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Differentiability for Rademacher series on groups 
C. W. O N N E W E E R 

In the paper [ 1 ] P . L . BUTZER and H . J . WAGNER defined the derivative of real-
valued functions / defined on the dyadic group, both in the pointwise sense and in 
the strong sense, that is, with respect to the norm of the space to which f belongs. 
They proved that this derivative has many properties similar to properties of the 
ordinary derivative of functions on the circle group. In the present paper we shall 
extend this definition to functions defined on groups G that are the direct product 
of countably many groups of prime order. Furthermore, we shall give some applica-
tions to functions that are defined as the sum of a Rademacher series on G. 

1. Introduction 

Let {/?„} be a sequence of prime numbers and let G be the direct product of 
CO 

groups of order pn, that is, G= JJ Z(p„). Thus the elements of G are of the form 
n = l 

x=(xx , x2, ...), with 0^x„<p„ for each « ^ 1 and for x, y in G the «-th coordi-
nate of their s u m x + j is obtained by adding the «-th coordinates of x and y 
modulo p„. Furthermore, if we define the subgroups G„ of G by G0=G and 
for /2^1 

G„ = {x£G; Xl=...= xn = 0}, 

then the Gn's form a basis for the neighborhoods of 0=(0, 0, ...) in G. Finally,, 
for « ^ 1 we define the elements e„ of G by (e„)i=0 if i^n and (<?„)„=1. 

Next, let G denote the character group of G. We enumerate the elements of 
(J as follows. For each k^O and each x in G let cpk(x) be defined by 

<Pk O) = exp (27xixk+Jpk+!>. 

Thus, (pk(ej) = 1 if j^k+l and q>k(ek+1)=exp (2ni/pk+1)=cok. We observe here 
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that for each j ^ O 
Pj + i - 1 fO if 0 < / c < p , + 1, 

Let the sequence {/jj„} be defined by m0=1 and m„=pn • mn_x for n £ l . Next, 
if «SO is represented as n—a0m0 + ...+akmk, with for each is0, 
then we define /„ by 

k 
<2) x„(x) = (pa

0°(x) •... • q>a
k"(x) = ¡J exp (2niavxv+Jpv+l). 

v = 0 

The /„'s are precisely the elements of G. The functions q>n are called the 
Rademacher functions on G and the Xn a r e called the generalized Walsh functions 
on G. 

Remark 1. If pn=2 for all n, then G is the so-called dyadic group. The 
elements of the character group 6, when ordered as indicated here, are the Walsh 
(-Paley) functions, see [3]. 

Let dx or m denote normalized Haar measure on G. For / in L2(G) we 
define its generalized Walsh-Fourier series by 

2f(k)Xk(x), where f(k) = / f(t)UF)dt. 
k=o g 

In a number of previous papers, [4] and [5], we have studied several properties of 
such generalized Walsh-Fourier series. Among other things we defined the concept 
of r-generalized bounded fluctuation. We recall the definition here. For each sub-
group Gn of G we denote the mn cosets of Gn in G by zq n + G„, q=0, 1, ..., mn — 1, 
with z0 „+Gn = G„. If / is a function on G and if H<z.G then 

osc(/; H) = sup { | / ( * ) - / 0 0 | ; x,y£H}. 

Def in i t i on 1. Let / be a function on G, r a real number with r s 1, and 

K ( f ) = sup{{V(oscC/"; zs>n+G„))]1/r; n = 0, 1,...}. 

The function / is of r-generalized bounded fluctuation (/c/'-GBF) if F r ( / ) < 
In [6] and [5] it was shown that functions in r-GBF have many properties similar 

to properties of functions of r-bounded variation (/--BV) on the circle group T. 
However, we shall show that the differentiability properties of functions in GBF, 
that is, in 1-GBF, are unlike those of functions in BY. 
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2. Differentiation of functions on G 

D e f i n i t i o n 2. If for a complex-valued function / on G and for x in G 

m Pj + i—1 Pj + i-l 
lim Zmi 2 kPlh 2 (cojr,kf(x+lej+1) j = 0 k =0 /=0 

exists, then we call this limit the pointwise derivative of / at x, denoted by /[1](A-). 

D e f i n i t i o n 3. Let X{G) denote either C(G) or LP(G), 1 with the 
usual norm. If for / in X(G) there exists a g in X(G) such that 

lim 
m Pj+i-i Pj+i-i 

Zmj 2 kPj+i 2 (C0j)-,kf(-+lej+1)-g(.) 
j=0 k =0 / = 0 = 0, 

X(G) 

then g is the strong derivative of / , denoted by Dmf. 

Higher order derivatives are defined recursively. If pn=2 for all n then these 
definitions agree with the definitions of BUTZER and WAGNER [ 1 ] . These authors 
showed that the Walsh functions x„(x) have the property that Dmx„=ny„ in 
each space A'(G) and yj*](x)=nx„(x) for all x in G. Further results in [1] are 
largely based on these identities. Therefore we shall prove that the derivatives as 
presently defined for functions on G satisfy the same identities, after which it is 
easy to extend most of the results in [1] to functions on G. 

R e m a r k . We would like to thank the referee for bringing the paper by GIBBS 
and IRELAND [4] to our attention. In it the authors define the derivative for functions 
on groups G which are the direct product of finitely many cyclic groups. Their 
definition closely resembles our Definition 2, see [4, Section VI]. 

T h e o r e m 1. For each ns0 and each x in G we have X[n](x)—nXn(x)-

P r o o f . Since Xo(*) = 11 the theorem is clearly true for Xo(*)• 
Assume n=a0m0+...+armr, with 0gf l ,</) i + 1 for each / ^ 0 and ar?£0. 

Take a fixed j with O^j^r. Then 

>nj P>2 1 kP7ii"J2 1 ((Oj)-lkXn(x + leJ+1) = 
k=0 ( = 0 

= mj"J2 ' k p j ^ i * (a>j)-,kXn(x)(Xn(ej+1))' = 
k=0 1 = 0 

= mjX„(x)Pj2 'kpjtJ'S \(Oj)'<aJ-k\ 



124 C. W. Onneweer 

according to (2). Using (1) we see that this expression can be simplified further into 

™jXn(x)ajPjtiPj+i = ajmjXn(x)-
Next, for each j>r we have 

mj "2 1 kpj+I" 2 1 K )~ ' K XN(x+le J + 1 ) = mjXn(x) * kpJ^'Z * H ) - ' * = 0. 
* =0 1=0 ft=0 (=0 

Therefore, 
r 

/n1]W = 2 a j m j ~ / n ( X ) = n/n(x). j=0 

It is clear that a similar result holds for the strong derivative of yn in each of 
the spaces X(G). 

3. Rademacher series on G 

In this section we shall consider Rademacher series on G, that is, functions 

defined by a series R(x)= 2 ci(Pi(x)- We shall assume that ck is real for each k s 0 
i = 0 

and that R(x) exists for ail x in G. The last assumption is equivalent to the 
o© 

condition that 2 k i H °°> a s c a n be seen as follows. Define the element x 2 , . . . ) 
i — 0 

in G by x i + 1 = 0 if and x i + 1 = l if c ,<0 and pi+1 = 2, whereas xi+1= 
= (Pi+i —1)/2 if c ; < 0 and Pt+i^2. Then <pi(x) = 1 if and Re [^¡(x)]^ 
S—1/2 if c,< 0. Consequently, for all i s 0 we have cf Re [<^(x)]S |q|/2 and 
this shows that 2 k; l< 0°- We also observe that for Rademacher series on G the 

i = 0 

following proposition holds. Its proof is similar to the proof for the case of Rade-
macher series on the dyadic group [7, page 212] and will not be given here. 

P r o p o s i t i o n 1. If R{x)= 2 ci<Pi(x) is a Rademacher series on G then (i) 
¡=o 

CO oo 

if 2 kil2<°°> then R(x) converges a.e., {ii) if 2\ci\2 = °°> then R(x) diverges a.e. 
i=0 i=0 

Now we turn to the diiferentiability of such Rademacher series. 

T h e o r e m 2. R is differentiable at a point x in G if and only if 2 mkck9k(x) 
k = o 

converges. 

P r o o f . For each js0 and each / with 0^l<pJ+1 we have 

OO j — 1 CO R (x+ iej + j) = 2 c; <Pi (x+ lej+1) = 2 ci (Pi 0 ) + Cj <Pj (x) K ) ' + 2 Wi (*)• i = 0 ¡=0 i = y'-i-l 
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Hence, for each y'sO we find, using (1), that 

m/2" 1 k p j t / 1 ^ 1 (°>j)-'kR(x + lej+1) = 
k =0 ( = 0 

PJ + I - 1 PJ +1_1 

= rrij 2 kPT+i 2 (0Jj)~'kCj(pj(.x)((Oj)' = mjCj(pj(x)pj*1pJ+1 = mjCj<Pj(x). 
k =0 i = 0 

Consequently, R is differentiable at x if and only if 2 mjcj(Pj(x) converges. 
j=o 

We now mention a number of corollaries of Theorem 2. For a Rademacher 
series R let 

AR = {x£G; R differentiable at x}. 

C o r o l l a r y 1 .Iffor some x in G we have x£AR and if y is a rational element 
of G, that is, y has the property that there exists a constant K so that yk=0 for 
k>K, then x-\-y(iAR. 

P r o o f . Since for j^K we have <PjOO —1> we see that 

OO K— 1 «> 
2 MjCjVjix + y) = 2 >njCj<Pj(x + y) + 2 mjcj(Pj(x). 7=0 J=0 j=K 

Hence, if x ^ A R , then Theorem 1 implies that x+y(ZAR. 

Because the rational elements of G are dense in G we have 

C o r o l l a r y 2. If Ar is not empty, then AR is dense in G. 

In view of Proposition 1 we have 

C o r o l l a r y 3. For each Rademacher series R we have m(AR)—0 or m(AR) — l. 
An argument similar to the one in the beginning of this section shows the fol-

lowing. 
OO 

C o r o l l a r y 4. R is differentiable for all x in G if and only if 2 mj\cj\ <co-
J = 0 

Finally we give the analogue on G of the well-known example of Weierstrass 

of a continuous nowhere differentiable function on T, namely / ( x ) = 2 2~"n cos2"x. 
« = 0 

C o r o l l a r y 5. There exists a continuous nowhere differentiable function on G. 

P r o o f . Let R(x)= 2 (mk)~x<Pk(x). Clearly, R is continuous on G and, accor-
k = 0 

OO 

ding to Theorem 1, R is differentiable at x if and only if 2 <Pk(x) converges. Hence, 
fc = 0 

AR is the empty set. 
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As mentioned earlier, the functions in GBF on G have many properties in 
common with the functions in BV on T. However, we shall now show that this is not 
the case with the differentiability property. 

T h e o r e m 3. (a) If R is differentiable at a point x in G then J?£r-GBF for all 
f ^ l . (b) There exists a function R in GBF for which W J ( J r ) = 0 . -

P r o o f , (a) Consider a fixed coset zq>n+Gn of G. Since R is continuous on 
G there are points x, y in zq„ + G„ such that 

oo 
o s c ( R ; 2,,„+(?„) = R(x)-R(y) = 2 (</>.(*)-<Pi GO)-

¡=o 

Since Xj—jj for 1 ^ / ^ n , we have <f>i{x) — <pi(y) for l S / S n ; also, q>0(x) = 
= (Pd(y) = 1- Therefore, 

2 ci(<Pi(x)~<Pi(y)) S 2 ^ k-|. 
i=n+l 

osc (R; zqt„+Gn) = 

Hence, 

im„-1 "11 /r ( ( ~ y i l/r ~ 
\ 2 (psc(R\ zq „+G„))r\ s \mn 2 2 W f ^ 2 W 2 M -<.9=0 > ^ i=n + l ' J i=n+l 

Next, if -R[1](A) exists for at least one x in G, then Theorem 2 implies that there 
exists a natural number K such that for all i>K we have IC.I^OM;)-1. Hence, if 
nSK, then 

2(mnrr 2 lcil — 2(w„)1/' 2 (md-1^2(m„yi'(mn)-122-<< = 2(mn)V-')''. 
i = n + l ¡=11 + 1 fc = 1 

Thus, i?6r-GBF if r s l . 
(b) Let R be defined by 

*(x)= 2 (-l№1*mJ-1<Pt(x). 
k = l 

OO 

According to Theorem 2, i? t l ](x) exists if and only if 2 1 )kk~1/2<Pk(x) conver-
k = 1 

ges. Since (pt(0) = l for all k s 0 we see that i? t l](0) exists and, hence, Theorem 3(a) 
implies that .R6GBF. However, it follows from Proposition 1(b) that m(AR)=0. 

In case G is the dyadic group we have obtained some slightly stronger results 
than those of Theorem 3. Since this case is especially interesting we mention these 
results briefly. 
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Propos i t i on 2. If R is a Rademacher function on the dyadic group and if 
ri 1 then 

vr(X) = sup{2("+')/' 2 lcil; n = o,i,...}. 
i=n + l 

P roo f . Like in the proof of Theorem 3(a) we see that for each coset zq n+G№ 

in G we have x, y in zqt„+G„ such that 

osc(R; zi3„+G„) = 2 Ci(<Pi(x)~ <Pi(y)) i=n +1 

Now we observe that if G is the dyadic group we can find elements x and y in this 
coset so that for />« we have x ; = 0 if and x ~ l if ¿¡<0, whereas = 1 
if CjgO and yt=0 if c f<0. For this choice of x and y we see that 

2 ci((pi(x)-(pi(y))=2 2 
¡ = 11 + 1 1=1+1 

The rest of the proof is obvious. 
In [ 2 , p. 3 2 3 ] J . E. C O U R Y raised the question whether or not there exists a func-

tion on [0, 1) which can be expressed as a Rademacher series on [0, 1) and which 
is differentiate in the classical sense on an uncountable set of measure zero. Though 
we are unable to solve this problem we have obtained an affirmative answer in the 
present context of functions and their derivatives on the dyadic group. 

P ropos i t i on 3. There exists a Rademacher series on the dyadic group which 
is dijferentiable on an uncountable set of measure zero. 

Proof . Let R(x)= 2 k~1/22~k(pk(x). Clearly, R is well-defined and it follows. 
k = 1 

OO 
from Theorem 2 that x£ if and only if 2 k~l,2(pk{x) converges. So, Proposition 

fc=i 
1(b) implies that m(AR)=0. Next, in order to show that AR is uncountable we 
observe that for every real number a we can find a sequence {ct„} with a„£ { + 1 , - 1 } oo 
for all t j ^ I and so that 2 an«~1 /2=a. Moreover, these sequences can be chosen 

B = 1 
so that if OLT^P then { a j ^ {/?„}. Also, for every such sequence {a„} there exists 
a uniquely determined x in the dyadic group such that (p„ (x)=ctn for all n. Hence, 
for each real number a we can find a corresponding x in the dyadic group for oo 
which 2k~1/Z(Pk(x) converges. This shows that AR is an uncountable set. 

k = 1 
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