Every subring R of N with $A(\overline{D}) \subset R$ is not adequate

MICHAEL VON RENTELN

Let N (Nevanlinna class) be the ring of all functions of bounded characteristic and $A(\overline{D})$ (disc algebra) the subring of all holomorphic functions in the open unit disc D, which are continuously extendible to \overline{D} . (For details see [1], p. 16 ff and [3].)

In answering a question raised by SZÜCS ([5], p. 201) E. A. NORDGREN [2] showed that the ring N^+ is not adequate in showing (by an example) that there exists a finitely generated ideal, which is not principal. In his review [7] N. YANAGIHARA remarks that the same is true in the ring $F^+ \cap N$ by the same construction. We remark that for other rings R (e.g. R=N) the construction does not carry over.

The purpose of this note is to give an example which works in any subring R of N with $R \supset A(\overline{D})$ and is for some reason simpler than the example in [2]. Also the construction works after appropriate modifications in other rings of holomorphic functions.

Theorem. In every subring R of N with $A(\overline{D}) \subset R$ there exists a finitely generated ideal which is not principal.

Proof. Take $f_i(z) = (1-z)B_i(z)$ (i=1, 2) with the Blaschke products

$$B_1(z) = \prod_{n=1}^{\infty} \frac{a_n - z}{1 - a_n z}$$
 and $B_2(z) = \prod_{n=1}^{\infty} \frac{b_n - z}{1 - b_n z}$

where $a_n = 1 - n^{-2}$, $b_n = a_n + \varepsilon_n$ and $\varepsilon_n > 0$ is tending very rapidly to zero, e.g. $\varepsilon_n = n^{-2} \exp\left[-(1-a_n)^{-2}\right]$.

Clearly $f_1, f_2 \in R$, since $f_1, f_2 \in A(\overline{D}) \subset R$. We claim that the ideal (f_1, f_2) is not principal. Assume the contrary, i.e. that there exist $d, g_1, g_2 \in R$ such that $d = = f_1g_1 + f_2g_2$ and $(d) = (f_1, f_2)$. Then there exist $h_1, h_2 \in R$ with $f_1 = h_1d, f_2 = h_2d$. Since B_1 and B_2 have no common zero and in view of the factorization theorem in N ([1], p. 25) there exist $d_1, d_2 \in N$ such that $h_1 = d_1B_1, h_2 = d_2B_2$. This yields $d = d_1B_1dg_1 + d_2B_2dg_2$ or $1 = d_1B_1g_1 + d_2B_2g_2$. For $z = a_m$ it follows $1 = (d_2B_2g_2)(a_m)$

Received June 14, 1976.

or $|(g_2 d_2)(a_m)| = |B_2(a_m)|^{-1}$.

$$|B_2(a_m)| = \frac{b_m - a_m}{1 - b_m a_m} \left| \prod_{n \neq m} \frac{b_n - a_m}{1 - b_n a_m} \right| < \frac{\varepsilon_m}{1 - a_m} = m^2 \varepsilon_m = \exp\left[-(1 - a_m)^{-2}\right].$$

It follows $|(g_2d_2)(a_m)| > \exp[(1-a_m)^{-2}]$. But this is a contradiction to the fact that every function $f \in N$ (here $f = g_2d_2$) fulfills $|f(z)| \le \exp[C(1-|z|)^{-1}]$ for some constant C > 0 (see [3], p. 57).

Remark. The idea behind the proof is not new (it seems that WHITTAKER [6], p. 256 was the originator) and has the advantage to carry over to other rings of holomorphic functions restricted by a growth condition and with some type of canonical factorization, for example the Hadamard-Weierstrass factorization in the ring of all entire functions of exponential type (see [4], p. 10 for an analogous construction).

References

- [1] P. L. DUREN, Theory of H^p spaces, Academic Press (New York, 1970).
- [2] E. A. NORDGREN, The ring N^+ is not adequate, Acta Sci. Math., 36 (1974), 203-204.
- [3] I. I. PRIWALOW, Randeigenschaften analytischer Funktionen, VEB Deutscher Verlag der Wissenschaften (Berlin, 1956).
- [4] M. VON RENTELN, Ideale in Ringen ganzer Funktionen endlicher Ordnung, Mitt. Math. Sem. Giessen, Heft 95 (1972), 1-52.
- [5] J. Szücs, Diagonalization theorems for matrices over certain domains, Acta Sci. Math., 36 (1974), 193-201.
- [6] J. M. WHITTAKER, A theorem on meromorphic functions, Proc. London Math. Soc., 40 (1936), 255-272.
- [7] N. YANAGIHARA, Review #46016, Zbl. für Math., 302.

MATH. INSTITUT JUSTUS-LIEBIG-UNIV., ARNDTSTR. 2 D-6300 GIESSEN

140