fe”dz,

VB _i5 "20B iVB i

[—2—;_3 —AVB E%—E +4 VE] Transforming the integ-
ral to the imaginary axis, by an easy estimation we get the desired result.

Applying this Lemma by choosing 4=2n Ay, B=4n(4Ay+By), A=N"13"¢
(e=0), we get :

where L denotes the segment

. AR
e"1’('4(,4 B ))
jlzjs 0 .9{ = H H N.
@G.11) +0(X) VA5 +0(1/N)

- Now we estimate %,. By taking Y=cos2n 6, Y=1—1, we get
[4—2z—22|2 = 1+447r—16¢2.

1
So in A§|0|§—2— we get

|4—2z— 22| = (1+44n242(1 —¢)) 72 = exp (— ¢, HAY),
¢;>0 constant. Consequently
3.12) S, < exp (—c; NA?).
Finally, taking into account (3.3), (3.6), (3.7), (3.10), (3.11), (3.12), we get

1 __ (H—N/6)
o) 2nN oxp ( 20°N ]+0(1/N),

1 2L By (0) + Ba(l) =

1 ]/ 11
where,a-——g- 3

So we have proved:

Theorem 2. Let 2By denote the number of those nc.sfy for which v(n)=H.
Then

ba = rn

where o=—é~ l/ -1—31—, uniformly in H.

- (H— NJ6)*

2N ) FOUN)
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4. The fanction H (%)

Let .
@1 S = 3 @, HE + 2780,

m ey
It is obvious that Sy()=1, Sy(r)=¢", Sx(r)=1+¢". Let M, =DLUM,
where M) contains the even numbers of M, , and M} the odd numbers. Let

SP@W = 3 e,
my € My,
First of all we observe that
5(1) = S0
for k=2. Then

1,36 3 3 S0
4.2) H@ =g+ +5 25—

Now we compute S{(z). The general form of the binary representation of

n, is the following one:
A

n=| |[o|1|...lo|1|,

2h places

where A is one of the following types:

D4a=|1]
4a=|1]|1]
Ha=|1] [1]1]

Case 1) holds for odd k only. If k=2¢+1 and m;=101 ... 01, then, obviousiy
4.3) 4(101...01) = ¢+1.
In the other cases we say that m, €M; is of &, , type if in 4 there exist exactly r

zeros. In case 2) k—~2h=2 (k even, r=0). In case 3) k—2h=3. It is easy to see that
the number of elements of type %, , is

(k—2h—-r—2]
. .
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We observe that for m, €4, ,, A(m)=h—r. We consider 3m, as the sum -of 2m,
and m,. See the following figure.

my 1] 0..]..]0[..11[0101...01
2m, 1 1]..10(1010..10
3m, 1T, 11
A(my) o =1 = +h

Now we take

Z27isPE = S rSP@+ I 275 SPa(0) = Lt B,
= - t=
2=

eith-r — - weir(h—r) m.2—2(h+r+v).[
55005

r=0h=0

r;l-2v—:2) _

= >3

t=1 h,l‘
N (hg;z—z"e”h).Z{g(')z_zre_“r.v:z(’) (r r v). 2_2v} = 20'_4—"{21}.
‘We observe that
.— oo co s l 2v (e_,‘t)" B °°1 {(1 e—it]s ( 1 e—it)s} ~
Zl—sgozé,(Zv](E] ) =27 lzr ) et =

2 2
T 2—e7it T 3"

[2t—2h—r—2)

r

-+

Furthermore,
1
2= T

So we have

5 _ 1 { 2,2 }
47 4 et 2=t " 3¢ )"

In the sum X'y the extraordinary case (4.3) occurs. We get

2p=2g+2c
where
oo i eZir X
.= 2—2;—1. eitetl) — — ¥ = eit(h-n)
2= 5 Wy T2

We hawe, similarly as for X,,

1 2 2 }
Zc= 4—e"‘{2—e""—3—e"'t ’
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Summing up, we have

oo 1 ezit 4 }
~-is@ = —z<—Y —_—
1=ZzI2 i) 4—¢" { 2 + 2—e" i)
So we have from (4.2) that

1.3 .3 o 3 1
HO =Z+16 "6 1= t3 Goem@-ey

Differentiating two times we can deduce that H(0)=1, H’'(0)=0, H”(0) = -2.

5. Proof of Theorem 1

From (2.1) we have that
(5.1 Ay = 6,01+, 05,

where

_1-15 -

2 > AT 710 0 T 1o

.2) 6, = .8, _5+15 5-V5

Lemma 2. Let C(N, ly) be the number of those nc Ay the longest component
of which is greater than l,. Then

I
(5.3) 2-FC(N, Ip) <<N-(%] .

Proof. Assume that the longest MM component of n is / (z,). Then for a suit-
able integer ¢ we have n = h+2'+2y+2'+!+4y  where
(5.4 h<?2, p<2N-t-l=4  yc,

The number of n satisfying (5.4) is «A4,-2'-2¥~*~!-4 Summing up for ¢, and /,
we have :

)
2°NC(N,l)) = N J 2724, < N(ﬁ] .

127, 2

N
Lemma 3. Let H1=—6——Q(N) VN, where g(N)-co (N~ <o), and

Hy AIJ—2

4
ty+...+E =N j=1 2

(5.5) S =

Then
5.6 s < e Ve
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Proof. First we observe that for ¢=>1

-N b c‘j —NFCH1
S=c¢ 2> HAz,-z'“z— =c ) -

'1--"»'31 Jj=1

We take ¢=1+6, §+0. Then, by repeating the estimation that we used for the
deduction of (3.5), we get

c~NFH (%] = exp[(6H,~ N)5 +(8H, + N[2) 5%+ O(N%)].

By choosing 6=(No(N))~"%, we get (5.6).

Let
&) P(r) =27V 3 &0,
nEAy
Hy
(58 A(n, H) = _Z;A(mz, s
j=
5.9 B(n, H)) = 4(n)—A(n, H.
We take A(n, H)=A(n, v(n)), when v(n)<H,. Let
(5.10) @o(7) =2-N 2' eitd(n,Hy),
nEdy
First we consider ¢@y(7). It is obvious that
g S (1
G.11) wo= 3 [

ll+...+tul§N j=1
From Lemma 3 we get

(5.12) 0o(r) = H@)H1 +0(S) = H(x)h1 + O(e~Ve®™),

Now we estimate the difference ¢(1)—¢4(1). Let & denote the set of those
integers n¢.ofy for which

ty+to+ ... +1g, = N—o(N)(log N2VN.

Let B=s/\\&. We show that o/ has at most O(2"/N) elements. From Theorem 2
it follows easily that the number of those n€ oy for which

N
v(n) = 3 (VN
is O(2"/N). For the remaining elements of &/ we get

o(N)(log N)*YN = gty =
= max (I;+2) - (v(n)— H,) = 4(max 1) - o(N) VN,
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ie.
1

(5.13) max l; = vy (log N)2

From Lemma 2 we have that the number of n¢ &7, satisfying (5.13) is smaller than
O(2¥/N). We have
(5.19 [Po(D) — ()] <277 6Zdl+2“"lr| SZ;IB(n, H))| =

= 27N (Zy+ || Eo).
It is obvious that
2, < 2¥/N.
We can write n€ 4 in the following form:
n=M+2l, H+.. .+t =s, l€y_ s,
where M has the components i, ..., my, -
1

Let 9,, denote the set of these elements. Then, by (1.4), applying the Cauchy
inequality, we have

> B, HY|< 23 |4()| < 2V VY N—s.
n€ Dpg j<2N“—s
Observing that

N—s = o(N)(log2N)- YN
for nc %, we get that
Z, < 2¥. NY4Yo(N)-log N.
So we get that
1
(5.15) o)~ o) < 5+ [7| N¥/4Y o(N) -log N.
Consequently,
@) = H@M+0(e Ve™)+O0(1/N)+ O [t| NV4Y o(N) - 1ogN).
Observing that H(0)=1, H'(1)=0, H”(0) = —2, we get
H(®) =1-72+0(1®) = exp (- 2+ 0 (%)
By taking t=x/N, we have
@(x/VN) = exp (—#*/6)+0(1) (N —~eo)

uniformly for every » in an arbitrary bounded interval. But exp (—x?/6) is the
characteristic function of the normal distribution function with zero mean, and
variance 1/)3. Using the well-known theorem of probability theory on the
convergence of characteristic functions, we get Theorem 1 immediately.
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