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Congruence-equalities and Mal'cev conditions 
in regular equational classes 

H. PETER GUMM 

FREESE and NATION have shown in [1] that there is no lattice equality holding 
in all congruence lattices of semilattices. It follows easily that this result remains 
true if one replaces the variety of semilattices by any variety defined by a set of 
regular equations. On the other hand not every algebraic lattice is the congruence 
lattice of a semilattice, see HALL [4] and PAPERT [5]. WILLE has introduced in [9] 
the notion of a congruence equality using the binary term o (relational product)' 
in addition to the binary terms V (join) and A (meet). We are going to show in this 
paper that the result of Freese and Nation is also true for a certain class of congruence-
equalities in A, V and o, and on the other hand we provide congruence-equalities 
which are nontrivial and which do hold in semilattices. This also gives us examples 
of congruence-equalities which do not imply any lattice equation. 

Two such congruence equalities are characterized in terms of Mal'cev con-
ditions and it turns out that they are within the class of regular varieties equivalent 
to the Mal'cev conditions 

3p(p(x , x) = x, p(x, >>) = p(y, x)), resp. 3p(p(x, x, x) = x, p(x, y, z) = p(z, x, j>)). 

Finally we characterize the above Mal'cev conditions within the class of all varieties-
in terms of fixed points of involutions similar to [3]. For basic facts and notations 
used in this paper seeGRATZER [2]. For the notion of equivalence see, e. g., TAYLOR [8].. 

I. Regular varieties 

1.1. Def in i t ion . (PLONKA [7]) An equation p=q is called regular if the set 
of variables and constants appearing in p is the same as that in q. A variety is regular 
if it can be defined by a set of regular equations. 
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1.2. Example. The variety of semilattices is a regular variety. The defining 
equations are: X'X = x, x-y = y-x, x-(y • z) = (x- y)~ z. 

Next we formulate two basic lemmas. The first can be easily proved, and the 
second was essentially proved in [10]. 

1.3. Lemma. Let A = (ni\i£l) be a type with corresponding function symbols 
/ j , i£l. Let 2: = {0, 1} be a two-element set and define an algebra 2A by setting 

If there are 0-ary function symbols define them to be 0. Let SL^ be the variety gener-
ated by 2Then, 

(i) SLd is equivalent to SL(2), the variety of all semilattices i f f n^ 2 for some i, 
and «¡7^0 for all i. 

(ii) SL^ is equivalent to SL ( 0 2 ) , the variety of all O-semilattices, i f f « ¡^2 
for some i and «¡=0 for some i. 

(iii) SLd is equivalent to flA, the variety of pointed sets i f f n^ I for all i, and 
«¡=0 for some i. 

(iv) SLj is equivalent to the variety of sets otherwise. 

1.4. Lemma. [10] Let SB be a variety of type A, containing no nullary operation. 
Then © is regular if and only if SB contains SLj as a subvariety. If A contains a 0-ary 
operation, the only if part is still true. 

Congruence equalities were introduced by WILLE [9] . 

2.1. Def in i t ion . A congruence equality is an expression a=fi where a and /? 
are terms in variables and the binary polynomial symbols A, V and o. A congruence-
equality <x=P is said to be congruence-valid in an algebra 91 if for any interpretation 
of the variables occurring in a=/? by congruences of 21 the equation holds if we 
interpret A as meet, o as relational product and V as relational join, that means: 
If a and T are binary relations on A, we define: < T V T : = I J { O - o r o t r o . . . o T | n i N } . 

We have to be careful because if y, 8 are congruences then yoO need not be 
a congruence. If a and t happen to be congruences, then CTVt is the join of a and t. 

We call a congruence-equality trivial if it holds in each partition lattice. We 
say that a=jS is congruence-valid in a variety S if it is congruence-valid for each 
algebra 916®. 

2. Congruence equalities 

n-times 
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Now it is obvious what we mean by a congruence-inequality and in fact 
we can replace each congruence-equality a = P by the congruence-inequalities a S/? 
and oc^p. Clearly, a congruence inequality a ^ f i which holds in a variety 3 will 
hold in each variety 58' which is equivalent to 8 as well. 

For the proof of our first theorem we need the following simple lemma: 

2.2. Lemma. Let aS/J be a nontrivial congruence-inequality. Then there exists 
a finite set X, such that tx^fi fails to hold in n(X), the partition lattice of X. 

Proof . The proof essentially uses the ideas of theorem 6.15 in WILLE [9]. 
a s / ? is nontrivial, thus there exists a set X such that a s / ? does not hold for the 
partitions of X. Let xlt ..., xn be the variables occurring in as/?.-Let i be an inter-
pretation map assigning to xt, 0 < i S n , the partition of X such that for a certain 
pair (a, b) we have (a, b)£i(a) and {a, b)^'i(P). 

Let y now be an arbitrary expression in A, V and o and the variables amongst 
{*!, ..., *„}. Let x, y be arbitrary elements of X. Define recursively: 

1) If y is a variable, 

\{x,y} if (x, y)ei(y) 
<x,y)' 10 otherwise. 

2) If y = (TOT, 

( R(XLZ) U R(z,y) for some z with (x, z)£i(o) and (z, i(T) 

0 if ( X , M M -

3) I fy = o\ l t , 
' RLXTZL)U R\ZL,Za) U... U R\ZN, y) for some zx,..., z„ with 

xi(a)z1i(z)z2... zn i(i) . 0 if (x, jOSKv). 
4) I f y = <7AT, 

Ry . = i U *(».»> i f (*.30€i(y) 
10 otherwise. 

Then X0: =R*A>B) is finite and nonempty. Define 0?: =0 lnJToX.Jfo and i o :x f -0? , 
0<i 'S«. Then clearly by the construction we have (a,b)£i0(a) and (a, b) $ i0(/?). 
Thus a=/? does not hold for the partitions of the finite set X0. 

2.3. Theorem. Let a s / ? a nontrivial congruence-inequality where a is arbitrary 
and P is of the form a^a^h ••• Aak where each is a term in V and o. Then each 
regular variety contains a finite algebra where a s / ? is not congruence-valid. 

Proof . If a congruence-inequality holds in a variety © then it obviously holds 
in each subvariety of 23 and in each variety which is equivalent to ©. By lemma 1.5 

RUy)'- — 
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we need to prove our statement only for SL^. As the variety of sets and the variety 
of pointed sets do not fulfil any nontrivial congruence equality we need in view of 
lemma 1.4 only consider SL(2) and SL(0i 2), semilattices and O-semilattices. Let 
now X be a set, % a partition of X and FSL (X) (resp. FSL0 (X)) be the free semi-
lattice resp. O-semilattice generated by X. Let 6K be the congruence generated by 
71 in FSL (X) (resp. FSL0 (JT)) and let p and q be elements of FSL ( X ) (resp. FSL0 (Z)). 
We assume that p and q are in reduced normal form. Then we have p9„q if and 
only if for each variable x in p there is a variable y in q such that xny and vice versa. 

By a repeated use of this argument one obtains that for a set n u . . . ,n„ of parti-
tions of X and x, y£X we have: 

(*) ' xdnio ... o0„ny if and only if xnt o ... on„y. 
Now let a S/? a congruence-inequality of the form required in our theorem. Then 
there exists by lemma 2.2 a finite set X and partitions 7z1; ...,n„ of X and an inter-
pretation i assigning the variables xx, ..., xn of a s= /? to the partitions TI1, ..., nn 

such that for some x,y£X we have (x, y)£i(a) and (x, y)$i(P). 
Take now FSL (X) resp. FSL0 (Z) and define I: -*9„r Of course we still 

have (x, y)£ 1(a), but by (* ) we have (x, i(y3). Thus aSJ? does not hold in FSL (X) 
nor in FSL„ (X); and both are finite algebras, which concludes the proof. 

2.4. D e f i n i t i o n . A variety is n-permutable iff the congruence-inequality 
0 1 o0 2 o. . .o0 g g0 > o0 1 o. . .o0 1 , with n factors on each'side, holds in S . 

2.5. C o r o l l a r y . Regular varieties are not n-permutable for any n. 
Now we are going to show that we cannot drop the assumption on the form of /?. 

3. Mal'cev conditions 

For basic facts concerning Mal'cev conditions see e.g. T A Y L O R [8]. 

3.1. D e f i n i t i o n . A strong Mal'cev condition is an expression of second order 
logic of the form 3p l t ...,/>„(£) where S is a finite conjunction of equations uni-
versally quantified in individual variables, containing the function variables plt ...,pn. 
A strong Mal'cev condition M : = 3/7t, ..., pn(L) holds in a variety 23 (shortly S l - M ) 
iff there exist polynomials plt ...,/>„ in the language of 93 such that 2 holds in 93. 

3.2. D e f i n i t i o n . An involution is an automorphism of order two. 

3.3. T h e o r e m . For an arbitrary variety 23 the following are equivalent: 

(i) The strong Mal'cev condition 3p(p(x, x) = xAp(x, j>) = p(y, x}) holds in 23. 
(ii) If cp is an involution of an algebra 316® then for each x€2l there exists a fixed 

point y of cp such that (x, (px)£9 implies (x, y)£d for arbitrary congruences 9 of 91. 
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A similar theorem with automorphisms of order n holds for the Mal'cev 
condition 3p(p(x, ..., x)=xAp(x1, ..., xn)=p(x2, ..., xn, x^). 

Proof , (i)--(ii): Assume (i) and let <p be an involution of 2l£23. Take 
Then define y: =p(x,(px). We have: cp(y) = (p(p(x, (px))=p(<p(x), cp2(x))— 
=p((p(x), x)=p(x, (p(x))=y. Thus y is a fixed point of (p. Assume (x,cpx)£d. 
Then x=p(x, x)6p(x, (px)=y. Thus (x, y)£9. 

( i i ) -© Let FB(x, y) be the free algebra in 23 generated by the two distinct 
elements x and y. Then the map q>: x—y, y-*~x extends uniquely to a homomorphism 
<p of Fj ,^, y) which is moreover an involution. For x we then have an element 
z6Fs(x, y) which is a fixed point of (p. Here z=p(x, y) for some polynomial p and 
(pz=z, thus (pp(x, y)=p(x, y). As (pp(x, y) = cpp(x, q>x)=p((px, q>2x)=p(y, x) we 
conclude p{x,y)=p{y, x). Now (x, cpx)£9(Xty), the smallest congruence which 
collapses x and y. By (ii) we have: (x, z)£9(Xty) which means (x, p(x, y))£9(x y) 

and thus p(x, x)=x. Hence, p(x, y)=p(y, x) and p(x, x)=x holds in the variety S . 
WILLE [9] and PIXLEY [6] have shown that in a variety each congruence-inequality 
in A, V and o is equivalent to a countable conjunction of countable disjunctions 
of strong Mal'cev conditions. 

Let e1? e2, g be the following congruence inequalities: 

e i : 0O A ( 0 i ° 0 2 ) A (03o04) S 0!O{(02O03) A {[(0^03) A (02o04)]o0o}}o04, 

e2: (01o02) A (03o04) s 0lO{(02o03) A {[(0lO03) A(02o04)]o[(01o02) A (03o04)]}}o04. 

(e2 is obtained by replacing 0O in ex by (0iO02)A(03O04). 

g: 0O A {0lO [02 A (03o04)]} A {[05 A (06o07)]o08} g 

G 01O06O {(0oo03o07) A {05o02o [(06o0lO03) A (07O08O04)]}}O04O08. 

Then we have the following theorems: 

3.4. Theorem. For a regular variety the following are equivalent: 
(i) ex is congruence-valid in ©. 
(ii) e2 is congruence-valid in 23. 

(iii) The strong Mal'cev condition 3p(p(x, x)=xAp(x, y)=p(y, *)) holds in 23. 

3.5. Theorem. For a regular variety t.f.a.e.: 
(i) g is congruence-valid in 23. 

(ii) The strong Mal'cev condition 3p(p(x,x,x)=x,p(x,y,z)=p(y,z,x)) holds in S . 
We prove only the first theorem, the proof of the second is essentially the same 

but needs a little bit more of computation. 

Proof , (iii)—(i): Assume in 23 there exists an idempotent and commutative 
binary polynomial p. Take (x, ^)60oA(01o02)A(03o04). Then there exist a and b 

5* 
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such that x90y, x0ia02y, xdJjQ^y. Usingp we get: 

x = p(x, x)61p(a, x)92p(y, x)0sp(y, b)9ip(y, y) = y and 

Pi (a, x) №o6s) A (02o0J]p(b, x)60p(b, y) 

As p(y, b)=p(b, y) we get: 

(*, {(.92°9S) A M o 0 3 ) A (02O04)]O0o}}O04 . 

(i)—(ii) is trivial. Only in the next step will we use regularity. 
(ii)-(iii): First we use Wille's algorithm to write down the Mal'cev condition 

for e2. We get, that in the class of all varieties e2 is equivalent to the following strong 
Mal'cev condition: 3pi, p2, p» with 

(1) * = p/x, x, v, y), 

(2) Pi (x, y, v, y) = p
2
(x,y,v, y) 

(3) p2(x, u, x, y) = p3(x, u, x, y), 

(4) PS{x,u,y,y) = y, 

(5) Pi (x, x, v, y) = p5 (x, x, v, y), 

(6) p5 (x, u, X, y) = PI (x, u, x, y), 

(7) Pi (x, x, v, y) = p7 (x, x,v,y), 

(8) Pi (x, y, v, y) = p
3
 (x, y, v, y), 

(9) Pi (x, y, v, y) = pe (x, y,v,y), 

(10) PG(X, U , y, y) = p/x, u, y, y), 

(11) Pi (x, u, x, y) = p
8
 (x, u, x, y), 

(12) p
s
(x, u, y, y) = p3(x, u, y, y). 

Now if this Mal'cev condition holds in a regular variety, each of its equations 
must be regular. We can thus conclude: From (1) it follows that Pi depends only 
on the first two places, therefore in (2) p2 can depend at most on the first, second 
and fourth place. From (4) it follows that p3 depends at most on the last two places 
thus p2 depends at most on the first, third and fourth place. Together with the above 
then p2 depends at most on the first and fourth place. Thus we can replace (1) to (4) 
in a regular variety by 

(1') x = p!(x,x), 

(2') Pi(x, y) = p2(x, y), 

(3') p2(.x, y) = p3(x, y), 

(4') p3(y, J') = >'• 



Congruence-equalities and Mal'cev conditions in regular equational classes 271 

Carrying these cancellations out in (5) up to (12) we finally obtain: 3plt ...,pB 

with (10 to (40 and 

(50 Pi(x,x) = p/x), 

(60 p5(x) = p/x,x), 
(70 p4(x, v) = p7(x, v), 
(80 Pi(y, v) = p3(v, y), 

(90 Pi(x, y) = p6(x, y), 

(100 Pe(.x,y) = p / x , y), 
(HO Pi(x, x) = pa(x), 
(120 Ps(y)=P3(y,y)-

Now let us have a look at pv By (10 we get p/x, x) = x and we obtain 
Pi(x, y) = p2(x, y) = p3(x, y) = p7(y, x) = pt(y, x) = p6(y, x) = p/y, x). 

Thus we have: 3p w i thp(x , x)=xAp(x, y)=p(y, x). 
This finishes the proof. 

4. Applications 

We consider the equational classes of groupoids defined by subsets of the follow-
ing set £ of regular equations 

£ : = {x(yz) = (xy) z, xy — yx, xx = x}, 
and define S j = M o d (x(yz)=(xy)z) semigroups, 

S 2 = M o d (xy—yx) commutative groupoids, 
© 3=Mod ( x x = x ) idempotent groupoids, 
© 4=Mod (x(yz)=(xy)z, xy=yx~) commutative semigroups, 
S 5 = M o d ( x ( y z ) = ( x y ) z , xx—x) idempotent semigroups, 
©6=Mod (xy=yx, xx=x) commutative, idem-

potent groupoids, 
© 7=Mod (x(yz)=(xy)z, xy—yx, xx=x) semilattices. 

As projections: 7t"(jc1( ..., x„): =xt are idempotent and associative we have that the 
variety of sets is contained up to polynomial equivalence as a subvariety in ©x ,©3, ©5 . 
Furthermore, the variety of pointed sets is up to equivalence contained in ©2 and 
in ©4, so ©!, ©2, ©3, ©4 and ©5 do not fulfil any nontrivial congruence inequalities. 

We are going to show now that we can separate the remaining varieties by 
congruence inequalities. 

4.1. Theorem. The congruence inequalities e! and e2 are nontrivial and hold 
in commutative, idempotent groupoids. The congruence inequality g holds in semilattices 
but not in commutative idempotent groupoids. 
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Proof . The first part of the theorem is a direct consequence of theorem 3.2. 
Theorem 3.3. implies that g holds in semilattices. Assume g holds in commutative 
idempotent groupoids. 

In [3] we characterized the strong Mal'cev condition 3 p ( p ( x , y , z)=p(y, z, x)) 
and it was shown that it is equivalent to the statement that every automorphism 
cp of order 3 has a fixed point. 

So in order to show that g does not hold for all commutative idempotent 
groupoids we only have to find a commutative idempotent groupoid 'S and an auto-
morphism (p:G-*G of order 3 which has no fixed point. 

Take ^=({0,1,2}, •) with • defined as x-y: =2x+2y (mod 3). Take the 
map <p: G—G with <p(x): 1 (mod 3). cp is an automorphism of order 3 but 
(p has no fixed point. This finishes the proof. Notice that g happens to hold in & 
because ^ is simple. 

4.2. Corol la ry . The congruence inequalities el5 e2 and g do not imply any 
lattice inequality. 

Proof . Freese and Nation have shown that there is no lattice inequality holding 
for the congruence lattices of semilattices, but e^ e2 and g are congruence-valid 
in semilattices. 

The author wishes to acknowledge with many thanks the helpful discussions 
with Professor R. Padmanabhan, who also provided the commutative idempotent 
groupoid used in the proof of theorem 4.1. 
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