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The lattice of translations on a lattice

JUHANI NIEMINEN

* 1. Introduction and preliminaries. The purpose of this paper is to consider the
lattice of all translations on a lattice and to illuminate the decomposition of lattices
generated by translations on lattices. Also some properties of translations on meet-
semilattices are given.

Let S be a meet-semilattice and ¢ a single-valued mapping of S into itself.
¢ is called a meet-translation, briefly a translation, on S, if @(xAy)=@(x)Ay
for each pair x,y of elements in S. A translation ¢ on a lattice L is defined
analogously. Each translation ¢ on S (and on L) has the following properties [7]:
() =x, o(x)=0(p(x)), and x=y=¢((x)=¢(p). In a lattice L the fixelements
of ¢, ie. the elements ¢=¢(¢), constitute an ideal K, of L, which determines
¢ uniquely.

A non-empty subset J of a meet-semilattice S is called a semi-ideal of S,
if (i) a=b and beJ imply a€cJ, and (ii) a, bcJ imply aVbcJ whenever aVb
exists in S. As one can easily conclude from [7, Thm. 1], the fixelements of a trans-
lation ¢ on a meet-semilattice S form a semi-ideal K, of S, and K, determines
¢ uniquely [7, Thm. 3]. .

We denote by £ (L) the lattice of all ideals of a lattice L, (a]={x|x=a, x, a€ S}
is the principal ideal generated by a. The semi-ideals of a meet-semilattice S con-
stitute a lattice #(S) with respect to the set-theoretical inclusion; I'VJ means the
least semi-ideal containing I and J of #(S).

A translation s,(x)=aAx is called a specified translation.

The following lemma was proved in [6]:

Lemma 1. An ideal I of a lattice L generates a translation ¢ on L, ie.
K,=1, if and only if for each y€L there is an element k€I such that I \(y]=(k,].

A direct analogy holds for translations ¢ on a meet-semilattice S and semi-
ideals J of S.
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2. Translations on a lattice. We denote by & (L) the set of all translations on L.
As shown by SzAsz and SzenDreEl [8, Thm. 3], @(L) is a meet-semilattice.

Theorem 1. Let ¢ and 2 be two translations on a lattice L. The mapping
B on L, definedby B(x)=¢(x)VA(x), isatranslation on L if and only if (K,VK;)A
AX]=(K, AV (K;A(x]) for each x€L.

Proof. Let (K,VK,) have the property of the theorem. Then (K,VK;)A
AE]=(K,ACGDV (KA =(e D ]V(A®)]=(¢(x)VA(x)], and so K,VK, gene-
rates a translation on L with values ¢ (x)VA(x), i.e. K,V K, generates a translation
f on L. Conversely, let § be a translation on L. The fixelements of § are the
elements @(x)VA(x) (x€L), andso K;=K,VK,. According to Lemma 1, (ﬁ(x)] =
=(K,VKH)N=(¢ x)]V(A(x)]=(K,A(x])V(K;A(x]), and the latter part of the
theorem follows.

Corollary 1. Let ¢ be a translation on L. The mapping N A is a translation
on L for each A€ ®(L) if and only if K, is a standard element of #(L).

Proof. If K, is standard, then (K,VK)A(x]=(K,A(x])V(K,A(x]) for
each Ac®d(L). Hence B(x)=¢((x)VA(x) is a translation on L. Conversely, if
@V A is a translation for each 1€ #(L), then, in particular the relation ((a}VK,)A
Ax]=((@A)V(K,A(x]) holds for each specified translation s,, a€L, and
for each x¢L. But already this equation implies the standardness of K, according
to [1, Thm. 2(")]. '

Corollary 2. The meet-semilattice ®(L) is a lattice if and only if L is a dis-
tributive lattice. '

Proof.If L is a distributive lattice, each I€.#(L) is a standard element in
£ (L), and the first part of the assertion follows. Conversely, if @(L) is a lattice,
then each ideal (q] generating a specified translation s, on L is a standard element
of #(L), from which the distributivity of L follows.

Lemma 2. ¢(L) contains always a greatest element w, and there is a least
elemetn v in’° ®(L) if and only if OCL.

Proof. The identical mapping w(x)=x is a translation on L and K, =L;
evidently it is the greatest translation on L. The mapping t(x)=0 is obviously
the least translation on L whenever a least element O exists in L, and k,=(0]:
If there is no least element in L, then there exists for each @, €L an infinite chain
a;>a,>... and the corresponding specified translations form an infinitely descending
chain, whence 7¢ @(L).

In the following we shall consider a decomposition of a lattice by means of
translations on this lattice. In [2] JANOWITZ considered the decomposition of a lattice
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into a direct sum; this decomposition is generalized for join-semilattices in [5].
Let L bealattice with 0. a v b denotes the fact that aAb=0 and (aVx)Ab=xAb
for all x€¢L. For a subset H of L we denote by HY the set of clements acL
such that av b for all b€ H. In a lattice L with O, let H,, ..., H, be subsets of L,
each of which contains 0. We say that L is the direct sum of H,, ..., H, and
write¢ L=H,®...®H, when

(1) every element a€L can be expressed in the form a=a,V...Va,, ¢,¢H,,
i=1, ..., n,and

(2) HcHY for i#j.
The subsets Hi, ..., H, are called direct summands of L. If L=H,®...®H
then the expression in (1) unique and the sets Hj, ..., H, are ideals of L [4, Lemma
4.8]. Moreover, in a lattice L with 0, anideal J of L isa central element of (L)
if and only if it is a direct summand of L [2, Thm. 1]. Now we are able to prove
a theorem on direct sums of a lattice.

Theorem 2. A lattice L with 0 has a decomposition into non-trivial direct
summands if and only if there are at least two non-trivial translations ¢ and ) on
L such that oNA=w and oAl=z, and ¢ and A have join with each translation
on L.

Proof. Let L=J®K. According to [2, Thm. 1], Jand K are standard elements
of F(L), and JAK=(0] and JVK=L in S(L). Consider the meet JA(x],
x€L. As L=J®K,x=a,Va,,a,€J and a,€K, and the expression x=a,Va,
is unique. So JA(x]=(a;], a;€J, and hence J generates a translation ¢ on L.
As J is standard in J (L), the join @Vp exists for each translation u€@(L).
Similar facts hold also for the translation 4 on L generated by K. ¢AA corres-
ponds to the translation generated by the ideal JAK=(0], i.e. 7, and ¢VA that
of JVK=L, i.e. w. As J,K+#L,(0], o and A are non-trivial translations on L,
and the first part of the theorem follows.

Conversely, let ¢ and A be two translations with the properties given in the
theorem. As ¢Vpu exists for each translation p€ ®(L), the ideal J generating
¢ is a standard element of the lattice #(L) (by Corollary 1 to Theorem 1), and
this holds also for the ideal K generating 1. As pAl=1 and ¢Vi=w, JAK=(0]
and JVK=L, respectively. As J and K are standard and complements, they
belong to the center of 4 (L) {3, Thm. 7.2] and, accordingly, L=J@K [2, Thm. 1].
As ¢ and A are non-trivial, J, K> L, (0], and the decomposition is also non-trivial.

3. Translations on partial lattices. We call a meet-semilattice S a partial lattice
if aVb exists for any two a, b€ S having a common upper bound in S. At first we.
consider the structure of meet-semilattices S for which @& (L) is a lattice.
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Let ¢(x) and Z(x) be translations on a partial lattice S. As in the case of
lattices, one can show that B(x)=¢(x)VA(x) is a translation on S if and only if
(K, VKYAGI=(K, A V(KA (x]) for each x€8, K, K, (x]€£(S).

Theorem 3. Let S be a partial lattice. Then the following three assumptions
are equivalent:
(i) The meet-semilattice of all translations on S is a lattice.
(ii) Each translation on S is a join-endomorphism on S.
(iii) (x] is a distributive sublattice of S for each x¢S.

Proof. We shall show that (i)« (iii) and (ii) <« (iii).

(iii)=(@). We shall show that #(S) is a distributive lattice, from which the
validity of the assertion follows.

Let I,Je #(S). INJ=INJ, and IVJ={x|x=iVj,i€l, jeJ and iVjcS}
We must only show that FA(IVJ)S(FADV(FAJ) when F, I, JE #(S). Clearly,
x€FAN(IVJ)exeF and x=iVj, where i€l and j€¢J. By assumption, (iV/]
is a distributive sublattice of S and 7,j, x€(iVj]. So x=xA@EVj)=xA)V(xN)),
where (xVi)€ FAI and xVjc FAJ. Therefore, x€(ADV(FAJ).

(i)=(iii). Let &(S) be a lattice and w,y,z€(x] in S. Then the mapping
s,Vs, is a translation on S, whence (yVzJA(u]=(yAulA(zVu] for each ucS
by the analogy of Theorem 1. The distributivity of  (x] follows now by putting u=w.

(ii))=(ii). Let J be a semi-ideal of S generating a translation ¢ on S, and
assume that xVy exists in S. As xVy exists and x=¢(x), y=¢ (), then @ox)V
Ve () existsin S. As shown in the proof (iii)=(i), #(S) is a distributive lattice.
Let us consider now ¢(xVy), i.e. the meet JA(xVy]=(JAD)V(JA(¥]), which
implies that @(xVy)=¢(x)Ve(»). Thus ¢ is also a join-endomorphism on S.

(ii)=>(iii). Let wu, w, z€(x]. As the mapping s, is also a join-endomorphism,
s,(wV 2)= AWV z]=5,W)V 5, (@) =(@] AW])V((]A(z]), from which the distri-
butivity of (x] follows.

As above, one can easily prove that in a partial lattice S each (x] is a modular
lattice of S if and only if _#(S) is a modular lattice. The proof of the following
theorem is analogous.to that of Theorem 3, and hence we omit it.

Theorem 4. Let S be a partial lattice. Each translation on S has the property

that go((p @Vy)=e@Ve(y) when @()Vy exists in S, if and only if (x] is
a modular sublattice of S for each x¢€S.

The equivalenc (i)« (iii) in Theorem 3 and Theorem 4 are generalizations of
‘Theorems 4 and 5 in SzAsz’s paper [7].
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