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The lattice of translations on a lattice 
JUHANI NIEMINEN 

1. Introduction and preliminaries. The purpose of this paper is to consider the 
lattice of all translations on a lattice and to illuminate the decomposition of lattices 
generated by translations on lattices. Also some properties of translations on meet-
semilattices are given. 

Let S be a meet-semilattice and q> a single-valued mapping of S into itself. 
(p is called a meet-translation, briefly a translation, on S, if <p(xAy)=q>(x)Ay 
for each pair x, y of elements in S. A translation cp on a lattice L is defined 
analogously. Each translation cp on S (and on L) has the following properties [7]: 
(p(x)^x, (p(x)=(p{(p(x)), and x^y=^(p(x)^(p(y). In a lattice L the fixelements 
of cp, i.e. the elements t=(p(t), constitute an ideal Kv of L, which determines 
<p uniquely. 

A non-empty subset J of a meet-semilattice S is called a semi-ideal of S, 
if (i) a^b and b£J imply a£J, and (ii) a, bCJ imply a\Jb£J whenever a\!b 
exists in S. As one can easily conclude from [7, Thm. 1], the fixelements of a trans-
lation (p on a meet-semilattice S form a semi-ideal Kv of S, and Kv determines 
<p uniquely [7, Thm. 3]. 

We denote by <f(L) the lattice of all ideals of a lattice L, (a] = {x\x^a, x, a£ S} 
is the principal ideal generated by a. The semi-ideals of a meet-semilattice S con-
stitute a lattice / ( 5 ) with respect to the set-theoretical inclusion;/V/ means the 
least semi-ideal containing I and J of f ( S ) . 

A translation sa(x)=aAx is called a specified translation. 
The following lemma was proved in [6]: 

Lemma 1. An ideal I of a lattice L generates a translation q> on L, i.e. 
K9=I, if and only if for each y£L there is an element kydl such that IA(y\ = (k^[. 

A direct analogy holds for translations ip o n a meet-semilattice S and semi-
ideals J of S. 
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2. Translations on a lattice. We denote by <f> (L) the set of all translations on L. 
As shown by SZASZ and SZENDREI [ 8 , Thm. 3 ] , < £ ( X ) is a meet-semilattice. 

Theorem 1. Let (p and X be two translations on a lattice L. The mapping 
P on L, definedby P(x) = <p (x) VX (x), is a translation on L if and only if (K^VK^A 
A(*]=(A;A(*])V(*'aA(jc]) for each x£L. 

P r o o f . Let (KyVKx) have the property of the theorem. Then (A^VKx)A 
A(*]=(A,A(*])V(AiA(jc])=(<»(*)]V(A(*)]=(i»(*)VA(*)], and so K ^ K k gene-
rates a translation on L with values <p(x)VA(x), i.e. K^SKx generates a translation 
P on L. Conversely, let P be a translation on L. The fixelements of P are the 
elements (p(x)VA(x) (x(|L), and so Kfi=KtpWKx. According to Lemma 1, (/?(*)] = 
=(JS^V JS:̂ ) A ( * ] = ( * ) ] V (A (*)]=(A^A(*])V Ĉ A A (*]), and the latter part of the 
theorem follows. 

Coro l l a ry 1. Let q> be a translation on L. The mapping <p\/X is a translation 
on L for each Xd<P (L) if and only if K9 is a standard element of 

Proo f . If is standard, then VKx)A (x]=(A(x])V{K v A(x]) for 
each Xd&(L). Hence P(x) = cp(x)VX(x) is a translation on L. Conversely, if 
<p \/X is a translation for each X €#(£) , then, in particular the relation ((a]VATv) A 
A(x]=((a]A(x])V{KvA(x]) holds for each specified translation sa, a£L, and 
for each x£L. But already this equation implies the standardness of Kv according 
to [1, Thm. 2 (a*)]. 

Coro l l a ry 2. The meet-semilattice ${L) is a lattice if and only if L is a dis-
tributive lattice. 

P r o o f . If L is a distributive lattice, each l£.f{L) is a standard element in 
J (L), and the first part of the assertion follows. Conversely, if <£(£) is a lattice, 
then each ideal (a] generating a specified translation sa on I is a standard element 
of J {L), from which the distributivity of L follows. 

Lemma 2. <£(L) contains always a greatest element co, and there is a least 
elemetn t in <P(L) if and only if 0£L. 

Proo f . The identical mapping co(x)=x is a translation on L and Km=L; 
evidently it is the greatest translation on L. The mapping x(x) = 0 is obviously 
the least translation on L whenever a least element 0 exists in L, and fct=(0]. 
If there is no least element in L, then there exists for each a^L an infinite chain 

and the corresponding specified translations form an infinitely descending 
chain, whence <P(L). 

In the following we shall consider a decomposition of a lattice by means of 
translations on this lattice. In [2] JANOWITZ considered the decomposition of a lattice 
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into a direct sum; this decomposition is generalized for join-semilattices in [5]. 
Let L be a lattice with 0. avb denotes the fact that a/\b=0 and (a\/x)Ab=xAb 
for all xdL. For a subset H of L we denote by Hv the set of elements a£L 
such that <jv6 for all b£H. In a lattice L with 0, let H1, . . . ,//„ be subsets of L, 
each of which contains 0. We say that L is the direct sum of H1, . . . , / /„ and 
write L=H1®...®H„ when 

(1) every element a € £ can be expressed in the form a=ajV ...Va„, a ^ H ^ 
i= 1, ..., n, and 

(2) H ^ H J for 
The subsets Hx,...,Hn are called direct summands of L. If L=Hi®...®Hn, 
then the expression in (1) unique and the sets Ex H„ are ideals of L [4, Lemma 
4.8]. Moreover, in a lattice L with 0, an ideal J of L is a central element of J?(L) 
if and only if it is a direct summand of L [2, Thm. 1]. Now we are able to prove 
a theorem on direct sums of a lattice. 

Theorem 2. A lattice L with 0 has a decomposition into non-trivial direct 
summands if and only if there are at least two non-trivial translations <p and X on 
L such that q>VX—a> and q>AX=T, and <p and X have join with each translation 
on L. 

Proof . Let L=J®K. According to [2, Thm. 1], 7and K are standard elements 
of J(L), and 7AAT=(0] and J\JK=L in J(L). Consider the meet //\(jc], 
xiL. As L=J®K,x=a1\!a2,a1£J and a2£K, and the expression x=a1\Za2 

is unique. So JA(x]=(a1], a^J, and hence J generates a translation cp on L. 
As J is standard in J(L), the join <p\!n exists for each translation fi£<P(L). 
Similar facts hold also for the translation X on L generated by K. <pAX corres-
ponds to the translation generated by the ideal JAK=(0], i.e. r, and cpVX that 
of J\!K=L, i.e. w. As J, K^L, (0], <p and X are non-trivial translations on L, 
and the first: part of the theorem follows. 

Conversely, let cp and X be two translations with the properties given in the 
theorem. As (p\/fi exists for each translation n£<P(L), the ideal J generating 
q> is a standard element of the lattice J(L) (by Corollary 1 to Theorem 1), and 
this holds also for the ideal AT generating X. As <pAX=z and cp\/X=a>, JAK=(0}: 

and JMK=L, respectively. As J and K are standard and complements, they 
belong to the center of J(L) [3, Thm. 7.2] and, accordingly, L=J®K [2, Thm. 1]. 
As (p and X are non-trivial, J, (0], and the decomposition is also non-trivial.. 

3. Translations on partial lattices. We call a meet-semilattice S a partial lattice 
if aVb exists for any two a, b£S having a common upper bound in S. At first we 
consider the structure of meet-semilattices S for which <P{L) is a lattice. 
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Let <p(x) and ?.{x) be translations on a partial lattice S. As in the case of 
lattices, one can show that /?(x)=<p(x)VA(x) is a translation on S if and only if 
( i : ?VA:jAW=(A:,A(xl)V№AW) for each x£S, K9, Kx, ( x ] € / ( S ) . 

T h e o r e m 3. Let S be a partial lattice. Then the following three assumptions 
are equivalent: 

(i) The meet-semilattice of all translations on S is a lattice. 
(ii) Each translation on S is a join-endomorphism on S. 

(iii) (x] is a distributive sublattice of S for each x£ S. 

P r o o f . We shall show that (i)<=>(iii) and (ii)<=>(iii). 
(iii)=»(i). We shall show that is a distributive lattice, from which the 

validity of the assertion follows. 
Let / , / € / ( 5 ) . IA J=ID J, and I\/J={x\x^i\Jj, i£l,jeJ and i\/j£S}. 

We must only show that F A ( / V / ) E ( ^ A / ) V ( F A / ) when F, I, J e f ( S ) . Clearly, 
x£FA(iyj)ox£F and x ^ / V / , where i£l and j£J. By assumption, (/Vy] 
is a distributive sublattice of S and i,j, x£{i\]j). So x=xA(/V/)=(xAi')V(xA/), 
where (xVi)£FAI and x\Jj£FAJ. Therefore, x6(A/)V(FAJ) . 

(i)=>-(iii). Let <P(S) be a lattice and w, y, z£(x] in S. Then the mapping 
sy\/sz is a translation on S, whence (yVz]A(M]=(yAw]A(zVw] for each udS 
by the analogy of Theorem 1. The distributivity of (x] follows now by putting u=w. 

(iii)=y(ii). Let J be a semi-ideal of S generating a translation q> on S, and 
assume that x\/y exists in S. As x V j exists and x^cp(x), y^cp(y), then <p(x)V 
V(p(y) exists in 5. As shown in the proof (iii)=>(i), f { S ) is a distributive lattice. 
Let us consider now (p(x\Jy), i.e. the meet J A (xVj]=(/A(x])V(/A(>']), which 
implies that <p(x\/y) = <p(x)\/(p(y). Thus (p is also a join-endomorphism on S. 

(ii)=>(iii). Let u, w, z€(x]. As the mapping su is also a join-endomorphism, 
Ju (vvV z) = («] A (wV z ] = ( w ) V (z)=((M] A(w])V ((w] A (z]), from which the distri-
butivity of (x] follows. 

As above, one can easily prove that in a partial lattice S each (x] is a modular 
lattice of S if and only if f ( S ) is a modular lattice. The proof of the following 
theorem is analogous to that of Theorem 3, and hence we omit it. 

T h e o r e m 4. Let S be a partial lattice. Each translation on S has the property 
that (p(cp(z)\/y) = <p(z) V ( y ) when cp(z)Vy exists in S, if and only if (x] is 
a modular sublattice of S for each x€S. 

The equivalenc (ii)-w-(iii) in Theorem 3 and Theorem 4 are generalizations of 
Theorems 4 and 5 in SZASZ'S paper [7]. 
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