
Universitá di Pisa
Facoltá di Ingegneria

Laurea magistrale in Ingegneria Informatica

Tesi di Laurea

Optimizations in Virtual Machine Networking

Relatore Candidato

Prof. Luigi Rizzo Vincenzo Maffione
Universitá di Pisa

Correlatore

Prof. Giuseppe Lettieri
Universitá di Pisa

Anno Accademico 2011-2012

Abstract

Network performance is a critical aspect in Virtual Machine systems and its im-
portance is becoming increasingly important in the world of computing. These
systems are commonly employed in the IT departments of several organizations,
since they allow IT administrator to build network services with high reliability,
availability and security, or to improve efficiency in computing resource usage.

In this thesis we are going to analize the state of the art of virtual machine net-
working, evaluating advantages and drawbacks of the existing solutions. We then
propose a new approach, showing that with a small amount of code modifications,
we can bring a classic emulated network device (we take e1000 as a reference
example) to a performance that is comparable or superior to the performance of
paravirtualized solutions.

Contents

1 Introduction 4
1.1 Virtual Machines classification 6

1.1.1 System level Virtual Machines 6
1.1.2 Process level Virtual Machines 8

1.2 Virtual Machine Implementation 9
1.2.1 Interpretation . 9
1.2.2 Dynamic Translation . 10
1.2.3 Hardware-based virtualization 11

1.3 I/O Virtualization techniques . 11

2 Work environment 13
2.1 QEMU features . 14
2.2 QEMU internal architecture . 15

2.2.1 QEMU event-loop . 15
2.2.2 VCPU Threads . 16
2.2.3 Networking architectures 17
2.2.4 Network frontend and backend 19

2.3 The e1000 class of network adapters 20
2.3.1 Data interface with the driver 21
2.3.2 Interrupts generation . 25

2.4 QEMU e1000 emulation . 29
2.4.1 TX emulation . 30
2.4.2 RX emulation . 31

2.5 Linux e1000 device driver . 31
2.5.1 Interface with the network stack 32
2.5.2 Interface with the PCI subsystem 35
2.5.3 TX operation . 36
2.5.4 RX operation . 38

3 Optimizations of emulated e1000 performance 41
3.1 Analysis of the existing implementation 41

3.1.1 TX performance . 42
3.1.2 RX performance . 45

2

3.2 Implementing interrupt moderation 50
3.2.1 TX performance . 52
3.2.2 RX performance . 53

3.3 Implementing TDT write batching 55
3.3.1 Implementation . 55
3.3.2 Improvement analysis 56
3.3.3 Batching without interrupt moderation 58

4 A paravirtualized e1000 adapter 60
4.1 Device paravirtualization . 60
4.2 The Virtio standard . 61

4.2.1 Virtual queues . 63
4.2.2 The virtio ring transport mechanism 65
4.2.3 Minimizing notifications using Virtio 67

4.3 An efficient Virtio network driver 70
4.3.1 TX path . 71
4.3.2 RX path . 72
4.3.3 Other details . 74
4.3.4 Performance analysis . 74

4.4 Porting paravirtualization to e1000 78
4.4.1 Asynchronous TX Processing 78
4.4.2 Communication Status Block 78
4.4.3 Implementation . 80
4.4.4 Improvement analysis 82

5 Conclusions and future work 84

3

Chapter 1

Introduction

Standard computer systems are hierarchically organized in a three layers stack, as
depicted in figure 1.1. The lowest layer is the bare hardware, the middle one is
the operating system and the upper layer contains the applications software. Two
neighbor layers can communicate through a well-defined interface, so that each
layer can ignore how the lower layers are actually implemented. In this way, the
interface provides an abstraction of the underlying software/hardware resources.
This (relatively) simple architecture has proven to be very effective in delivering
the IT services required by companies, individual users and other organizations.

Neverthless, more complex computer systems organizations have been devised
and used, in order to overcome some limitations of the standard computer system
model.
These computing environments are are known as Virtual Machines (VMs) systems.
By itself, the term Virtual Machine can have several meanings, so when using it is
important to point out what we are addressing. In section 1.1 we will provide
a classification of these meanings. In general virtualization provides a way of
increasing the flexibility of real hardware/software resources. When a physical
resource is virtualized, it can appear to be a resource of a different kind or even a
set of different resources (the same kind or different kind).
As an example, a single IA32 processor can be virtualized in a way that emulates
more PowerPC processors. Once this is done, you can build many standard 3-layer
computer systems on top of each emulated PowerPC (virtual) processor, using un-
modified OS and applications designed to be used on the PowerPC architecture.

We talk about Virtual Machines when we virtualize a physical computing enviro-
ment (e.g a server machine) and get one or more independent virtual computing
environment (the VMs), potentially different by the original one.
In the VMs terminology, each VM is also called guest, whereas the virtualized
physical computing environment is known as host. The piece of software that
provides the support for virtualization is called Virtual Machine Monitor (VMM)

4

User applications

Operating System

Hardware

Figure 1.1: A standard 3-layers-stack computer system. On the bottom the bare
hardware, in the middle the Operating System, on the top the Applications layer.

or Hypervisor.
You can virtualize nearly all the resources you wants: disks, network devices,
memories or other peripherals.

Generally speaking VMs allow to build computer systems with more abstraction
levels than the standard model has. This has important advantages:

• In terms of flexibility, using VMs you can easily run programs compiled for a
given Instruction Set Architecture (ISA) and a given Operating System (OS)
on top of a computer system that has a different ISA and/or a different OS.
Using a standard system you would be bound to the ISA of your proces-
sor and the operating system installed on your machine. This flexibility can
be exploited in several situations, such as testing new software on different
architectures (without physically have the machines supporting each differ-
ent architecture), or run legacy applications on newer, more power-efficient
hardware.

• In terms of protection, VMs can provide multiple isolated execution environ-
ments running on the same phisical machine. This allows to execute different
applications in different VMs (each VM can have its own OS), so that if an
application has a security hole, an attacker cannot use the hole to do mali-
cious attacks to an applications running on a different VM. This scenary is
still possible when applications are run in the same OS.

• In terms of resources usage, VMs can help to reduce hardware costs and
power consumption, since they naturally improve resource utiliziation. For
instance, you can use only one physical server machine to provide multiple
services (without sacrifying isolation), using the 100% of the machine re-

5

source, instead of using many underutilized server machines 1. This results
in money and energy saving.

• In terms of mobility, you can easily migrate VMs (and so replicate them)
to other locations, simply transmitting some files through the Internet. This
can also help avoiding setup times (software installation and configuration),
since through a VM you can convey a ready-to-use copy of a computing
environment to the user.

The previous list is not exhaustive, but gives an idea of the services that virtualiza-
tion can deliver, and makes clear the reasons why IT departments make massive
use of virtualization technologies.

1.1 Virtual Machines classification

As noted previously, the term Virtual Machine can have several meanings. There-
fore it is useful to give a classification of the possible meanings (see [9] section 1.5
in [14]).
First of all, VM can be divided in two categories:

• System Virtual Machines: these VMs provides virtualization at ISA level.
This means that the VM is capable of executing arbitrary code compiled
for a specified ISA. System virtual machines provides a complete executing
environment where multiple processes can be run. A system VM can then
be used to run an OS that supports several applications, namely a standard
3-layers computer environment.

• Process Virtual Machines: these VMs virtualize at the Application Binary
Interface (ABI) level, providing an execution environment for a single ap-
plication. Since applications are usually written in high level languages and
so use an high level interface2, if we want to execute a single application,
the VM is only required to emulate the high level interface and/or a sub-
set of the ISA3. User applications are therefore provided with a virtual ABI
anvironment.

1.1.1 System level Virtual Machines

System virtual machines can be further divided depending on whether the code ex-
ecuted in the VM (the guest) is of the same ISA of the physical machine supporting
the VM (host).

1Assuming, as often happens, that one or a few services don’t utilize all the computing resource
offered by a modern server machine.

2For instance an OS system call interface, or the interface provided by an interpreted program-
ming language.

3Typically unprevileged instructions, and instructions that are not problematic with respect to
CPU virtualization (see [2] and section 8.2 in [14]).

6

Hardware

Virtual Machine Monitor

User applications

Operating System

Virtual Machine 1

User applications

Operating System

Virtual Machine 2

Figure 1.2: An example of system using Type 1 VMMs. The VMM runs on the
bare hardware.

The same-ISA case is very common, since users are often interested in server con-
solidation (resource usage optimization), protection or live migration, but don’t
care about executing code compiled for a specific ISA. Same-ISA VM are gener-
ally easier to design and are generally more suitable to be executed efficiently (e.g.
the efficient hardware-based virtualization can be used in this case).
Same-ISA system VM can be further divided, depending on how the VMM is
implemented:

• Type 1 VMM (Native VMM). In this case the VMM is a software component
that runs on the physical machine (the host) without any OS support. It’s up
to the VMM to interface directly with the physical resources of the server
machines, such as CPUs, memory and peripherals. Type 1 VMM can deliver
a very good performance, but are more complex to design and require more
development efforts, since there is no OS providing basic services, abstrac-
tions, device drivers and the like. An example of system including a Type 1
VMM is illustrated in figure 1.2.

• Type 2 VMM (Hosted VMM). In this case the VMM it’s just a regular OS
process, that runs on the host OS along with other processes. The VMM can
access the physical resources of the host machine through the OS services.
The OS support speeds up the development process and make the VMM
portable. On the other hand, performance is generally inferior with respect
to the Type 1 VMM. An example of system including a Type 2 VMM is
illustrated in figure 1.3.

The different-ISA case is useful if you want to run legacy software on modern

7

Hardware

Host Operating System

User applications

Operating System

Virtual Machine 1

User applications

Operating System

Virtual Machine 2

VMM 1 VMM 2

Figure 1.3: An example of system using Type 2 VMMs. The VMM runs on top of
a conventional OS.

machines4 or if you want to test your software for compatibility with other archi-
tectures. In this case a VMM is basically a full system emulator, capable to emulate
the complete behaviour af a complex computer system.

1.1.2 Process level Virtual Machines

A very similar secondary classification applies also to process virtual machines,
although at the ABI level. A VM can expose to the application it executes (the
guest application) the same ABI exposed to a regular process excecuting in the
host system, or expose a completely different ABI.
Here the common case is when the ABI is different. The Java Virtual Machine is
an example of this VM type: it executes code written conforming to an ABI (the
Java bytecode) which is different by the ABI offered by the host OS. In this case
the JVM engine is the VMM. All interpreted language engines are VMs of this
kind. Process VMs are also used for other purposes, such as runtime optimization
of binary code (see chapter 4 of [14]), or binary translation in general.

The same-ABI case is just the concept of multiprogrammed OS, namely an OS
capable of virtualize the CPU and memory, offering to each process a virtual pro-
cessor and a virtual memory. These two virtual resources make up the enviroment
(which provides some limited degree of isolation) where an OS process lives. We
are so used to the multiprogramming concept that we don’t even think of it as being
a form of virtualization. In this case the VMM is the OS itself (together with the

4Game console emulators are a common case of this kind of VM.

8

ISA which is designed to efficiently support multiprogramming).

1.2 Virtual Machine Implementation

As showed in section 1.1, there are many types of conceptually different virtual
machines. Neverthless, all the VMs deal with executing code written for a certain
environment (source code, or guest code), using another environment (the host
environment). This is a form emulation: the term emulation refers to the process
of implementing the interface and functionality of a system on a system having a
different interface and functionality ([14] page 27).
The basic techniques employed to implement emulation are three: interpretation,
dynamic translation, and hardware-based virtualization. These techniques can be
used alone or in combination to provide the virtual environment we want to imple-
ment. Nowadays VMMs generally use a combination of the three methods.

1.2.1 Interpretation

The naive emulation technique is known as interpretation. Basically, the VMM
has to do in software what a physical CPU would have done in hardware. Take
the current instruction (or statement, if we are dealing with high level languages
VMs), excecute it updating the VM status (which is an in-memory representation
of all the VM resources, like registers, memories and the like), and go to the next
instruction. The VMM would then be implemented as a loop that, in each iteration,
performs the fetch, decode and execute phases of instruction execution.

Although writing an interpreter for a modern ISA or an interpreted programming
languages can be a very long and complex process, because of the complexity of
the source language, the technique is conceptually easy. You just have to read
an Instruction Set specification or a Programming Language specification and im-
plement all the possible instructions/statement strictly respecting the specified be-
haviour.
Being simple, this method is generally terribly inefficient if compared to the native
execution of the source code on a processor designed to execute the source ISA,
because for each source instruction the VMM has to execute many host instruc-
tions (e.g. 30-100) to perform in software all the necessary operations. In other
words, the average translation ratio is very high (e.g. 40). On the other end, a big
advantage is that the VMM has always the control over the execution of the source
program, because it is executing the program step by step.
Many tricks can be implemented in order to improve the emulation performance.
Some of these tecniques can be found in [14] (sections 2.1 through 2.4).

9

1.2.2 Dynamic Translation

A more sophisiticated form of emulation is called dynamic translation or binary
translation or Just In Time compliation, depending on the context.
Having to translate a source code in something else, an idea is to translate it into
equivalent binary code that can be directly executed on the host CPU. The VMM
does this translation on the fly, as soon as the source code is fetched from memory.
The method is intended to amortize the costs of interpretation, doing the repetitive
work (fetch and decode) once or a few times. The code execution step of a source
instruction or a block of instructions, namely the translation, is generated once
(or a few times) and saved in a Code Cache. The next time the source program
flow goes through that block of source instructions, we don’t have to fetch, decode
or translate, but just to execute the translation block. The blocks of translated
instructions can be connected directly to each other using native jump instructions,
in the way suggested by the source program flow. After some time the code cache
will become the complete translation of the source program into the host ISA.
The final result is that the average translation ratio can be very close to 1 (e.g.
less than 4), giving a nearly native performance, or at least a performance that is
acceptable also for performance sensitive applications.

The whole process is of course way more complicated than what has been pre-
sented here. Several problems are present, such as the code-discovery problem that
makes impossible to do a static translation, or the code-location problems, that is
due to the different address space of the guest and host systems, or the state map-
ping problem, that is the way the VMM maps guest registers and similar resources
to the host ones.
Similarly to the interpretation method, with dynamic translation the VMM has (or
can easily get) complete control over the guest code execution: While doing the
translation, it can put traps5 in the guest code wherever it wants.
For further informations on dynamic translation, see [14] (sections 2.5 through
2.9).

The same-ISA case

Interesting enough, interpretation and dynamic translation can make sense also in
the same-ISA case. In this case the translation is simplified, and most of the time
the source code can execute natively on the host machine, without performance
losses.
However there are some instructions that cannot be executed natively, because they
access physical resources, because are trying to access resources that do not exists
on the physical machines, or because they are not easily virtualizable (see [2] and
section 8.2 of [14]).

5Point in the code that interrupts the guest execution and give control to the VMM directly, or
indirectly thorugh the host OS.

10

As a typical example, memory accesses addressing the I/O space or the memory
mapped I/O can have side effects and then must be emulated in software. If the
instruction was intended to access a physical resource that exists on the host, like a
network adapter, the VMM cannot allow direct access to the device, because other
processes or the host OS could be accessing the same device at the same time, and
certainly the host network driver and the guest network driver are not aware of
each other. If the instruction was intended to access a virtual network adapter (that
doesn’t exist on the host), the I/O instruction must be trapped in order to emulate
the device behaviour in software.

1.2.3 Hardware-based virtualization

Due to the widespread use of VMs, the processor vendors have introduced proces-
sor extensions that allow for efficient and safe execution of guest code in the same-
ISA case. These hardware assists are intended to overcome some of the common
problems arising when using dynamic translation techniques, and at the same time
they make it easy to execute guest code natively. For the x86 ISA, both AMD and
Intel have proposed their extensions, AMD-v ([4]) and Intel VT-x ([10]). These
features provide all the means necessary to fully virtualize the x86 ISA. Since they
fairly complex, we will only outline those aspects that are intersting with respect
to our work.

When the extension are present, the CPU is able to switch to a special mode, that
we will call VM mode, through a so called VMEnter instruction and switch back
to normal mode through a so called VMExit instruction. When in VM mode, the
CPU can execute guest code in a controlled environment. When necessary, the
CPU can switch back to normal mode, starting to execute host code (VMM, OS or
other processes). The switch operation between the the host world and the guest
world is conceptually similar to the more familiar process context switch, since it
includes saving the host (guest) state and loading the guest (host) state. These op-
eration are done in hardware but are still very expensive, expecially if we consider
the additional software overhead involved in this host-guest transition, due to OS
operations and possible userspace/kernelspace transitions that could be necessary
to transfer the control to the VMM or to the guest.
The VM switches are necessary in some situations, such as dealing with I/O oper-
ations (see 1.2.2), or when we want to deliver an interrupt to the guest.
Since VM switches are very expensive, but sometimes necessary, trying to mini-
mize them is fundamental if a VMM wants to deliver good I/O performance.

1.3 I/O Virtualization techniques

Similarly to what happens with code interpretation (section 1.2.1), emulating a
device means doing in software what the device would do in hardware. Therefore,

11

each time the guest accesses an I/O device (e.g. writes to a device register), the
VMM has to take the control and emulate all the side effects associated to the
specific I/O access.
Virtualization of I/O devices is also described in [15], which also proposes some
ways to accelerate the emulation. However, through chapter 2 we will give a
complete example of how a network adapter is virtualized in our reference VMM
(QEMU).

In order to further improve the early I/O virtualization tecnhiques, research and
products have followed three routes:

• Hardware support in the devices (virtual functions and IOMMUs [18]), so
that guest machines can access directly and in a protected way subsets of the
device and run at native speed.

• Run-time optimizations in the VMM. As an example, [3] shows how short
sequences of code involving multiple I/O instructions can be profitably run
in interpreted mode to save some VM exits.

• Reduce the expensive operations in device emulation (I/O accesses and in-
terrupts) by designing virtual device models more amenable to emulation.
This approach is known as device paravirtualization and has produced sev-
eral different virtual device models (vmxnet [16], virtio [13], xenfront [6]),
in turn requiring custom device drivers in the guest OS. Synchronization be-
tween the guest and the VMM uses a shared memory block, which is used
to exchange the state of the communication, while I/O accesses and inter-
rupts are used only for notifications: In this way minimizing the amount of
VMExits is easier.

We will analyze device paravirtualization in chapter 4. In section 4.4 we will show
that paravirtualization can be introduced with minimal extensions into an existing
physical device model.

12

Chapter 2

Work environment

In section 1.1 we have introduced a classification of Virtual Machine systems. The
work presented in this thesis is restricted to same-ISA System Virtual Machines,
where the Virtual Machine Monitor is a type 2 VMM. In other words, we will deal
with VMs that are able to run an arbitrary OS compiled for the host ISA. The guest
OS can in turn provide an execution environment for many user applications. Since
the VMM is of type 2, it is implemented as a regular process in the host OS, and
can make use of all the OS services. We can therefore access the host physical
resources without requiring administrator previleges.
We also restrict our work to VMMs that make use of hardware-based virtualization,
because the optimizations we will introduce are particularly effective in limiting the
amount of VM switches between the host world and the guest world. Since these
VM switches are very expensive with hardware virtualization, the performance
gain is going to be significant.

While the assumptions made may appear restrictive, they are not at all. The class
of VMMs that we consider is extremely common in the world of computing. These
VMMs are used in datacenters and IT departments for server consolidation, appli-
cation isolation, to provide users/developers with zero-setup computing environ-
ments or for other application in which it is not important that the VM computing
environment has a different ISA from the host ISA. Moreover, hardware-based vir-
tualization is generally the most efficient CPU virtualization technique, and so it’s
worth focusing on this case. Several VMM software belonging to the considered
class are available. QEMU, VirtualBox, VMWare, Parallels, Windows Hyper-V or
Windows VirtualPC are among the most common examples of this kind of VMMs.
These software tools are extremely widespread and for this reason performance
optimizations in these area are certainly useful.

This said, we have chosen the QEMU-KVM Virtual Machine Monitor for imple-
mentations and tests, although our optimizations are relevant to the entire class of
VMMs.

13

A GNU/Linux-based operating system (Archlinux) has been used on the host ma-
chine. The guest OS is generally Archlinux, but some tests have been performed
with FreeBSD as a guest, too. Although Linux is a kernel and not a complete
OS, in the following we will use the expression “Linux OS” to actually mean
“GNU/Linux-based OS”, for the sake of simplicity.
Since our optimizations concern network performance, we had to choose a network
device to work with. The e1000 class of network devices was chosen, since it is
emulated by the vast majority of VMMs and supported by the main OSs (Windows,
Linux, FreeBSD).

2.1 QEMU features

QEMU ([1], [5]) is a free, open source and multi-platform type 2 VMM, that
makes use of dynamic translation to achieve good emulation performance. QEMU-
KVM is a QEMU branch that extends the original software to take advantage of
hardware-based virtualization. Whenever possible, QEMU-KVM uses hardware
virtualization in order to execute guest code natively. In the following we will use
the terms QEMU and QEMU-KVM in an interchangeable manner. At the time of
this writing, the QEMU-KVM version number is 1.2.0, and so we will refer to that
version.

QEMU is a very flexible tool:

• It supports process virtual machines: by means of dynamic translation it can
execute on the host OS a single program compiled for an other ISA. This
operating mode is called User mode emulation.

• It supports system virtual machines: by means of dynamic translation and
hardware-assisted virtualization (when possible) it can emulate full com-
puter systems (including common peripherals), supporting unmodified op-
erating systems. This operating mode (which is the one we are interested in)
is called Full system emulation.

• It supports various architectures, including IA-32 (x86), x86-64, MIPS R4000,
Sun’s SPARC sun4m, Sun’s SPARC sun4u, ARM development boards (In-
tegrator/CP and Versatile/PB), SH4 SHIX board, PowerPC, ETRAX CRIS
and MicroBlaze architectures.

• It can emulate Symmetric Multiprocessing Systems (SMP), making use of
all the CPUs that are present on the host system.

• It is able to emulate various peripherals, such as hard disks, CD-ROM drives,
network cards, audio interfaces, or USB devices.

• Like similar hypervisors, it is able to provide its VM with network connec-
tivity. The way this can be done will be presented in section 2.2.3.

14

• It does not normally require administrative rights to run. In our experiments
administrative rights won’t be necessary.

QEMU is able to emulate the e1000 class of PCI network adapters1, as well as other
network devices (RTL8139C+, i8255x (PRO100), NE2000 (RTL8029), AMD PC-
NET II (Am79C7070a)).
Moreover, QEMU supports the Virtio framework, that exposes a paravirtualized
network device, virtio-net, intended to be used for high performance networking.
The Virtio paravirtualized soution will be analized in chapter 4.

2.2 QEMU internal architecture

In this section we will illustrate those details of QEMU implementation that is
necessary understand in order to implement our optimizations.

2.2.1 QEMU event-loop

QEMU is an event-loop based software, implemented as a single-process multi-
threaded application. One thread, referred to as IOThread, executes the event-loop,
waiting for new events to occur2. The waiting routine is a select() system call,
which is not the most efficient choice on Unix-like systems3, but is more portable
across different platforms.

The file descriptors associated with the select() can be associated to regular files,
sockets, device files (such as TAP devices), or even special in-kernel objects, such
as POSIX timers, signals and eventfds. These file descriptors are used by QEMU
to let the VM communicate with the host, and possibly with the rest of the Internet.
In other words, they are used for performing the I/O operations requested by the
VM. Of course the guest OS still performs I/O operations accessing I/O ports or
memory-mapped I/O (MMIO) in its physical address space and is unaware of being
emulated.

The QEMU core codebase offers to the QEMU developer an API that can be used
to implement devices emulators. In particular, the API provides two useful abstrac-
tions: the QEMUTimer and the QEMUBH.
QEMUTimers are one-shot absolute timers, that can be used to execute a callback
function at a certain point of time in the future. The callback is always executed
by the IOThread, when this recognizes that the deadline has been passed. The QE-
MUTimers are supported by the Linux OS with a single one-shot relative POSIX

1To be more precise, the emulated hardware exposes to the guest OS the PCI device ID of the
82540EM model.

2This is implemented in main-loop.c
3poll(), and specially Linux epoll() or BSD kqueue() are more efficient.

15

timer4, which is always (re)armed to expire - waking up the event-loop - at the ear-
liest deadline. The expiration check for QEMUTimers is done at the end of each
event-loop iteration, even if the event-loop was waken up for a reason different
from the POSIX timer expiration. In the current implementation, moreover, every
time the POSIX timer is rearmed, the relative deadline is forced to be greater or
equal that 250 µs5.

QEMUBH is the QEMU abstraction of the bottom half concept, widely used in OS
drivers implementation. A QEMUBH can be seen as a QEMUTimer that expires
as soon as possible. In practice when a QEMUBH is scheduled the event-loop is
notified, so that it wakes up (or finishes the current iteration and begins another
iteration) and executes all the callbacks of currently scheduled QEMUBHs. There-
fore the QEMUBH callbacks are always executed by the IOThread, similarly to the
QEMUTimer callbacks6. This feature is very important in terms of parallelism, as
will be clear in the following chapters.

2.2.2 VCPU Threads

While executing the event-loop, the IOThread handles all the interactions between
the VM and the external world. The guest code, however, is executed by one
or more threads, that we will call VCPU threads. In the current implementation
QEMU creates as many VCPU threads as the number of SMP processors speci-
fied by the QEMU user. When using hardware-based virtualization (we made this
assumption at the beginning of this chapter), a VCPU thread continuously switch
between the VM mode and the normal mode (see section 1.2.3).

When the VCPU tries to execute an I/O operation, accessing I/O ports or MMIO, a
VMExit happens. A VMExit also occurs when an interrupt is delivered to a VCPU.
There could be other type of events that cause a VMExit, but we are not interested
in them. On a VMExit the VCPU stops executing guest code and starts executing
QEMU code, in order to handle, if necessary, the event that caused the VMExit.
After the event has been handled, the VPCU executes a VMEnter and continues to
run the guest code from the point where it was interrupted.

Since multiple threads are involved, and all of them - IOThread included - can
access the shared structures used by the emulator (e.g. the structures employed
to implement the virtual devices), mutual exclusion is required. In the current
implementation the mutual exclusion is guaranteed by a single big-lock, called the

4Similar mechanisms are used in other OS, or if POSIX timers are not available under the Linux
OS.

5For more information about the QEMUTimer interface and implementation, refer to the file
qemu-timer.c in the QEMU project root directory.

6For more information about the QEMUBH interface and implementation, refer to the files
qemu-aio.h and async.c in the QEMU project root directory

16

.........

UNLOCK

SELECT

LOCK

RUN SCHEDULED BH CALLBACKS

HANDLE PENDING IO EVENTS

RUN EXPIRED TIMERS CALLBACKS

UNLOCK

VMENTER

EXECUTE GUEST CODE NATIVELY

VMEXIT

LOCK

HANDLE THE EVENT

IOTHREAD

VCPU 1

VCPU 2

Figure 2.1: Threads of a QEMU process. The IOThread executes the event-loop
while each VCPU thread executes a guest CPU.

iothread lock.
Therefore, everytime a VCPU VMExits, it has to acquire the iothread lock be-
fore it can handle the event. After the event has been handled, the VPCU thread
release the iothread lock and executes a VMEnter instruction. Similarly, the
IOthread has to acquire the iothread lock every time it wakes up for event han-
dling, and release the lock only when the event-loop iteration terminates.
Putting all together, the figure 2.1 depicts the QEMU thread scheme.

2.2.3 Networking architectures

When running a VM it is of fundamental importance to make possible for the
guest to communicate with the outside world using the networking infrastructure,
otherwise the VM itself would be an useless computing box.
Since the VM it’s a software entity, however, it isn’t connected to any real network.
Therefore the hypervisor has to provide some form of network infrastructure virtu-
alization, so that the guest OS thinks its (virtual) network device is connected to a
physical network and can then exchange packets with the outside.

All the hypervisors cited previously (QEMU included) provide the user with a
few virtual network infrastructure modes, so that she can choose the best way to
connect her VM. Three modes are commonly employed:

17

• NAT mode. In this case the guest OS thinks to be physically connected to
a completely fake LAN, entirely emulated inside the hypervisor. The VMM
usually emulates a DHCP server, a DNS server and a gateway router, so that
the guest OS can easily configure its network interfaces and its routing tables
to communicate with the outside world. When the guest sends a TCP/UDP
packet on the fake LAN, the VMM intercepts the packet, performs address
translation (NAT) turning the guest source IP (the guest IP) into the host
IP and sends the packet towards its destination using the host OS services
(thus the host OS routing tables). The inverse translation is performed when
receiving a packet.

In this way the VM is easily provided with Internet connectivity, but it’s not
visible from the outside and cannot communicate with other VMs present on
the same host. In QEMU this mode is called Usermode networking.

• Host-only mode. Also in this case the guest OS thinks to be physically con-
nected to a LAN. The LAN is emulated by means of a software bridge (that
emulates a layer-2 network switch), and the VM is connected to a port of that
bridge. More VMs can be connected to the same bridge, making inter-VM
communication possible. The software bridge can be internally implemented
within the hypervisor, or can be an external software bridge.

Whit QEMU this mode can be set up on a Linux host using the in-kernel
bridging and TAP interfaces. Each VM is assigned a TAP interface where
it can write/read ethernet frames, and all the TAPs are bridged together to
the in-kernel bridge. In this way a frame sent by the guest is written by a
QEMU instance to its associated TAP and is therefore routed by the bridge
to the correct destination TAP. The receiving QEMU process can then read
the frame from the TAP and push it to its VM. In this case no DHCP or DNS
server is emulated, and you have to configure yourself the network of each
VM7. Since the software bridge itself has its separate network interface, also
the host can communicate on the LAN.

• Bridged mode. This mode is an extension of the host-only mode. The only
difference is that a physical host network interface, connected to a real net-
work, is also bridged to the VMs LAN. Since the physical interface becomes
a bridge port, the host can still access the physical network through the soft-
ware bridge interface. In this way the host can share its connectivity with
all the VMs connected to the software bridge. If the physical interface is
connected to a LAN, the VMs LAN appears to be part of the physical LAN.

Clearly the NAT mode is not interesting with respect to our goals, since it is only
intended to be a way the VM can easily obtain Internet connectivity, and it’s not
intended to be a flexible or efficient networking mode. Instead we will consider

7The configuration can be static or you can run a DHCP server on one of the VMs connected to
the bridge.

18

host-only mode, since we are intersted in optimizing the communication perfor-
mance between two VMs on the same software bridge or between a VM and the
host bridge interface. In this work it would make no sense considering to bridge
also the host physical interfaces (bridged mode), because optimizing the perfor-
mance of a real network adapter it’s not among our goals.

2.2.4 Network frontend and backend

In order to implement a specific networking architecture, the QEMU implementa-
tion includes a degree o separation, namely an interface, between the piece of code
that emulates the network adapter and the code that provides access to the chosen
networking model. This is done because the two subsystems are completely in-
dependent, and you can easily combine every virtual network adapter with every
networking access mode.
Using the QEMU terminology, the network device emulation is also called network
frontend, and the networking access mode is called network backend.

In our case the network frontend is e1000. The e1000 frontend is implemented
within the file hw/e1000.c (in the QEMU project root directory). This source file is
the only one that contains code which is specific to the e1000 class of networking
devices, exporting to the rest of the system the same interface exported by the other
network devices.

The network backend can be

• “user”, which implements Usermode networking.

• “tap”, which is an implementation of host-only/bridged networking that re-
lies on TAP devices and in-kernel bridges.

• other implementations of host-only/bridged networking that use a different
software bridge solutions, maybe in conjunction with TAPs and in-kernel
bridges. The “VALE” backend ([11]) is an example of high performance al-
ternative implementation of the host-only/bridged networking access mode.

Frontend and backend can be seen as two peers connected to each other that are able
to exchange ethernet frames. Each peer exports a receive method that accepts an
ethernet frame as argument8. That method will be invoked by the QEMU network
core when the other peer wants to send a frame. Moreover, each peer can optionally
export a can receive method that is called right before the receive method, to
make sure that the peer is willing to receive a frame (e.g. it has enough space).
If can receive returns 0, the corresponding receive method is not called and
the packet sent is appended to an internal queue. If can receive returns 1, the
receive method is invoked. A peer can receive all the packets queued into its

8The ethernet frame can be specified with an address and a length, or with a scatter-gather array.

19

receive

send

send

receiveNetwork

Guest

BACKEND FRONTEND

Figure 2.2: Interface between a QEMU network frontend and a QEMU net-
work backend. Each peer can send network packets to the other peer calling the
qemu send packet() function.

internal queue by calling qemu flush queued packets(). If a can receive
method is not defined, however, the receive method is always called.

In this way, when a frontend wants to send a frame to the network, it invokes the
qemu send packet function provided by the QEMU networking API, that will in-
voke the receivemethod exported by the backend. The backend receivemethod
will push the frame onto the network, in a way that is specific to the backend itself.
On the other direction, when the backend gets a frame from the network, it invokes
the qemu send packet function, that will in turn invoke the receive method ex-
ported by the frontend. This method will push the frame into the guest system in a
way that is specific to the network device model.
The frontend-backend interface is depicted in figure 2.2.

2.3 The e1000 class of network adapters

In this section we will illustrate some features and some details about the inner
working of an e1000 ethernet network adapter. Once again, we will only describe
those aspects that are relevant to our goals. The complete specification can be
found in [7].

Since the network communication is extremely important in the IT world, the mar-
ket constantly pushes hardware vendors to produce high performance, low-power,
fully featured flexible, network adapters.
As a result, modern network devices are very complex. To get an idea of this
complexity, one can observe that a device can implement more then a hundred
of software-visible registers. Complexity is the price to pay in order to get high
flexibity and several useful features. Flexibility helps the IT administrator to tune
the device parameters in order to find the right tradeoff between performance and
power consumption, throughput and latency, and the like. The rich set of features

20

the device come with helps to adapt the device to different usage patterns and al-
lows for performance optimizations (expecially for TCP/IP traffic) when offloading
capabilities are present. Hardware offloading features are supported by virtually
every recent network adapter.
The most common feature are

• Checksumming offload. When this feature is present, the device computes in
hardware the checksums required by the main Internet protocols, such as IP,
TCP and UDP. This saves the OS to do this work in software, which could
be very expensive, expecially with checksums that are computed also on the
payload and not only on the protocol header (e.g. TCP and UDP checksums).

• TCP Segmentation Offload. When this feature is present, the device is able to
do the TCP segmentation in hardware, splitting a TCP segment over multiple
ethernet frames. The segmentation is necessary because the real MTU of a
TCP connection is almost never greater than 1500 bytes (the ethernet original
MTU), but the TCP window is commonly greater than that value. The OS is
then forced to do the splitting. With the feature present, however, the OS can
send to the device driver a frame containing a TCP segment which is greater
than the MTU9. The device driver can pass that frame to the adapter that
performs the segmentation in hardware and sends multiple ethernet frames.
Apart from the obvious speed-up obtained because the operation is done in
hardware rather then in software, this mechanisms has an important positive
side effect. The network overhead necessary to traverse the TCP/IP stack is
suffered only once, for a big TCP packet, instead of once for each MTU-
sized fragment. This clearly amortize the kernel per-packet overhead.

• Scatter-gather capability. When this feature is present, the device is able to
send a frame that is stored in multiple non contiguous fragments in the ma-
chine physical memory. Therefore the OS is not forced to linearize (gather)
the fragments, avoiding the copy overhead. This is useful specially when the
OS wants to send large packets. In other words the device is gather-capable.

The e1000 adapters have this three offloading capabilities.

2.3.1 Data interface with the driver

Being high performance devices, modern network adapters rely on Direct Memory
Access (DMA) operations and interrupts.
When the device driver wants to send an ethernet frame through the adapter, it has
to tell the adapter where the frame is stored in physical memory and how long it
is10. Once the device knows where the frame is, it can directly access the physical
memory11 and send it on the wire. More commonly, the frame is DMA’ed into an

9Up to 64KB with the Linux kernel.
10When dealing with fragmented frames, the driver has to specify somehow a scatter-gather array.
11In this example we assume there isn’t any IOMMU.

21

internal buffer for further processing before being sent on the wire, but this is just
a detail.
When the adapter receives a frame from the wire, it has to store it in the machine
physical memory. For this reason, the device driver has to tell the adapter where it
can store incoming frames, before the frames actually comes. If the adapter doesn’t
know where to put incoming frames, it cannot accept them.

It is clear that there must be a well-defined interface between the driver and the
device. This interface is known as ring. A ring is a circular array of descriptors that
are used to exchange address/length information12. A network adapter has at least
two rings. The first one is the TX ring and it is used with outgoing frames, whereas
the second one, the RX ring, is used with incoming frames. Network adapter can
have multiple TX/RX rings with possibly different policies and priorities, so that
one can do some traffic engineering.
However, the e1000 adapter model emulated by QEMU has one TX ring and one
RX ring. The array length, namely the number of descriptors, can be chosen by the
driver. In e1000 it must be a power of two and not more than 4096.

TX ring

The e1000 TX ring is an array of N TX descriptors. Each TX descriptor is 16
bytes long and contains the address (in physical memory) and the length of a frame
(or a frame fragment) that is going to be sent or that has already been sent. The
descriptor contains also flags that can be used to specify options, and status bits.
Two index registers are implemented for the synchronization between the driver
and the adapter: The TDT register (Transmit Descriptor Tail) and the TDH register
(Transmit Descriptor Head). These are index registers since their value are array
indexes with respect to the TX ring.

At the start-up, TDT and TDH are initialized by the driver to the same value, usu-
ally 0. When the driver wants to send a new frame, it writes the physical address
and the length of the frame in the TX descriptor pointed by the TDT register and
then increments the TDT register itself. Since the descriptor array is circular, the
TDT must be set adequately.
When the adapter recognizes that TDH is different by TDT, is knows that there
are new frames to transmit, and start processing the descriptor pointed by TDH. A
write access to the TDT register is therefore the way the device driver notifies the
adapter that there are new frames ready to be sent.
For each descriptor to process:

1. The frame pointed by the decriptor is sent on the wire.

2. The TX descriptor is written back in order to set the DD (Descriptor Done)
bit that indicates the TX descriptor has been processed.

12Being an array a ring is a contiguous zone in the physical memory.

22

TDH TDT

Figure 2.3: The e1000 TX ring with its index registers. The grey area contains
software-owned descriptors, while the white area contains hardware-owned de-
scriptors. Index registers are used for synchronization between software and hard-
ware.

3. The TDH register is incremented circularly.

The adapter stops the processing only when TDH == TDT, e.g. there are no more
descriptors to process.
When the driver increments the TDT, the descriptor previously pointed (the one
that has just been written) is committed to the hardware, and the hardware owns it
until the decriptor is processed.
Therefore, in each moment the ring is partitioned in two contiguous parts: The de-
scriptors owned by the hardware, which are waiting to be sent on the wire, and the
descriptors owned by software, which are free to be used by the driver to commit
new frames.
In order to prevent the index registers to wrap around, the driver should never use a
TX descriptor if this is the very last free TX descriptor. This happens when TDT is
shuch that incrementing it circularly would cause TDT == TDH. When the TX ring
is in this state (TX ring full), the driver should stop transmitting. The transmission
can be enabled again when the hardware process some descriptors, incrementing
TDH.
The figure 2.3 depicts the TX ring with its index registers.

Multi-descriptor frames Sometimes a frame is not stored contiguously in phys-
ical memory, or it’s bigger than 4KB. In these cases the frame to transmit cannot
be specified with a single TX descriptor, but many consecutive TX descriptor must
be used. The last TX descriptor describing a frame must have the EOP (End Of
Packet) bit set.

Context descriptors There are actually two generations of TX descriptors: Legacy
descriptors and Extended descriptors, the latter being the most recent ones. When
extended descriptors are used (this is normally the case), hardware offloading re-
quests can be specified for each TX frame to send by putting a so called context
descriptor in the TX ring before inserting the regular data TX descriptor(s). Linux
device driver makes use of extended TX descriptors and context descriptors.

23

RX ring

The e1000 RX ring is an array of N RX descriptors. Each RX descriptor is 16 bytes
long and contains the address (in physical memory) and the length of a frame that
has been received by the adapter, or only the address of a memory location that
can be used by the adapter to store an incoming frame. The descriptor contains
also flags that can be used to specify options and status bits. Two index registers
are implemented for the synchronization between the driver and the adapter: The
RDT register (Receive Descriptor Tail) and the RDH register (Receive Descriptor
Head). These are index registers since their value are array indexes with respect to
the RX ring array.

At the start-up, the driver initializes RDH and RDT to 0. At this point, the adapter
still doesn’t know of any memory buffer where it can store incoming frames, so it
cannot receive anything. To give the hardware memory buffers to work with, the
driver puts the physical address of a memory buffer13 in the RX descriptor pointed
by RDT and increments RDT circularly. Writing to the length field of the RX
descriptor is useless, since this value is not used by the device. It’s important to
note that the size of the memory buffer must be greater or equal then the maximum
frame length, since we cannot know in advance how long a future incoming frame
is going to be.
A write access to the RDT register is therefore the way the device driver notifies
the adapter that there are new memory buffers ready to be used to store incoming
frames.
If the adapter sees that RDH is different by RDT, it recognizes to have memory
buffers available, and starts accepting incoming frames. When a new frame arrives
from the wire, the adapter

1. Fetches the RX descriptor pointed by the RDH register.

2. Copies the frame to the address contained in the RX descriptor.

3. Writes back the descriptor in order to write the length of the received frame,
and to set the DD (Descriptor Done) bit. The DD bit indicates that the RX
descriptor has been used to receive a frame.

4. Increments the RDH register circularly.

5. If programmed to do so, the device would normally sent an interrupt (see
section 2.3.2), in order to tell the driver there are new received frames ready
to be pushed to the kernel network stack.

When the driver increments the RDT, the descriptor previously pointed (the one
that has just been written) is committed to the hardware, and the hardware owns it
until the decriptor is used.

13How the memory buffer is allocated depends on the OS and on how the driver is implemented.

24

RDH RDT

Figure 2.4: The e1000 RX ring with its index registers. The grey area contains
software-owned descriptors, while the white area contains hardware-owned de-
scriptors. Index registers are used for synchronization between software and hard-
ware.

Therefore, in each moment the ring is partitioned in two contiguous parts: The
descriptors owned by the hardware, which can be used to store new incoming
frames, and the descriptors owned by software, which are unused or point to re-
ceived frames ready to be pushed to the network stack.
Similarly to what happens the TX ring, in order to prevent the register indexes to
wrap around, the driver should never increment the RDT register if the increment
would cause RDT == RDH. When this situation happens (full RX ring) the driver
should stop giving memory buffers to the adapter. When new frame are received,
the hardware increments RDH, and so it is possible to increment RDT again.

The interrupt routine should then push the arrived frames to the kernel and pro-
vide the adapter with more memory buffers (incrementing the RDT), otherwise the
adapter cannot accept more incoming frames. A common strategy is to try to keep
the RX ring always full. In order to do this, at the startup the driver writes N − 1
RX descriptor with the address of N − 1 memory buffers, and set RDT to N − 1,
so that the ring is full. Every time an interrupt arrives, the interrupt routine pushes
the received frames to the kernel and replenish the ring, making it full again. This
strategy avoid situations in which the adapter is forced to reject incoming frames
because it has no memory buffers available.
The figure 2.4 depicts the RX ring with its index registers.

2.3.2 Interrupts generation

The e1000 network adapter can generate interrupts for different reasons, but we are
interested in two types of interrupts:

• TX interrupts: these interrupts are generated when the transmission of one
ore more hardware-owned frames completes. Each TX descriptor has a bit
flag (Report Status, RS) that can be set to specify if the hardware has to send
an interrupt as soon as the transmission of the associated frame is complete.
In every case an interrupt is always sent when the TX ring becames empty
(TDH == TDT). The interrupt routine, depending on the OS and the driver
implementation, may execute cleanup operations on the descriptors that have

25

been processed and mark them as free so that they can be used to commit new
frame to the adapter.

• RX interrupts: these interrupts are generated after the hardware has received
(and stored in physical memory) an incoming frame, in order to notify the
driver that it can send the frame to the kernel network stack. When the frame
is sent to the kernel, it will find the right way to its destination, that can
be anything (trash included). Assuming the destination is a user process,
what the OS does is just appending the packet to a queue associated to the
receiving socket. At this point the sleeping user process is notified and can
be scheduled to complete the read operation from the socket queue.

There is a big concern when dealing with RX interrupts. If the device doesn’t limit
them, they act as a source of uncontrolled load for the CPU. The receiving machine,
in fact, is forced to serve incoming RX interrupts even if the RX interrupt rate is
very high. Since we are dealing with high performance devices, we would like to
be able to receive up to 1 Mpps (or even more). The overhead involved in interrupt
handling is generally quite high, and so each interrupts has a fixed cost that must
be paid before doing useful work, such as push the received frame to the network
stack and let the receiver process actually receive it.
If each packet receive generated an interrupt, we would have to handle up to
1000000 interrupts per seconds, which something that would completely stall our
machine. When the interrupt rate is too high, in fact, the machine spends almost all
the time serving interrupts14, and there is no time left for other things to happen,
e.g. for user processes to read the received packets. This is a quite bad situation,
because the CPU is 100% utilized, but the machine, on the whole, cannot do any
useful work (this is the livelock problem).
The situation could be slightly better if the machine has more than one CPU, but
still it’s not good for the CPU servicing the interrupts to spend too much time in
interrupt handling overhead.

Cleary, this problem can only be solved if the device somehow collapses RX in-
terrupts, raising an interrupt every batch of received frames, let’s say 100 frames
per batch, and not every single frame. In this way the interrupt rate is 100 times
lower, and the interrupt overhead cost is amortized over 100 frames. In every case
the device must guarantee that a RX interrupt is eventually sent after a period of
inactivity, even if it is still waiting for a 100-frames batch to be completed, because
the device cannot know when the next frames are going to come.
These and similar mechanisms are known as interrupt mitigation or interrupt mod-
eration, since they tries to moderate the interrupt rate.
Interrupt moderations is commonly applied also to TX interrupts (or to all the in-
terrupts in general). The TX interrupt rate can be controlled because the driver can

14The interrupt handling is by its nature an high priority task with respect to normal process exe-
cution.

26

control (and limit) the TX rate. Neverthless it is convenient for the driver to take ad-
vantage of the interrupt-rate-limiting hardware capabilities rather than implement
a similar feature in software15.

The e1000 class of network adapters implements two interrupt moderation mecha-
nisms.

The older moderation mechanism

The older mechanism is supported by the registers TIDV (Transmit Interrupt Delay
Value), TADV (Transmit Absolute Interrupt Delay Value), RDTR (Receive Delay
Timer Register) and RADV (Receive Interrupt Absolute Delay Value), where each
register is provided with a countdown timer.

TIDV and TADV, when properly set, can be used to provide TX interrupt modera-
tion on a per-descriptor basis.
When the adapter processes a a TX descriptor, if the RS bit and the IDE bit16 are
set, an interrupt is not raised immediately, but the TIDV timer is armed (or rearmed)
with the value specified in the TIDV register itself. When the TIDV timer expires,
an interrupt is raised in order to inform the driver about the TX completion of one
or many frames. The TIDV register can therefore be used to coalesce TX interrupts.
However, it might be necessary to ensure that no completed transmission remains
unnoticed for too long an interval in order to ensure timely release of TX buffers.
The TADV register has been added for this purpose. Like the TIDV timer, tha
TADV timer only applies to TX descriptor where both the RS bit and the IDE bit
are set. This register can be used to ensure that a TX interrupt occurs before a
predifined time interval after a transmission (whatever) is completed. The time
interval can be specified in the TADV register itself. After each TX descriptor
is processed, the TADV timer is is armed with the value specified in the TADV
register only if it is not already running. When the timer expires, a TX interrupt is
generated.

RDTR and RADV, when properly set, can be used to provide RX interrupt moder-
ation on a per-received-frame basis. The RDTR timer is armed (or rearmed) imme-
diatly after a new packet is received and transferred to physical memory, using the
interval value specified in the RDTR register. When the RDTR timer expires, an
RX interrupt is raised, and the timer is cleared. The RDTR register can therefore
be used to coalesce RX interrupts, in the very same way the register TIDV is used
to coalesce TX interrupts.
Also in the RX case it may be necessary to ensure that no receive remains unnoticed
for too a long interval. The RADV register deal with this problem, in the very same
way the TADV register does, so we won’t explain the mechanism again.

15With e1000, an TX interrupt moderation mechanism could be implemented using the RS bit.
16The Interrupt Delay Enable bit (IDE), is another bit flag in the TX descriptor, like the RS bit.

27

Figure 2.5: State diagram of the e1000 RDTR timer (Packet Delay Timer).

Figure 2.6: RX moderation example that makes use of the e1000 RADV timer.

Figure 2.5 shows a state diagram associated to the RDTR timer, while figure 2.6
depicts an example about the RADV moderation mechanism.

The newer moderation mechanism

Although the older mechanisms allows for fine grained control over the modera-
tion, especially on the TX side, most of the times the required moderation func-
tionality is way simpler. For this reason a more direct moderation mechanism has
been added, which is implemented through the ITR register (Interrupt Throttling
Register).
If the driver sets this register to a value δ, the board ensures that δ is the minimum
inter-interrupt interval, regardless of network traffic condition, and the interrupt
type. In other words, every time an event happens that requires an interrupt (e.g.
TX completion or RX completion) the board raise an interrupt as soon as possible,
while meeting the ITR inter-interrupt delay constraint.

The ITR mechanism, when used, applies to all the interrupts. The Intel manual

28

strongly recommend avoiding the RDTR and RADV register, and use the ITR in-
stead.

2.4 QEMU e1000 emulation

The e1000 frontend is implemented in QEMU through a single source file17 (see
section 2.2.4).
A small part of this code contains declarations and routines necessary to register
and initialize/uninitialize a new type of PCI Ethernet device within the rest of the
emulator. In this way one or more instances of the e1000 network device can be
included in a VM when launching QEMU18.
When registering a new PCI device, it is necessary to describe the I/O or MMIO
regions that the device implements, registering new PCI BAR registers. Each BAR
register correspond to a different I/O or MMIO region. When registering a new
BAR, you can specify two callback functions that are invoked whenever the guest
code access (reads or writes) a location in a region.
The e1000 emulation code registers a MMIO region and an I/O region. The I/O
region isn’t actually used, whereas the MMIO region maps all the registers the
e1000 device implement, such as TDT, TDH, RDH and so on.
A couple of statically defined dispatch tables, one for the read accesses and the
other for the write accesses, are used to associate a different function to each regis-
ter. In this way one can (potentially) associate a different read callback and a write
callback to each e1000 register. The emulation of a device is basically achieved
with this per-register functions. Of course register can share the same functions or
have no callbacks at all.

Let’s see in more depth how register callbacks are actually invoked.
When a VCPU is executing the guest code, it may try to access a MMIO location
corresponding to the e1000 PCI device, namely an e1000 register. This usually
happens when executing the e1000 device driver. The accessing instruction causes
a VMExit to occur, and the VCPU thread switches from the guest world to the host
world. After the iothread lock has been acquired, the QEMU code analyzes the
VMExit reason and understands that the VMExit was caused by a MMIO access.
It then uses the physical memory address involved in the MMIO access to dispatch
the event to the right PCI memory region. In our case, the read (write) callback
registered with the e1000 MMIO BAR is invoked. This callback uses the address
to access the e1000 read (write) dispatch table and invokes the register-specific
callback.
The register-specific callback emulates the side effects associated with the register
access. For instance a write to the TDT register will cause the emulated hardware
to process all the pending TX frames (see section 2.3.1).

17hw/e1000.c in the QEMU project root directory
18This is done through the device option. E.g. qemu-kvm -device e1000 ...

29

After the callback returns, the iothread lock is released and a VMEnter is exe-
cuted so that the VCPU switches back to the guest world.

This said, we won’t describe in detail all the aspects involved in e1000 emula-
tion. Instead, we will outline the frame transmission and frame reception process,
focusing on notifications, scheduling and memory copies.

2.4.1 TX emulation

As stated in section 2.3.1, a write to the TDT register is the way the driver notifies
the hardware that new TX frames are ready to be processed. The TDT register
write callback updates the TDT value and then calls the start xmit function. This
function is a while loop that processes all the committed TX descriptors, starting
from the descriptor pointed by the TDH register. After each descriptor is processed,
the TDH register is incremented circularly. The while loop exits when TDT ==

TDH, e.g. when there are no pending TX descriptors.

TX descriptors processing includes the following actions:

1. The TX frame corresponding to the TX descriptor is copied from the guest
memory to a local buffer.

2. The TCP/UDP checksum is computed. Recall that e1000 devices are able to
compute checksums in hardware, and so the OS driver expects the emulated
hardware to be able to do it.

3. The qemu send packet function is invoked in order to pass the frame to the
network backend. With the TAP backend, a write system call is invoked to
pass the frame to the TAP device associated with the backend.

4. The descriptor is written back to the guest memory in order to report that the
TX descriptor has been processed.

When all the pending TX descriptors have been processed, the interrupt pin asso-
ciated with the e1000 adapter is raised (if the previous pin state was low), sending
an interrupt to the guest. The interrupt moderation registers (see section 2.3.2) are
not implemented.

It’s very important to observe that all these operations (frontend and backend) are
performed by the same VCPU thread that tries to execute the TDT write operation
in the guest, causing a VMExit. This means that when the guest has only a VCPU
(no SMP) the emulation of a transmission cannot be done in parallel with the guest,
being done synchronously with the VCPU thread.

30

2.4.2 RX emulation

When a receiving guest is waiting for new frames to come, the IOThread is blocked
in the select system call, waiting for the TAP file descriptor to be ready. When a
frame arrives to the TAP backend, the select returns and invokes the TAP network
backend. The backend executes a read system call on the TAP device, extracting
the incoming frame, and invokes the qemu send packet function that passes the
frame to the e1000 frontend, invoking the receive method (e1000 receive).

According to what has been presented in section 2.3.1, the e1000 receivemethod
performs the following actions:

1. If RDH == RDT, there are no RX memory buffer available, and the incoming
frame must be dropped. Otherwise go to step 2.

2. The RX descriptor pointed by the RDH register is fetched from the guest
memory.

3. The incoming frame is copied to the guest memory location at the address
specified in the RX descriptor.

4. The RX descriptor is written back to guest memory, in order to report the
length of the received frame and set the DD bit.

5. If not already high, the e1000 interrupt pin is raised.

Differently from the TX emulation, here all these operations (frontend and back-
end) are executed by the IOThread, that can run in parallel with the VCPU thread
(or the VCPU threads) executing the guest code.

When the qemu send packet function returns, the backends tries to read another
frame from the TAP19. If there is another frame to process, the qemu send packet
is called also on this frame. This process stops when no frames are ready to be read
from the TAP, or when the packet is dropped by the frontend.

2.5 Linux e1000 device driver

In this section we will describe some details about the e1000 device driver in the
Linux kernel, which is implemented as a kernel module. We will only illustrate
those aspects that are relevant to our goals. The driver source code can be found in
the directory drivers/net/ethernet/intel/e1000 in the Linux kernel project
root directory.

19The read system call is non-blocking, since the IOThread is executing an event-loop, and so
only the central select system call is allowed to block.

31

2.5.1 Interface with the network stack

The Linux kernel API has a specific network API that the network device drivers
use to exchange network packets with the rest of the kernel.
With these API, the network driver can register a new network interface within the
kernel, associating a name to it. The list of all the network interfaces currently reg-
istered within the kernel can be seen using the ifconfig utility (e.g. $ ifconfig
-a) or similar tools. The registering function, register netdev, requires as input
argument a netdev structure that abstracts the registering network adapter. This
structure contains all the information necessary to the kernel to communicate with
the adapter.

The most important netdev fields are:

• name, which is a string that univocally identifies the new network interface
in the system.

• netdev ops, which is a structure containing the methods that the new net-
work interface exports to the kernel (see below).

• watchdog timeo, which specifies the minimum time interval that the kernel
should wait after a transmission is commited to the device driver before de-
ciding that something could be wrong. When a transmission is committed,
the watchdog timer associated with the network interface is started. When
the driver knows that the hardware it done with the committed frame, it re-
lease the associated TX buffer (in e1000 this can be done in the routine that
handles the TX interrupt). On the release, the watchdog timer is cleared. If
the timer fires, the ndo tx timeout method is called, so that the driver can
handle potential hardware hangs.

• hw features, which is a bitmask that specifies to the kernel the features
offered by the hardware that can be activated or deactivated by the user.
The e1000 device driver specifies, among the others, the NETIF F HW CSUM
(checksumming capability) feature, the NETIF F SG (scatter-gather capabil-
ity) feature and NETIF F TSO (TCP Segmentation Offload capability).

• features, which is a bitmask that represent the currently active features.
This mask can be initialized to the same value as the hw features field, but
can be modified by the users to set/unset features and is fixed by the kernel
in order to meet feature constraints20.

• dev addr and perm addr, which contain the hardware address of the net-
work adapter. As far as we are concerned, these two fields are set to the same
value. In the e1000 adapter, the hardware address is read from an on-board
EEPROM.

20The features are not independent on each other within the kernel.

32

The netdev ops contains several methods, but we are intersted only in a few ones:

• ndo open, which is called when the system administrator decides to bring
the network interface up. This can be done using the ifconfig utility (e.g.
#ifconfig eth0 up) or similar. The driver should react to this request by
setting up all the resource (software or hardware) necessary for the adapter
operation. The e1000 ndo open method allocates and initializes all the re-
source necessary for TX/RX operation (e.g. RX and TX rings), initializes the
registers, enables the e1000 interrupts and invokes the netif start queue
function, which tells the kernel it can start invoking the ndo start xmit
method (see below).

• ndo close, which is called when the system administrator decides to bring
the network interface down, This can be done using the ifconfig utility
(e.g. # ifconfig eth0 down or similar). When receiving this request, the
driver can release all the resource allocated by the ndo open method.

• ndo start xmit, which is invoked by the kernel when it wants to trans-
mit a new frame. The first argument is a pointer to a sk buff structure,
which contains all the information related to the frame to transmit, includ-
ing the frame itself. The sk buff structure is central to the Linux kernel
networking, since all the layers in the network stack perform actions on this
structure.

On the receive side, the kernel networking API provides the network driver with a
function (netif rx()) for passing a received frame up to the network stack, where
the frame can find its way to its destination. The frame is handed off to the network
stack in a sk buff structure. When receiving a frame from the adapter, therefore,
the driver has to build a sk buff structure around the frame received and call the
function netif rx() with the structure built as parameter.

The NAPI interface

The receive interface described earlier is known as the “old” interface. The netif rx
is intended to be invoked directly by the interrupt routine associated with an RX
interrupt.
However, as we pointed out earlier (see 2.3.2), the RX interrupt are source on
uncontrolled load and must be moderated when the interrupt rate is too high. This
can be done by hardware mechanisms, but a complementary software approach can
still be useful. Moreover, a software interrupt moderation can be fundamental if
hardware moderation is not provided by the network adapter.

The software approach is based on the concept of polling. Interrupt operation
was introduced in the early days of computing when the computer architects real-
ized that when dealing with devices through polling most of the CPU cycles were

33

Network driver

Network stack

Applications

ndo_start_xmit(skb) netif_rx(skb)

read / recvwrite / send

Figure 2.7: On the bottom the interface between the network device driver and the
Linux network stack. On the top the interface between user applications and the
network stack.

thrown away because of busy waiting. Interrupt operation makes it possible to
avoid busy waiting, even if it carries with it a fixed overhead, due to the context
switches and scheduling/dispatch operations, that is fairly high.
Nevertheless, if there are (almost) always hardware I/O events to handle, busy
waiting is not a problem, since there is (almost) nothing to wait for. Polling can
therefore be used in those situations where the input load is very high, since each
time we want to check if there are more hardware events to we are likely to find
them. The big advantage of polling operation over interrupt operation is that the
former does not have any fixed overhead.

In conclusion, one cannot say in general that interrupt operation is better than
polled operation or the other way around. When the hardware event rate (e.g.
frame reception rate) is low enough, it’s worth paying the fixed cost associated
with interrupts in order to be sure that there is an event to handle. When the event
rate is high enough, however, busy waiting it’s cheaper than interrupts, because the
average number of cpu cycles wasted to busy wait for the next frame is way lower
than the cpu cycles wasted for the interrupt overhead.

The NAPI (New API) interface has been designed with these considerations in

34

mind. When a RX interrupt arrives, the driver interrupt routine can decide to switch
to polling mode, and not to handle the received frame directly. This is done simply
disabling the interrupt on the network adapter and scheduling a NAPI context. The
latter action is done invoking the function napi schedule. The NAPI context is
going to be executed in a kernel thread context different from the interrupt context:
This is basically another form of deferred work.
When the NAPI context is scheduled it executes the NAPI polling function regis-
tered by the driver through the function netif napi add (this function registration
could be done in the ndo open method).
The NAPI polling function is in charge of doing the receive work21. Of course
the polling function is intended to process more RX frames. In order to prevent
the polling function to monopolize the CPU, however, there must be a limit on the
work done by the polling function. This is the reason why the polling function is
invoked with a budget input argument, that specifies the maximum number of RX
frames to process. If the budget is comsumed entirely, the polling function should
return, so that the NAPI context will be rescheduled in the future: However, the
interrupts are not enabled. In these way the NAPI keep polling the device as long
as there is RX work to do.
If the budget is comsumed only partially, however, the polling function should
assume that it’s not worth polling again, and switches back to interrupt operation.
This is done calling the napi complete function, and then reenabling the adapter
interrupts. The NAPI context won’t be scheduled again until the next interrupt
routine calls the napi schedule function the next time.

In the end, with the NAPI interface the driver is able to switch between interrupt
operation an polled operation depending on the current incoming traffic condi-
tions, providing a form of interrupt moderation that can greatly increase the receive
throughput.
The e1000 driver currently use the NAPI interface instead the older one.

2.5.2 Interface with the PCI subsystem

Since an e1000 network adapter is a PCI device, the first thing the driver has
to do when the e1000 kernel module is loaded is registering a new PCI driver
within the kernel PCI subsystem. The registration is done through the function
pci register driver, which accepts a pci driver structure as input argument.
The pci driver structure contains all the information useful to the Linux PCI
subsystem to manage the PCI device.

The most important fields of the pci driver structure are:

• id table, which is a list of all the PCI devices managed by the driver. A
PCI device is identified by a vendor ID and a device ID.

21or the interrupt work in general

35

• probe, which is a method that the PCI subsystem invokes when it detects
(e.g. by PCI enumeration) that a new PCI device is attached to the PCI bus.
The PCI subsystem invokes the probe method of the driver that manages the
specific PCI device detected. The e1000 probe method initializes, configures
and reset the board, an then registers a new network interface (see section
2.5.1).

• remove, which is a method that the PCI subsystem invokes to alert the driver
that it should release the PCI device, because of a Hot-Plug event or be-
cause the driver is going to be removed from memory. The e1000 remove
method undo all the operations done by the e1000 probe method, disabling
the adapter operation.

Once the PCI subsystem invokes the e1000 probe method, a new e1000 network
interface is registered within the kernel and is ready to be used.

2.5.3 TX operation

As outlined in section 2.5.1, when the network stack decides to send a packet
through the e1000 adapter, the e1000 ndo start xmit method is invoked. What
the driver has to do is extracting the frame data and other useful information from
the input sk buff structure, and commit the frame to the adapter. The first byte of
the frame is stored at the address contained in the data field of the structure.
The input sk buff can be linear or non-linear. If linear, the frame is a stored in a
contiguous memory area22. If non-linear, the frame is not contiguous, but is stored
as a collection of contiguous fragments (e.g. is specified by a scatter-gather array).

In order to write the TDT register only when necessary, the driver has a shadow
variable, tx next to use, that is intended to be used in place of the TDT when
possible. The TDT register is updated with the variable content only when the
driver wants to commit a frame to the hardware. In this way is never necessary to
read the TDT register, since one can read the shadow variable instead.
Similarly, there is a shadow variable, tx next to clean, also for the TDH regis-
ter. The shadow variable is incremented once for each used TX descriptor that has
the DD bit set (see below). In this way it’s never never necessary to read the TDH
register, since one can read the shadow variable instead23.
Even though the driver wasn’t written with virtualization problems in mind, these
shadow variables are extremely useful, because accessing a register cause an ex-
pensive VMExit, while accessing memory is done at native speed.

Moreover, in order to keep trace of per-descriptor information that can be used to
release the resources when the transmission is done, the driver mantains an array

22Being kernel logic addresses, the frame is contiguous both in virtual and physical memory.
23Recall that the driver normally does not need to write the TDH register, except for register

initialization.

36

parallel to the TX ring, the tx buffer info array. As an example, some elements
in this parallel array contain a valid pointer to a sk buff structure passed by the
kernel. Since this structure (data included) is dynamically allocated, the driver has
to free its memory, but only when it is sure that the frame contained has actually
been sent on the wire. As we will see, this cleanup is done by the TX interrupt
routine.

In more detail, the e1000 ndo start xmit method does the following:

• Checks if there are enough free TX descriptors for the frame to send. If
not, returns immediately reporting the adapter as busy. Since the sk buff
can be non-linear, we have to use a different TX descriptor for each frag-
ment. Moreover, an additional context descriptor may be necessary in order
to make a offload requests on the current frame (see 2.3.1).

• If necessary, inserts a new context descriptor in the TX ring location pointed
by the tx next to use variable, and increment the variable. The con-
text descriptor refers to the following data TX descriptors. The ip summed
field in the sk buff structure says if the frame need to be checksummed.
The gso size field of the skb shared info structure associated with the
sk buff says if the frame need TCP Segmentation Offload.

• Maps all the frame fragments into DMA-capable physical memory (DMA
mapping). The mapping is necessary to tell the kernel that we are going to
access the memory regions with DMA. The mapping function returns the
physical addresses corresponding to a fragment, and doesn’t perform a copy.
An entry of the tx buffer info array is used for each fragment to store
its physical address and length. A pointer to the input sk buff is stored in
the entry corresponding to the last fragment. Being the array parallel to the
TX ring, the driver starts to use the entry pointed by the tx next to use
variable (but don’t increment the variable itself, since it will be incremented
in the next step).

• Inserts in the TX ring a data TX descriptor for each frame fragment, using the
information just stored in the parallel array, and incrementing tx next to use
by the number of fragments.

• Updates the TDT register with the tx next to use content, in order to com-
mit the new frame to the hardware.

From the previous list follows that the driver needs to do some per-frame cleanup
operations after the hardware has actually sent the frame. This is the reason why
TX interrupts are enabled. Therefore, after the hardware has sent one or more
frames, it eventually raises an interrupt.

Since the e1000 driver uses the NAPI, the interrupt routine disables the e1000
interrupts and schedules the NAPI context. The e1000 NAPI polling function,

37

e1000 clean, is (also) in charge of doing the TX cleanup work. This work is
done invoking the function e1000 clean tx irq.
Starting from the entry pointed by tx next to clean, the polling function fetches
the TX descriptors to see what descriptors have the DD bit set, and so have been
processed (used) by the hardware. For each used descriptor, it releases the TX
resources using the information stored in the corresponding entry in the parallel
tx buffer info array. In more detail, the driver undoes the DMA mapping of
each data TX descriptor and frees the sk buff of the last data TX descriptor asso-
ciated with each frame sent.

2.5.4 RX operation

In order to access the RDT register only when necessary, the driver has a shadow
variable, rx next to use, that is intended to be used in place of the RDT when
possible. The RDT register is updated with the variable content only when the
driver wants to give new memory buffers to the hardware. In this way is never
necessary to read the RDT register, since one can read the shadow variable instead.
Similarly, there is a shadow variable, rx next to clean, also for the RDH regis-
ter. The shadow variable is incremented once for each used RX descriptor that has
the DD bit set (see below). In this way it’s never never necessary to read the RDH
register, since one can read the shadow variable instead24.
Once again, the shadow variables are extremely useful to minimize the number of
VMExits.

Similarly to what happens for the TX operation, the driver mantains an array par-
allel to the RX ring, the rx buffer info array, in order to keep trace of per-
descriptor information that can be used to release the resources when the reception
is completed. As an example, each entry in this parallel array contains the DMA-
mapped physical address of a memory buffer used by the adapter to receive a frame.
The driver must undo the DMA-mapping, but only after the memory buffer has
been used by the hardware.

When initializing the the resources for RX operation, the e1000 ndo open method
also calls the e1000 alloc rx buffers() function passing N−1 as cleaned count
input parameter, so that this function allocates N −1 memory buffers to be used for
frame reception (see section 2.3.1). In this way the adapter can accept incoming
frames as soon as the reception is enabled in the hardware.

In more detail, for each buffer to allocate, the e1000 alloc rx buffers function:

1. Allocates a new sk buff structure that has enough data room to store a
maximum size ethernet frame.

24Recall that the driver normally does not need to write the RDH register, except for register
initialization.

38

2. Stores a pointer to the sk buff into the entry of the rx buffer info array
indexed by the rx next to use content. In this way this pointer can be
passed to the network stack by the RX interrupt routine after the memory
buffer contained into the sk buff itself is used by the hardware.

3. Maps the memory buffer so that it can be accessed in DMA, similarly to
what happens for TX frames (see section 2.5.3). The physical address of the
memory buffer is stored in the same rx buffer info entry.

4. The buffer physical address is also written into the RX descriptor corre-
sponding to the rx buffer info entry25.

5. The rx next to use variable is incremented. If is the case (see below) the
RDT register is then updated with the rx next to use content.

A write to the RDT register is performed every 16 allocated memory buffers, and
at end of the e1000 alloc rx buffers function.
There is a tradeoff here: Writing the RDT at each iteration would be too slow, and
writing the RDT only at the end of the function would cause the receive side to be
poorly reactive.

After one or more new frames are received and stored in the physical memory, an
interrupt is eventually raised. The interrupt routine disables the e1000 interrupt
and schedules the NAPI context (see 2.5.3). The e1000 polling function is (also)
in charge of doing the RX work.
Though the e1000 adapters are able to receive also jumbo frames26, in the following
we will describe only what happens when conventional ethernet frame are used27.
In order to do the RX work, the e1000 polling function invokes the e1000 clean rx irq
function. This function starts to fetch and clean used RX descriptors beginning
from the one indexed by rx next to clean. It keeps working while the NAPI
budget is not exhausted and the descriptors have the DD bit is set. The latter indi-
cates that the RX descriptor has been used by the hardware to receive a frame.

For each RX descriptor to clean:

1. The used memory buffer is DMA-unmapped. The buffer physical address is
taken from the rx buffer info entry corresponding to the RX descriptor.

2. If the received frame is shorter than 256 byte28, the copybreak mechanism
fires: A new minimum size sk buff structure is allocated and the frame
data are copied, while the old sk buff will be recycled. This should im-
prove packet loss for small packets, because the socket receive queues get
full earlier if the enqueued sk buff are bigger.

25Recall that the RX ring and the rx buffer info arrays are parallel
26ethernet frames that can carry up to 9000 bytes of payload
27Anyway, the jumbo frame handling it’s not very different.
28This number is a kernel parameter that can be tuned by the user.

39

3. Some fields of the sk buff structure built around the received frame are
properly initialized29 and the frame is handed off to the network stack (see
the e1000 receive skb()) function. A pointer to that structure is taken
from the same rx buffer info entry, if the copybreak mechanism did not
fire.

29For example the ip summed and the protocol fields.

40

Chapter 3

Optimizations of emulated e1000
performance

In chapter 2 we have given an overview of the software environment we will deal
with in this work. In this chapter we will analyze problems and bottlenecks of the
current system implementation and propose solutions that are able to remove them.

First of all we have to point out what we are going to optimize. We consider two
scenarios.
In the first scenario, guest to host (G2H), a VM is connected to the host through a
host-only virtual LAN (see section 2.2.3). The VM runs an application that sends
UDP packets of a given size at a given average rate, while the host runs an appli-
cation that receives all the UDP packets it can. The second scenario, host to guest
(H2G), is very similar to the first, but the host and guest roles are swapped: the
host runs the UDP sender while the guest runs the UDP receiver. These scenarios
are depicted in figures 3.1 and 3.2.
Our goal is to maximize the packet rate of the application running on the VM, both
on the transmit and the receive side.

In our experiments, we will try to give to each guest one or two VCPU, and discuss
the differences between the two cases.

3.1 Analysis of the existing implementation

We are now going to show and discuss the performance of the existing solution, e.g.
of the machanisms illustrated in section 2.4 and 2.5. All the measurements have
been done on a laptop machine with an i5-2450M processor, which is endowed
with four cores running at 2.5GHz1.

1The linux CPU frequency manager has been used to set the CPU frequency at the maximum
frequency.

41

SENDER VM

ETH0

SOFTWARE BRIDGE

BR0

TAP1 TAP2

UDP

HOST UDP RECEIVER

UDP

Figure 3.1: Communication scenario in which and UDP sender on a VM sends
packets to an UDP receiver on the host. The VM and the host communicate through
a virtual LAN made of TAP devices and an in-kernel software bridge.

3.1.1 TX performance

In this experiment a VM runs an UDP sender that sends UDP packets to an UDP re-
ceiver that runs on the host. The sender is just an infinite loop where each iteration
invokes the send system call. The buffer passed to the system call is always the
same and its length is such that a minimum size ethernet frame (60 bytes) is sent
on the wire for each send. With this test we push to the limit the TX performance
in the short packet case.

1 VCPU test

The measurement results are shown in the table 3.1. The guest has been assigned
1 VCPU, and all the values are computed counting the number of occurrences of
each event over a 1 second period and then dividing the count by the period itself.
As we can see, the TX rate is very modest, about 20.6 Kpps. There is a TX noti-
fication (a write to the TDT register) and a TX interrupt for each packet sent. The
total number of MMIO accesses is 6 times the number of interrupts.
The high MMIO access rate is due to the interrupt routine. When invoked, in fact,
the interrupt routine has to VMExit at least 5 times:

1. Read the ICR (Interrupt Cause Read) register, in order to get the Interrupt
reason (if any).

42

Existing implementation 1-VCPU 2-VCPUs

Interrupt rate 20.6 23.6 KHz
TX packet rate 20.6 30.4 Kpps
TX bitrate 15.0 22.1 Mbps
TX notifications rate 20.6 30.4 KHz
MMIO write rate 61.7 61.9 KHz
MMIO read rate 61.7 47.3 KHz

With interrupt moderation 1-VCPU 2-VCPUs

Interrupt rate 3.8 3.8 KHz
TX packet rate 47.8 47.2 Kpps
TX bitrate 34.8 34.3 Mbps
TX notifications rate 47.8 47.2 KHz
MMIO write rate 55.5 54.8 KHz
MMIO read rate 11.5 11.5 KHz

With interrupt moderation and TDT write batching 1-VCPU 2-VCPUs

Interrupt rate 1.8 2.8 KHz
TX packet rate 163.5 145.0 Kpps
TX bitrate 119.0 105.6 Mbps
TX notifications rate 1.8 2.8 KHz
MMIO write rate 5.5 8.3 KHz
MMIO read rate 5.6 8.4 KHz

With TDT write batching (no interrupt moderation) 1-VCPU 2-VCPUs

Interrupt rate 7.8 KHz
TX packet rate 95.4 Kpps
TX bitrate 69.5 Mbps
TX notifications rate 7.8 KHz
MMIO write rate 23.5 KHz
MMIO read rate 23.5 KHz

Table 3.1: Guest to host statistics. These four tables show some statistics about a
sender VM in various situations (original implementation, moderation patch, TDT-
write-batching patch and combinations). Each table reports a set of measurements
relative to a 1-VCPU VM and another set relative to a 2-VCPUs VM.

43

RECEIVER VM

ETH0

SOFTWARE BRIDGE

BR0

TAP1 TAP2

UDP

HOST UDP SENDER

UDP

Figure 3.2: Communication scenario in which and UDP sender on the host sends
packets to an UDP receiver on the VM.

2. Write to the IMC (Interrupt Mask Clear) register, in order to disable the
e1000 interrupts.

3. Read from the STATUS register, in order to flush the previous register write.

4. After the NAPI work is completed, write to the IMS (Interrupt Mask Set)
register in order to enable the interrupts.

5. Read form the STATUS register, in order to flush the previous register write.

The sixth MMIO access per interrupt is due to the TX notification.

Even if the hardware interrupt moderation is not emulated, the Linux e1000 driver
uses the NAPI interface (section 2.5.1), so a software interrupt moderation is actu-
ally implemented. Unfortunately, it doesn’t work for TX interrupts, and the reason
for this is actually very simple. In section 2.4.1 we have seen that the TX emulation
is done in a synchronous way, that is the VCPU thread that writes the to TDT reg-
ister, after the VMExit, executes the e1000 frontend, the TAP backend and raises
the interrupt pin. After that it does a VMEnter coming back to the guest world,
but with a TX interrupt to handle. Since the guest has only a VCPU, the VCPU
must be used to handle the interrupt, and cannot be used to insert more TX frames
into the ring (e.g. to call the ndo start xmit method). Consequently, the NAPI
polling function will only clean the TX descriptor(s) associated to the frame that
has just been sent. In conclusion, if we write to the TDT register every time the

44

ndo start xmit method is invoked, we are doomed to receive an interrupt for
each frame we send, and so to have low performance.

2 VCPUs test

The same experiment has been done assigning 2 VCPU to the guest. The measure-
ment results are shown in the table 3.1.
Compared with the 1-VCPU case, the situation is slightly better, but still modest.
Here we have about 30 Kpps, and an interrupt rate that is significantly less than that.
This means that the TX interrupt routine (e.g. the polling function), on average,
handles more than one frame. Note that there is still only one TX frame sent
for each TX notification, like in the 1-VCPU case. The improvement is due to
the higher degree of parallelism in the guest, that allows the NAPI to coalesce
some interrupts, so that on average about 1.29 data TX descriptors are cleaned for
each interrupt. This happens because while one VCPU is executing the interrupt
routine (or the NAPI context is active) with the e1000 interrupts disabled, the other
VCPU can find the time to insert another TX frame in the ring, execute the frontend
and backend and return to the guest without raising an interrupt because they are
disabled. This is why, sometimes, the NAPI polling function cleans more than one
data TX descriptor.

Discussion

The low performance is basically due to two problems: The hardware interrupt
moderation is not emulated in QEMU and there is a TX notification for each frame
to send. This is true in both 1-VPCU and 2-VCPU cases.
If we coalesced the interrupts, we could amortize the 5 VMExits and the inter-
rupt overhead over more TX frames. Implementing the emulation of the hardware
interrupt is then then an optimization we can implement.
If we had a way to coalesce the TX notifications we could amortize the cost of a
notification over more TX frames. This a second optimization we can implement.

We’ve not discussed the performance with bigger packet sizes, because the prob-
lems involved are exactly the same. When the packets are big there is more work
to do because the packet copies are more expensive, and so the performance are
lower. However, the optimization are very effective also for the big packet case,
because the overhead due to the copies is significantly lower than the overheads
due to TX notifications and interrupts.

3.1.2 RX performance

In this experiment a VM runs an UDP receiver that receives UDP packets from an
UDP sender that runs on the host. The receiver is just an infinite loop where each
iteration invokes the recvmsg system call. No processing is made on the received

45

packet. The UDP sender is similar to the sender used in section 3.1.1, but after each
send system call the process does some busy waiting in order to send UDP packets
at a given rate. With this test we push to the limit the guest RX performance in the
short packet case.

The receiving process is generally more problematic than the transmit process,
because of the livelock problem (see section 2.3.2). When the incoming packet rate
and/or the interrupt rate are too high, or the traffic is very irregular with high traffic
peaks, the guest OS (device driver and network stack) does a lot of processing
before trying to put the packet in a socket receive queue, but in the end is forced to
throw them away because the queue is full. In its turn, the queue is full because the
receiver process doesn’t have enough time to read all the packets from the queue.

For this reason we introduce the concept of (receiver) critical rate. We define
the critical rate as the incoming packet rate that, if exceeded, cause the receiver
VM to enter a unstable state and/or a state characterized by bad performance. In
more detail, in our experiment we will see the RX rate measured by the UDP re-
ceiver as a function of the RX rate measured by the network adapter (the incoming
rate). When the incoming rate is low enough, the UDP receiver will measure the
same rate, because no packets are dropped. As the incoming rate gets higher a
little percentage of packets starts to be dropped, and so the UDP-measured rate
is a little lower than than the incoming rate, but still increases when the incom-
ing rate increases. When the incoming rate exceeds the critical rate, however, the
UDP-measured rate starts to decrease when the incoming rate increases. More-
over, beyond the critical rate the UDP-measured rate generally oscillates, e.g. the
receive system becomes unstable and its responsiveness becomes very low. Figure
3.3 shows an example of the function we are talking about.

The critical rate is very significant, since it tells what is the maximum incoming
rate that a guest OS running simple receiver process can accept while being in a
stable state.

1 VCPU test

In this test one VPCU is assigned to the guest. The measured critical RX packet
rate is about 14.4 Kpps. The measurement results shown in table 3.2 are taken
when the received rate is about the same as the critical rate.
The critical RX rate is very low. If we keep incrementing the incoming RX rate
beyond the critical point, the system enters a livelock state. Since more RX inter-
rupt work is requested and we only have a VCPU, the receiver user process has less
CPU time than before, even if there are more packets to receive. As a result, the
RX throughput seen by the user process drops immediately after the critical rate,
the system become extremely instable, and most of the packets are dropped. With
packet rates higher than 15 Kpps the system becomes unusable.

46

Existing implementation 1-VCPU 2-VCPUs

Interrupt rate 14.3 6.7 KHz
RX packet rate 14.4 185.7 Kpps
RX bitrate 10.5 135.1 Mbps
RX notifications 14.3 13.7 Mbps
MMIO write rate 42.9 22.7 KHz
MMIO read rate 42.9 13.5 KHz

With interrupt moderation 1-VCPU 2-VCPUs

Interrupt rate 3.8 2.1 KHz
RX packet rate 137.1 216.7 Kpps
RX bitrate 99.8 157.7 Mbps
RX notifications 10.3 14.3 Mbps
MMIO write rate 18.0 18.5 KHz
MMIO read rate 11.5 6.3 KHz

Table 3.2: Host to guest statistics. These two tables show some statistics about a
receiver VM in two different situations (original implementation and moderation
patch). Each table reports a set of measurements relative to a 1-VCPU VM and
another set relative to a 2-VCPUs VM.

47

Figure 3.3: This plot is an example of RX rate measured by the UDP receiver as
a function of the RX rate measured by the network adapter (incoming rate). The
critical rate is the incoming rate for which this function has a maximum. The gray
area represents the oscillation (upper and lower bound) of the UDP-measured RX
rate.

Let’s analyze what happens when the livelock doesn’t shows up (table 3.2) The
interrupt rate is a little lower than the RX packet rate, and this means that some
interrupts have been coalesced by the NAPI. This is possible even with a single
VCPU, differently from what happens int the TX case, because (see section 2.4.2)
the hardware emulation (backend and frontend) is done by the IOThread, while the
guest is executed by a VCPU thread. Parallelism is therefore possible, because the
IOThread could insert a new frame in the RX ring while the NAPI is polling, and/or
the interrupt could be delayed because the interrupts are disabled.
However, the two rates are almost the same, and so we still have approximately
an interrupt for each frame received, which means that the NAPI software mod-
eration isn’t not working well. More precisely, we have measured the distribution
of the amount of RX NAPI work done each time the polling function is called and
reported it in table 3.3.

Why is the NAPI working so bad? The problem here isn’t related to lack of par-
allelism, like in the TX case, but is due to the guest being too fast. In fact, we
can observe that in this experiment the overall system is composed of a producer

48

NAPI RX work Percentage

0 0.05%
1 99.485%
2 0.335%
≥ 3 0.13%

Table 3.3: Host to guest NAPI distribution with 1 VCPU per guest. The NAPI
work is the number of frames handled by the execution of the polling function.

thread, e.g. the IOTHread, and a consumer thread, e.g. the VCPU thread. The
producer is basically an infinite loop that in each iteration gets a frame from the
TAP (waiting/sleeping if no frames are ready to be read), inserts it in the RX ring
and raises an interrupt if enabled. The consumer is woken up by an interrupt and
schedules the NAPI context. The NAPI polling functions is a loop that on each
iteration extracts an RX frame from the ring and push it to the stack, until there is
no work left.
If the consumer iteration is on average slower than the producer iteration, the latter
is very likely to find the interrupts disabled after inserting a new RX frame, and the
consumer is very likely to see the new frame while is executing the polling function
corresponding to a previous interrupt. In this scenario the consumer will (almost)
always find work to do, and so the interrupt will (almost) always be disabled, and
consequently the NAPI mitigation will work.
On the other hand, if the consumer iteration is on average faster than the producer
iteration, the latter is very likely to find the interrupt enabled after inserting a new
RX frame, and so an interrupt is raised for each received frame. This is exactly
what happens in our experiment. It’s important to point out that when there is no
more work to do, the NAPI polling function is forced to complete and enable the
interrupts, because it doesn’t know when the next RX frame is going to come.
Observe that in this experiment the consumer is very slow simply because we have
forced the UDP sender to send to a constant packet rate of 14 Kpps, which makes
it slow by definition. We cannot go beyond 14Kpps because of the livelock.

Moreover, as we can see in the table 3.2, we also have approximately a write to the
RDT register (RX notification) for each interrupt, which is not good. This is also a
consequence of the NAPI misbehaving.
Similarly to the 1-VCPU TX case, here we have 6 MMIO accesses for each inter-
rupt. Five of them are exactly the same listed in section 3.1.1, while the sixth one
correspond to the RX notification.

49

2 VCPUs test

The same experiment has been done assigning 2 VCPU to the guest. Here the
critical rate is way higher, about 175 Kpps. Moreover, if the rate is passed, the
system still works, even if packets start to be dropped and it becomes unstable (the
dropping percentage varies very much between 5% and 85%). The performance
doesn’t drop immediately after the critical rate, like in the 1-VCPU case: The
system is still usable (but not stable) if the incoming RX rate is about 300K.
The measurement results are shown in the table 3.2 when the incoming packet rate
is about 185 Kpps.
As we can see, here the NAPI works very well, since the producer here is way faster
than 14 Kpps (see section 3.1.2). On average we serve about 27 RX frames per
interrupt, so that the high interrupt overhead and the MMIO accesses are amortized.
The RX notification rate is about twice as the interrupt rate, because when the
polling function handles more frames, it gives new memory buffers to the hardware
doing a write to the RDT register every 16 frames handled (see section 2.5.4) and
a write at the end of the polling function. Since on average 27 frames are served,
we have on average b 27

16c + 1 = 2 RDT writes.

Discussion

The low performance in the 1-VCPU case is basically due to two problems: The
hardware interrupt moderation is not emulated in QEMU and there is a RX notifi-
cation for each frame to send. The interrupt moderation here is necessary, because
the NAPI mitigation doesn’t work (because of the livelock).
In the 2-VCPU case the mitigation can still be useful to remove the existing fluc-
tuations in the interrupt rate which cause performance drops, and in general would
be useful for the system to be more stable. In our experiment, in fact, we noted that
the performance drops when the interrupt rate has a peak (10 KHz).
The second problem has minor negative effects on performance in the 2-VPCU
case, because an RX notification is done every 16 frames, so the associated cost is
amortized.

We’ve not discussed the performance with bigger packet sizes, for the same reasons
explained in 3.1.1.

3.2 Implementing interrupt moderation

In section 3.1.1 we have seen that we can improve both the RX and TX packet
rate if we emulate the e1000 mitigation. A precise emulation is not necessary nor
possible, and it’s therefore convenient to choose a simple and efficient one. In this
work we have implemented the ITR register, the TADV register and the RADV

50

register. We are not interested in the TIDV and RDTR registers2.

In our implementation we use a single QEMUTimer (see section 2.2.1), even if
the hardware has multiple timers, and so we have to aggregate the meanings and
functionalities of the ITR, TADV and RADV registers. We therefore consider the
moderation delay to be the minimum delay among the ones specified through the
ITR, TADV and RADV registers. When computing the minimum, each register
is considered only if its content is valid and if there is a pending event of the
proper type. According to the e1000 specification ([7]), a zero value means that
the register content is not valid. If there is no pending TX event the TADV content
is not considered, while if there is no pending RX event the RADV register is not
considered.
Moreover, only the interrupts due to transmission (start xmit() function) and
reception (e1000 receive() function) are considered. The other interrupts are
extremely rare, so they are not intersting.

Let’s see how moderation is implemented. We have modified the code so that
the frontend calls the mit set ics() function instead of the set ics() func-
tion when it wants to issue an interrupt. When called with the moderation timer
(mit timer) inactive, the mit set ics() arms the timer with the moderation de-
lay and issues an interrupt. When called with the moderation timer active (e.g. the
timer has not expired yet), it only accumulates the interrupt cause, but don’t issue
an interrupt. When the timer expires, an interrupt is sent, and the timer is rearmed
only if there is a pending accumulated interrupt cause and the moderation delay
is not zero. Every time the timer is (re)armed the moderation delay is computed
again, because the mitigation registers content can change, and the pending events
could be only RX or only TX events.
In this way we are sure that the minimum inter-interrupt interval is always greater
or equal than the moderation delay.

The proposed moderation patch adds about 50 lines of code to the e1000 frontend
(hw/e1000.c).

In the following sections we will repeat the same experiments presented in section
3.1 in order to see the improvements obtained with the the moderation patch. With
this experiment the Linux e1000 module has been loaded specifying the following
parameters:

2However, the RDTR register has been added to the frontend only to validate the RADV content.
The e1000 speicification, in fact, says that the TADV register is not valid if RDTR contains 0.

51

Parameter Value

TxIntDelay 0
TxAbsIntDelay 0
InterruptThrottleRate 4000

In this way we only use the new moderation mechanism (e.g. ITR). It’s not ne-
cessary to specify the parameters relative to RDTR and RADV, since RDTR is 0
by default (so both RDTR and RADV are disabled). The InterruptThrottleRate pa-
rameter actually specifies the Maximum Allowed Interrupt Rate (MAIR), which is
inversely proportional to the value that the driver has to put in the ITR register in
order to limit the interrupt rate.

3.2.1 TX performance

The results in the 1-VCPU case is shown in table 3.1.
As we can see from the table, there is an important improvement. The interrupt
rate is less than 4 KHz, and this is what we expected to see since we have set
the MAIR to 4000. With reference to the existing implementation (section 3.1.1,
we have a performance gain of 2.32, with about 47 Kpps. Since the interrupts
are coalesced by the interrupt moderation mechanism, the NAPI polling function
cleans on average 12.58 TX data descriptors each time is called. Remember that
the TX emulation is synchronous with the guest VPCU (see section3.1.1), and so
the NAPI software moderation it’s useless by itself.
Despite of the good improvements, we still have a TX notification for each frame
sent, and the performance is limited by this problem.

In order to understand the mitigation effects on performance, we have tried different
MAIR values, computing the average TX packet rate on a very long time window
(some minutes). The results are shown in figure 3.4. From this plot we can see that
the lower the MAIR is, the higher the TX packet rate is. However we cannot set
MAIR to a value too low, because this would increment the latency too much. In
fact while the moderation timer is on, we don’t let the emulated hardware raise any
interrupt, and so the responsiveness is limited by the moderation delay, namely by
the ITR. As stated previously, in this study we want to maximize the packet rate,
and we are not interested in minimizing the latency.

The measured results in the 2-VCPU case are shown in table 3.1.
The results are similar to the 1-VCPU case, because the incremented parallelism
is not exploited. Even if there is parallelism between the interrupt routine and the
transmission path, the TX clean work is not very expensive. Therefore we don’t
benefit from a second VCPU, or the little benefits are compensated by the overhead
involved in the SMP management (e.g. locks and barriers).

52

Figure 3.4: Measured TX rate as a function of the Maximum Allowed Interrupt
Rate (MAIR). As we can see, the TX rate increases as the MAIR descreases. How-
ever, we cannot decrease the MAIR too much, because the latency worsens as the
MAIR decreases.

3.2.2 RX performance

The measured critical rate with 1-VCPU is about 150 Kpps. The table 3.2 shows
the results obtained when the incoming RX rate is about 137 Kpps.
As we can see, there is a huge improvement in the packet rate performance, because
on average we amortize the interrupt related overhead over about 35 frames. Since
the interrupt rate is lower, also the RX notification rate is lower. On average we
should expect b 35

16c + 1 = 3 RDT writes for each interrupt (see section 2.5.4), and
so a notification rate of about 3 · 3.838 KHz = 11.514 KHz, which is similar to the
measured one (10.3 KHz).
If we increase the incoming RX rate, the performance of the UDP receiver gradu-
ally degrades, but we don’t run into a complete livelock (like the livelock we have
seen in section 3.1.2), because the interrupt rate is bounded.

In order to understand the mitigation effects on performance, we have tried differ-

53

Figure 3.5: Measured critical rate as a function of the maximum allowed Interrupt
Rate (MAIR). If the MAIR is too high, performance worsens because the interrupt
rate is too high. If the MAIR is too low, performance worsens because the RX ring
gets full and guest is not notified immediately.

ent MAIR values, measuring the critical rate for each value. The measurements
are shown in figure 3.5. The plot shows that if we increase the MAIR in in the
region [2 KHz, +∞], the performance gradually decreases, since we are less and
less restrictive on the Maximum Allowed Interrupt Rate. On the other end, if we
decrease the MAIR below 1.5 KHz, the throughput starts to decrease, because the
RX ring gets full and the guest is not notified in a timely manner. Moreover, we
cannot choose the MAIR to be too low because of the latency (see section 3.2.1);

The 2-VCPU case results (MAIR = 4 KHz) are shown in table 3.2
Similarly to what happens without moderation, a second VCPU improves the RX
performance, because the improved parallelism makes the NAPI moderation to
play an active role. The measured critical rate is about 215 Kpps (+37% w.r.t. 1-
VCPU case). We can see that the NAPI mitigation is effective observing that the
average interrupt rate is half part of the MAIR, and so the MAIR is not restrictive
at operating speed. On average we have about 103 RX frames served for each

54

interrput, which a very good result. The expected average RX notification rate is
(b 103

16 c+ 1) · 2.098 Khz = 14.686 KHz, which is very similar to the measured result
(14.321 KHz).

3.3 Implementing TDT write batching

In section 3.2 we have seen how RX/TX packet rate performance can be improved
with a minimal patch to the e1000 frontend that implements an interrupt modera-
tion mechanism. However, the TX notification problem still exists and limits TX
performance. The interrupt moderation mechanism cannot help to mitigate this
problem. For these reasons, we propose a TDT write batching algorithm, which
will be explained in the following section.

3.3.1 Implementation

A simple approach would be to coalesce TX notification using a counter variable.
The counter is initialized to zero and is incremented every time the ndo start xmit
method is invoked. A TDT write is done to notify the pending transmission only
when the counter reaches a threshold, e.g. 20. Each time we notify we also set the
counter to 0. In this way we are able to reduce the TX notification rate by 20 times.
Unfortunately this approach would stop working when the guest stop transmitting,
because we don’t have a way to timely notify pending transmits, if any. Moreover,
the ndo xmit method cannot know when it will be invoked again in the future.
For these reasons we should use a kernel timer in order to notify pending transmit
after a period of TX inactivity. This timer should be (re)armed every time we don’t
notify, and so 19 times over 20. This is quite expensive. Moreover, the user should
have to choose the threshold value and the timer delay value, and this would add
complexity and discourage the users.
In order to get to a zero-configuration and simple implementation we have adopted
an other approach.

The idea is to use the interrupt itself as a timer mechanism, and thus the interrupt
routine as a timer callback. We use a variable, bat pending, which is 1 to indi-
cate that there is a pending interrupt that will come soon, and is 0 when there is not
a pending interrupt. The variable is initialized to 0. When the ndo xmit method is
called for the first time, bat pending is 0: The notification is done and bat pending
is set to 1. If the ndo xmit method is called again before the TX interrupt (due to
the previous notification) comes, bat pending is 1: In this case we don’t notify,
and consequently that transmission become pending. When the interrupt comes,
at the begin of the NAPI polling function (the interrupt are disabled), if there are
pending transmissions we do a notification, but we don’t set bat pending to 0,
because the notification we have done will cause another interrupt. If there are no
pending notifications we set bat pending to 0, because we don’t know when the

55

next interrupt is going to be, and so we want the next transmission to cause a TX
notification.
Note that this algorithm works well only if there is time for the guest to call the
ndo xmit method before the an interrupt comes. For instance, this can happen if
interrupt moderation is implemented, since TX interrupts are delayed.

The proposed patch includes a few other implementation details that are not very
interesting. For instance, we have to hold a spinlock while writing to the TDT reg-
ister and updating the other variables related to the batching mechanism, because
we perform this write accesses both in the ndo start xmit method and in the
NAPI polling function, and so we need mutual exclusion. In addition to that, when
we have to check if there are pending transmissions, we should read from the TDT
register, but this would be counter-productive. Therefore we mantain a shadow
variable (bat software tdt) that is always synchronized with the TDT content.
Finally, when writing to the TDT register from the interrupt routine we cannot read
from tx next to use, since its value is modified without the spinlock held. The
bat shadow ntu is used to take coherent snapshots of the tx next to use vari-
able. The batching patch adds about 35 lines of code to the e1000 driver. The
user can enable or disable the batching mechanism writing 0 or 1 to the batching
module parameter.

3.3.2 Improvement analysis

In this section we will repeat the same experiments presented in section 3.2.1 in
order to see the improvements obtained with the the batching patch and the mod-
eration patch. The Linux e1000 module has been loaded specifying the same pa-
rameters plus the batching parameter, which has been set to 1.

1-VCPU test

The results in the 1-VCPU case is shown in table 3.1.
As we can see there is a big improvement in the TX rate with respect to the previous
solutions (existing implementation with or without the moderation patch), because
now we have only one TX notification for each interrupt. At this point we have
moderated both interrupts and TX notifications and there is nothing else to mitigate.
However, the TX path still does not work at his best, because the TX emulation is
still demanded to the VCPU thread that executes a TX notification (section 2.4.1).
In other words, the processing is synchronous, while in the RX path the emulation
can go parallel with the guest.

The TDT write batching algorithm would be intended to process, for each noti-
fication, a batch of frame. Unfortunately, this is not exactly true, because of the
following factors:

56

1. The TX processing is synchronous, while it would be better doing it in the
IOThread.

2. The TX processing holds the iothread lock, preventing other VCPUs to
execute emulation code while the lock is held.

3. The TX processing always processes all the TX pending descriptors.

4. The moderation timer works with the host time, so it does not stop running
down when a VCPU is not executing guest code, but it is executing emulation
code. Therefore a 1-VCPU guest can see a moderation delay which is shorter
that expected or even close to zero.

For these reasons, even though the UDP sender never stops sending, the sequence
of batch lengths oscillates, expecially in the 1-VCPU case. In the latter case, the
sequence of batch notifications alternates batches of length 1 and very big batches
(about 200 frames), in a very regular manner. The following batch lengths se-
quence has been extracted by the emulator while executing with the batching en-
abled:

... 1, 185, 1, 195, 1, 169, 1, 221, 1, 212, 1, 198, 1, 210, 1, 200, 1, 215, 1, 211, 1 ...

Let’s see what happens in more detail. The first time the guest wants to send, the
notification is done, bat pending is set to 1, the TX is emulated, an interrupt
issued and the moderation timer is armed. When executing the NAPI polling func-
tion, there are no pending frames, because the guest has not had time to do anything
after the notification, and so bat pending is set to 0. Here the cycle starts.
Now the guest wants to send another frame, the notification is done, bat pending
is set to 1, the TX is emulated but no interrupt is issued, because the moderation
timer is active. The guest will continue to send other frames, but this time it will
find bat pending set to 1 for a while, and can therefore insert many new TX
frames in the TX ring without doing any notification. When the moderation timer
expires, an interrupt is issued and the timer rearmed. This time the polling function
finds a lot of pending frames, and so a notification is done and bat pending is not
set to 0. Since there is a lot of TX emulation processing to do, and the moderation
timer keep running down, when the processing is finished the timer is very likely to
be expired: Therefore an interrupt is issued and the timer is not rearmed, because
no events have come in the while. Consequently, when the VCPU enters the guest
again (because the processing is done), it has another interrupt3 to process with no
pending TX frames, and so bat pending is set to 0. Here the whole thing starts
again.

3Here we can see that, from the guest’s point of view, the new interrupt has come immediatly
after the previous one.

57

2-VCPU test

The results in the 2-VCPU case is shown in table 3.1.
As we can see, the performance is very good, but slightly inferior if compared with
the 1-VCPU case. As pointed out in the 1-VCPU analysis, when a VCPU is doing
the TX emulation, the lock is held, and so the other VCPU cannot do any VMexit,
limiting the system parallelism, because that VCPU would be blocked on the lock.
However, it’s not necessary to do a VMExit in order to insert a new TX frame in
the ring when bat pending is 1, and so the second VCPU can actually have the
time to insert more frames. For these reasons the sequence of batch lengths has an
evolution which is different from the 1-VCPU case, but there is still a regular os-
cillation. The following sequence has been exctracted while running the emulator:

... 67, 15, 87, 17, 77, 16, 86, 16, 85, 16, 87, 16, 69, 16, 87, 16, 87, 16, 87, 16 ...

We can also observe the interrupt rate is higher w.r.t. the 1-VCPU case. The higher
interrupt rate can be explained because the batches are shorter. Shorter batches
means that the start xmit is shorter on average, and so the QEMU event-loop
is more responsive, having more chances to issue an interrupt, either in the timer
callback or at the end of the start xmit itself. Therefore an interrupt is less likely
to be delayed more than the moderation delay because of a long TX processing. To
close the cycle, since interrupt rate is higher, the guest has less time to replenish
the TX ring, and so the batches are shorter.

In other words, with 2 VCPUs the TX path converges towards a different stable
state, which is incidentally less efficient. This is an anomaly, since with more
VCPUs, and so with more computational power, we have less performance.

3.3.3 Batching without interrupt moderation

Even though the batching patch works well when the moderation is implemented,
it’s interesting to do some test when the moderation is off.

With 1-VCPU guests the patch is completely useless and harmless, because the TX
interrupt is never delayed, and the whole TX path is synchronous with the VCPU
itself. In more detail, the first TX notification is performed because bat pending
is 0 and so bat pending is set to 1. Then the VCPU executes the TX emulation
and raises an interrupt, reentering the guest. When the guest executes the polling
function, there are no pending TX frames (because the VCPU had no chances to
insert new frames) and so bat pending is set to 0. The next time the guest wants
to send a frame the same thing happens again. So we have a notification for each
frame to send, e.g. the batching patch is useless.

With 2-VCPUs guests the situation is different, because a TX interrupt is issued
only at the end of the TX emulation, e.g. when all the notified TX descriptors have

58

been processed. So with respect to the other VCPU, the TX interrupt is actually
delayed. In more detail, the first time the guest wants to send bat pending is 0,
so the latter is set to 1 and a notification is done. While one VCPU is doing the TX
emulation or is servicing the TX interrupt, the other VCPU is able to insert more
frames in the TX ring, so that the next time the notification is done many descriptors
are ready to be processed. In this way the batching strategy is able to amortize the
TX notification overhead over many frames. We have run an experiment with 2-
VCPU and obtained the results reported in table 3.1.
Here is an extracted sequence of batch lengths

... 8, 16, 9, 15, 8, 15, 8, 15, 7, 15, 8, 15, 7, 16, 7, 15, 8, 7, 6, 16, 8, 14, 7, 16, 8 ...

This result is interesting because the batching patch doesn’t require modification
to the emulator, but only to the guest device driver. Therefore it can be applied to
other emulators that don’t implement interrupt moderation.
As an example, we tried to run a similar test under VirtualBox, using two UDP
senders on the 2-VCPU guest and a receiver on the host. In this situation the total
packet rate is about 168 Kpps with the batching enabled, while if the batching is
disabled the total packet rate is about 60 Kpps. We have not used a single UDP
sender because it was not enough to trigger the batching mechanism. This is prob-
ably due to the different implementation of the e1000 emulation (e.g. a different
thread organization).

59

Chapter 4

A paravirtualized e1000 adapter

In chapter 3 we have proposed two simple patches that boost the e1000 perfor-
mance. The moderation patch involves only modification to the hypervisor, while
the batching patch involves only modification to the guest device driver. These
patches can be applied independently on each other, although batching generally
works better if used together with moderation.

However, in both cases the we have respected the original e1000 interface specifi-
cation. In this way the guest can use the e1000 adapter with its original (or patched)
driver and be unaware that it is actually in a Virtual Machine environment, and that
the e1000 adapter is emulated. This unawareness is the essence of the full virtu-
alization concept: The guest doesn’t know to be emulated, so that we can run an
unmodified OS on top of the VM and everything works fine. Also we can use the
patched driver with a real e1000 device, or we can use the patched hypervisor with
a different e1000 driver (e.g. a Windows e1000 driver). Whatever combination we
make, it will work fine, because we have always respected the e1000 interface.

Another approach that sometimes is used is paravirtualization, a general concept
that describes situations in which the guest is aware of being in a Virtual Machine
environment, and cooperates with the hypervisor in order to make the virtualization
simpler and/or to get better performance.

4.1 Device paravirtualization

In this thesis we are interested in device paravirtualization, and in particular in
network device paravirtualization. With this kind of paravirtualization, only the
paravirtualized device driver is aware of the virtualization, while the rest of the
guest system is not. We can obtain a paravirtualized driver either by modifying an
existing real driver, or by creating a new fake driver and a new fake device emulator.
In the latter case the driver correspond to a new virtual (fake) device that does not
really exist, but is just a stub used to communicate with the hypervisor exporting

60

to the guest OS the same interface exported by a real driver, so that the guest OS
can make use of it without being aware that the device is a fake one. In both cases
the paravirtualization requires hypervisor support.
In our case we could modify the e1000 Linux driver and the e1000 QEMU fron-
tend, or we could create a new Linux network driver and a new QEMU frontend.

How can paravirtualization improve performance? Device hardware specifications
are generally very complex, and often inlcude a lot of physical details, offloading
capabilities and other hardware related features. When emulating the device, most
of these details and features are just useless, or is not worth/possible implement-
ing it. Moreover, the devices communicate with the OS mainly through register
accesses because register accesses are not expensive in hardware, but they do are
expensive within emulators, since they cause VMExits. In other words, emulating
real device is complicated and inefficient.

The idea behind paravirtualization is that most of hardware-related details are
source of useless overhead, and this overhead can be easily avoided if the driver
knows that it is talking to a virtual device and not to a real hardware. As an ex-
ample, the e1000 driver has to do at least 5 VMExit while executing the interrupt
routine, but if we knew that the e1000 device is virtual, some (or all) of these would
become useless, or at least could be replaced with something cheaper.
The purpose of a paravirtualized devices is therefore to estabilish an efficient com-
munication between the device driver and the emulator (e.g. the QEMU frontend),
while the guest OS thinks of the driver as being the driver of a real device. In order
to make the communication efficient, we have to minimize VMExits, and so reg-
ister accesses and interrupts. The communication should be done, when possible,
through shared memory. The TX ring is an example of shared memory used for
communication: The driver writes to the TX ring and the frontend reads from it
(and then also writes back). The RX ring is another example.

However, also a paravirtualized driver needs to access register, since a register ac-
cess is the only way the driver can notify the emulator to start some processing or,
in general, to have side effects. The difference with a real driver is that a paravirtu-
alized one does a register access only when is really essential, e.g. for notifications.
For everything else, the communication is done through shared memory. A real de-
vice driver doesn’t worry so much about accessing registers.
Similarly, also a paravirtualized device emulator needs to send interrupts, since
interrupts are the only way the emulator can notify the driver.

4.2 The Virtio standard

Virtio ([13]) is a virtualization standard that aims at high I/O performance through
device paravirtualization. This is done creating a completely new set of device

61

Virtio interface

Guest OS

Guest applications

OS-driver
interface

Hypervisor

Virtio frontend

Virtio driver

Virtio backend

Virtio device emulation

Figure 4.1: A guest and its hypervisor communicate through the Virtio interface.
The Virtio backend and Virtio frontend, together, implement the Virtio interface.

drivers, which are able to communicate efficiently with a Virtio-capable hypervi-
sor. Its approach is similar to the Xen I/O paravirtualization ([17]) and the VMware
Guest Tools ([15, 16]). Virtio is an effort to estabilish a standard interface between
drivers and hypervisors for paravirtualized I/O, in order to increase the code reuse
across different platforms. In this way we avoid having an independent I/O par-
avirtualization solution for each hypervisor. The Virtio standard defines different
I/O (fake) devices, including a network adapter, a SCSI disk and a serial interface,
and is currently supported by QEMU and Virtualbox. Linux and Windows drivers
are available for Virtio devices.
As we can see from figure 4.1, the Virtio interface is implemented through a virtio
frontend in the guest OS, and a virtio backend in the hypervisor. All the virtio
device drivers can share the virtio frontend code. The task of a virtio driver is
therefore to convert the OS representation of the data to exchange (e.g. a network
packet) into the standard virtio data format, or the other way around. All the virtio

62

device emulators (e.g. the QEMU frontend for each virtio device) can share the
virtio backend code. The task of a virtio device emulator is therefore to convert
the virtio representation of the data to exchange into the hypervisor specific rep-
resentation (e.g. a buffer containg an ethernet frame), or the other way around.
In this way, the guest OS and the hypervisor can communicate through the virtio
infrastructure using an efficient and general mechanism.

The organization illustrated in figure 4.1 is actually similar to the one used for
real device emulation (e.g. e1000 emulation). However the Virtio interface is
explicitely designed for efficient communication between driver and hypervisor,
while this is not true for real device hardware/software interfaces.

In order to estabilish an efficient communication channel, the Virtio interface im-
plementation uses MMIO accesses and interrupts only to notify the other peer,
and never to exchange data information. Whatever data exchange is done through
shared memory.

4.2.1 Virtual queues

Central to the Virtio interface is the virtual queue abstraction, a queue that connects
a virtio frontend to a virtio backend. A virtual queue is simply a queue into which
buffers are posted by the guest driver for consumption by the hypervisor: In this
way the two peers can exchange data. A virtual queue can be used to exchange
data in both directions: Therefore the posted buffers can be used both for output
and for input operations. Drivers can use zero, one or more queues, depending
on their needs. For example, the virtio network device uses two virtual queues
(one for receive and one for transmit), while the virtio block device uses only one.
The buffers used to exchange data are represented in Virtio using scatter-gather
lists1. With a single operation a virtio frontend can send a scatter-gather list to
a virtio backend. A single scatter-gather list can specify both input and output
requests. For example, the guest may send to the hypervisor a SG list containing
three buffers: An output buffer that specifies a command and two input buffer that
will be filled by the hypervisor with the response2.

In more detail, when the guest wants to make requests to the hypervisor through a
virtual queue, it invokes the add buf method on the virtual queue object, passing
a SG list and a non-NULL token which is returned when the SG list has been
consumed. As we have seen previously, a single SG list can be used to pass many
output buffers (e.g. network packets to send) and many input buffers (e.g. memory
buffers where the hypervisor can store received network packets). The method
returns the amount of space left in the queue, so that the guest can stop adding new

1Each element in the list represents the guest physical address and the length of a physical con-
tiguous chunk of memory.

2This example could be valid for a virtio disk.

63

Virtual queue

Token get_buf()

add_buf(SG, Token)

GUEST DRIVER

virtqueue_pop(SG)

virtqueue_push(SG)

consume

HYPERVISOR

Figure 4.2: Virtual queue operations. The guest adds new buffers (represented as
scatter-gather lists) to the virtual queue. The hypervisor consumes (uses) those
buffers and returns them to the virtual queue. Tokens are used by the guest to
identify buffers.

buffers when the queue is full. The add buf method doesn’t notify the hypervisor
about the new requests, but only inserts the new buffer in the virtual queue. When
a virtio driver wants to notify the hypervisor, it has to call the kick method. Of
course the driver should kick the hypervisor only when necessary, and try to add as
many buffers as possible before kicking the hypervisor.
When the hypervisor is notified, it extracts (pops) an SG list from the virtual queue
and process the request, maybe asynchronously. When the processing is done,
the hypervisor returns the used SG list to the virtual queue. The guest can poll
for the request completion through the get buf function. This function is not
blocking and returns NULL if there are no returned used SG lists, or returns the
token associated to a SG list that has been consumed. Only when get buf is
invoked the queue space used by a previous add buf is freed.
The whole process is depicted in figure 4.2.

In order to avoid busy waiting, the driver can provide a callback function to a
virtual queue. This callback will be invoked when the hypervisor notifies that
new used buffers have been returned. Since hypervisor notifications are generally
expensive (in QEMU-KVM they are implemented as interrupts to the guest, so
they are extremely expensive), the driver should implement strategies aimed at
mitigating the notification rate (e.g. with NAPI). In order to do that, the driver can
enable or disable callbacks (e.g. enable/disable interrupts) invoking the enable cb
or disable cb methods on the virtual queue. The disable cb is actually only a
hint, there is no guarantee that the callback will not still be called right after, since
this would require expensive synchronization: It is just an optimization to reduce
unnecessary notifications. The callback function can call the get buf so that it can
process the used buffers.

64

In a similar way, the hypervisor can enable/disable guest notifications (kicks)3,
since also this notifications are very expensive. When guest notifications are dis-
abled, the kick method has no effect.

4.2.2 The virtio ring transport mechanism

In the current implementation, the virtual queues are implemented as rings, sim-
ilarly to what happens with network adapters (see section 2.3.1). The Virtio in-
terface hides the rings, so that we could use a different implementation as long as
both virtio frontend and virtio backend use the same transport mechanism. Since a
virtio ring must be a very general and flexible mechanism for transporting buffers,
it is also quite complex, or at least more complex than needed for and efficient
paravirtualized network device.

A virtio ring consists of three parts: the descriptor array where the guest chains
together length/address pairs (taken from a guest-provided SG list), the available
ring where the guest indicates what descriptors chains are ready for use, and the
used ring where the host indicates which descriptors chains it has used. Each
descriptor contains the guest-physical address of the buffer, its length, an optional
next index for buffer chaining, and two flags: one to indicate whether the next
field is valid and one controlling whether the buffer is read-only or write-only.
This allows a buffer chain to contain both readable and writable parts (this is useful
for implementing a block device).
The available ring consists of a free-running index (the avail index)4, an interrupt
suppression flag, and an array of indices into the descriptor array where each index
references the head of a descriptor chain. As we can see, the available ring is
separated from the descriptor array, adding another level of indirection: The avail
index references an entry of the avail ring and this entry references an entry of the
descriptor array (an head of a descriptor chain). This separation of the descriptor
array from the available ring is due to the asynchronous nature of the virtqueue.
In fact the hypervisor extracts the chains in the same order in which they have
been inserted, but may process them in a different order and/or asynchronously. In
this case some chains could require more time than others, and so the available ring
could circle many times with fast-serviced chains while slow descriptors might still
await completion (once again this is useful for block device implementation). The
interrupt suppression flag is set when the virtio driver invokes the disable cb and
is suppressed when the enable cb is invoked. In this way the guest can implement
a mitigation strategy for hypervisor notifications (see section 4.2.1).
The used ring has the same structure of the the available ring, but is written by
the host as descriptor chains are consumed. Moreover, the each entry of used ring
contains not only an index in the descriptor array, but also a len field which is used

3e.g. In our work environment this are implemented as guest MMIO accesses.
4The ring index is a 16 bit unsigned integer, which is always incremented and is intended to

overflow.

65

ADDRESS LENGTH FLAG NEXT

10
1
2

43
54

5
6
7

...

avail-index

4 0 2

used-index

..76............

AVAIL
RING

USED
RING

Figure 4.3: Virtio ring data structures, used to implement the Virtio interface. On
the top the descriptor array is depicted as a table. On the bottom the avail ring and
the used ring.

for input buffers: When an input buffer has been used, the hypervisor writes in this
field the size of the read operation which has been done on the buffer itself.
The data structures are depicted in figure 4.3.

Putting all together, let’s describe the journey of a virtio buffer in a virtual queue.
A virtio driver invokes add buf on the virtual queue, and the provided SG list is
inserted in the descriptor array, using a free entry for each element in the SG list.
All this descriptors are chained together. At this point a new entry is inserted in the
avail ring, referencing the head of the chain just now built, and the avail index is
incremented. Now the virtio driver can kick the hypervisor (if is the case), because
there is a new entry in the avail ring. When the hypervisor sees that there is work
to do, it pops the new entry from the available ring, processes it, pushes the used
descriptor chain in the used ring, increments the used index and, if is the case,
notifies the guest (e.g. send an interrupt). When the guest wants to get an used
buffer, it invokes the get buf method so that it can clean or complete to process

66

the returned buffer.

4.2.3 Minimizing notifications using Virtio

Let’s see how we can build an Virtio driver and device emulator that try to minimize
the notification rate in both directions, assuming we are dealing with our usual
work environment (QEMUKVM as VMM and Linux as guest). As we’ve seen so
far, in our work environment notifications are very expensive, and so minimizing
them leads to big performance improvements. Since Virtio is explicitely designed
to work in a virtualized environment, it’s easy to write a driver that minimizes
notifications. We will make an abstract example where the virtio driver, using a
single virtual queue, receives requests from the kernel and passes these requests
(represented as virtio buffers) to the hypervisor. The hypervisor processes these
requests in a dedicated thread and returns the used buffers to the virtio driver. When
the guest is notified by the hypervisor, the virtio driver gets the used buffers and
do some post processing. To be more precise, we would like to minimize the ratio
between the average notification rate and the average request rate, e.g. maximize
the percentage of spared notifications.

The pseudocode for the virtio driver and the corresponding device emulation into
the hypervisor is reported in figure 4.4. This pseudocode skips many details, but
contains all the interesting strategies to minimize notifications. The request pro-
cessing in the hypervisor is done in the IOThread, using a QEMUBH (section
2.2.1). The QEMUBH is scheduled in the notification callback function,
which is executed by a VCPU thread after a VMExit due to a guest notification. As
we have already seen, the guest can notify the hypervisor using the kick method,
which turns into a real notification (e.g. a VMExit) only if the hypervisor has
the notifications enabled. The postprocessing is done by the NAPI polling func-
tion, which runs in a dedicated thread, and is scheduled by the virtqueue callback
(virtqueue callback function). The callback is executed in interrupt context
when the hypervisor notifies the guest with an interrupt.

In conclusion, there is a dedicate worker both in the host (the QEMUBH) and in
the guest (the NAPI polling function). Each worker runs in a separate thread, so
that there is parallelism. When the guest notifies the host, the host worker starts
its processing and stops only when there is no more work. When the host notifies
the guest, the guest worker starts its processing and stops only when there is no
more work. Note that the processing system is symmetric: There are two symmet-
ric producer/consumer couples (in short PCCs). In the first PCC, the producer is
the guest kernel which continuosly invokes request(), and the consumer is the
QEMUBH, which continuously processes (comsumes) the requests. In the second
PCC, the producer is the QEMUBH itself which invokes virtqueue.push() and
the consumer is the NAPI polling function that does the post processing.

67

void request(Request r) {
 sg = to_scatter_gather(r);
 virtqueue.add_buf(sg, r);
 virtqueue.kick();
}

void virtqueue_callback() {
 virtqueue.disable_cb();
 napi_schedule();
}

void polling_function() {
 while (r = virtqueue.get_buf()) {
 post_process(r);
 }
 napi_complete();
 virtqueue.enable_cb();
 if (virtqueue.more_used()) {
 virtqueue.disable_cb();
 napi_schedule();
 }
}

void notification_callback() {
 virtqueue.disable_notifications();
 qemu_bh_schedule(bh);
}

void processing_bh() {
 while (sg = virtqueue.pop()) {
 process_request(sg);
 virtqueue.push(sg);
 virtqueue.notify();
 }
 virtqueue.enable_notifications();
 if (virtqueue.more_avail()) {
 virtqueue.disable_notifications();
 qemu_bh_schedule(bh);
 }
}

GUEST HYPERVISOR

Figure 4.4: Pseudocode for the virtio driver and the virtio device emulation for the
example in section 4.2.3.

How are the notification minimized? Using the very same ideas introduced by
NAPI (see section 2.5.1): When a notification comes, if the notification rate is
high because the incoming work request is high, we disable notifications and start
polling for requests. While there are requests to process we keep processing, keep-
ing the notifications disabled. When there are no requests left, we exit the working
cycle and enable notifications, so that we can be notified in the future when new
requests will come. This concept is employed for both the PCCs. To be precise,
after the notifications have been enabled the consumer checks again if there is other
work to do. If true the notifications are disabled and the consumer reschedules it-
self. This is done because of a race condition that we will show in the following
“Race condition analysis” subsection. Using this system, if the consumer is slower
than the producer (see the discussion repoted in section 3.1.2), the performance of
the consumer/producer are very good.

68

Let’s analyze how this system works, assuming the producer slower than the con-
sumer in both PCCs. At the beginning notifications are enabled in both driver
and device emulator. As the kernel invokes request() for the first time, the re-
quest is added to the virtualqueue and the kick notifies the hypervisor. Because
of the notification, notification callback() is invoked: Further guest noti-
fications are disabled and the QEMUBH worker is scheduled. The QEMUBH
worker starts processing requests and keep doing it as the virtqueue avail ring is
not empty (and because of our assumptions this is very unlikely to be empty).
After the first request has been processed, the host successfully notifies the guest
(virtqueue.notify()), and therefore virtqueue callback() is invoked: Fur-
ther host notifications are disabled and the NAPI polling function is scheduled. The
polling worker starts to post-process requests and keeps doing it as the used ring is
not empty (and it is unlikely to be so because of our assumptions).

As we can see, this system can, in theory, work without notifications, except for
the first two ones. Of course this is not realistic, also because a consumer could be
faster than a producer. For instance, the guest consumer (NAPI polling function)
is often a fast one, and so the NAPI could not moderate adequately the host notifi-
cations. In this situation, some other form of moderation is necessary to get good
performance.
Moreover, the request() function could implement some form of stream control
and tell the kernel to stop sending requests when it sees that the avail ring is full.
If requests stop, also the two consumers stop and notification must be enabled,
otherwise we couldn’t tell the kernel to restart requesting. When the guest is no-
tified again, the kernel can restart sending request (causing another notification).
Nevertheless, the notification rate can still be very low w.r.t. the request rate.

Race condition analysis

The consumer working cycle exits when there is no work left. Once exited, the
notifications are enabled. The race exists because these two operations, namely
checking for more work and enabling notifications are not atomic. If in beetween
these operation the producer inserts more request in the virtual queue and tries
to notify the consumer, the notification of this last request is not done because
notifications are disabled. If the consumer does not double check for more work
after enabling notifications, and the producer doesn’t add other requests for an
hour, the last request stalls in the queue for an hour. Since the consumer double
checks, however, it sees that new requests have come while it was not polling and
reschedules itself (and possibly consume the request immediately). In this way
requests cannot stall. Figure 4.5 shows an example of race.

69

check for more work == false

enable notifications

exit the worker

insert more work

notify == NOP

waste CPU time for an hour

......

1

2

3

4

5

6

GUEST HYPERVISOR

Figure 4.5: Race condition between a producer and a consumer. The race condition
exists because the consumer doesn’t have a way to check for more work and enable
notifications in an atomical manner.

Other details

In our example we’ve skipped many details in order to keep the pseudocode sim-
ple. However, it’s important to note that both the NAPI polling function and the
QEMUBH, in their working cycle, must limit the amount of work done, otherwise
they would monopolize the VCPU thread (in the NAPI case) or the IOThread (in
the QEMUBH case). For these reason the workers must count the requests pro-
cessed and exit the working cycle when the count exceeds a given amount. In the
NAPI case, this amount is passed to the polling function in the budget argument,
whereas in the QEMUBH case we have to choose a value (e.g. 256 is a good
compromise between performance and responsiveness of the event-loop).

4.3 An efficient Virtio network driver

Using the idea presented in section 4.2.3 one can build a very efficient virtio net-
work driver and network device emulator (virtio-net). The driver source can be
found in the linux kernel sources (drivers/net/virtio net.c), while the device emu-
lation can be found in the the QEMU source (hw/virtio-net.c). Since a network
adapter deals with two independent data streams, one for TX and one for RX, two
virtual queues are employed. The virtio block device uses just one virtual queue
because the two streams are not independent, but are always request and response.

For each virtual queue, two PCCs can be defined: the direct PCC and the inverse
PCC, depending on who is the communication master. On the TX path the guest
is the master: in the TX direct PCC the guest produces TX avail buffers to send

70

AVAIL RING

USED RING

direct PCC

SENDER VIRTQUEUE

start_xmit

direct PCC

QEMUBH

reverse PCC reverse PCC

AVAIL RING

USED RING

reverse PCC

RECEIVER VIRTQUEUE

polling
function

reverse PCC

direct PCC

IOthread

direct PCC

HYPERVISORGUEST

Figure 4.6: High level scheme of the virtio-net implementation. On the top there is
the sender virtual queue with its two Producer/Consumer Couples (PCCs), which
handle the TX path. On the bottom there is the receiver virtual queue with its PCCs,
which handle the RX path.

and the hypervisor consumes (sends) avail buffers, while in the TX reverse PCC
the hypervisor produces used buffers and the guest consumes (frees) used buffers.
On the RX path the hypervisor is the master: in the RX direct PCC the hypervisor
produces (receives into) RX used buffers and the guest consumes (receives from)
RX used buffers, while in the RX reverse PCC the guest produces RX avail buffers
and the hypervisor uses RX avail buffers. This situation is depicted in figure 4.6.

4.3.1 TX path

The TX path uses the sender virtual queue (svq), where the virtual queue callback
is initially disabled on the driver side. When the kernel invokes the ndo start xmit
method, it does the following

1. Free any pending used buffers in the used ring repeatedly calling svq.get buf().
The token returned is a pointer to a sk buff that was previously added to
the avail ring, so that the sk buff can be freed with dev free skb(skb).

71

2. Convert the sk buff provided as argument to a SG array. The SG array will
have more elements if the sk buff is nonlinear or just an element if linear.

3. Invoke svq.add buf(sg, skb) to insert a new output SG in the avail ring.

4. Invoke svq.kick() to notify the hypervisor.

5. Call skb orphan(skb) so that the kernel won’t wait for the sk buff to be
freed and so won’t invoke the TX watchdog.

6. If there is no space in the virtual queue for the next send, tell the kernel
to stop making new TX requests by calling netif stop queue() and in-
voke svq.enable cb delayed()5. We will be notified by the hypervisor
when this pushes more used buffer to the used ring, so that we can call
netif wake queue() and the kernel can make new TX requests. After
notification are enabled we must do a double check for more used buffers
otherwise we would run into the same race condition described in section
4.2.3. If there are more used buffers, we free them (in the same way as we
do at point 1) and, if now there is space enough for a new send, we disable
the callback and tell the kernel it can restart making TX request (invoking
netif wake queue()).

Note that while the avail ring is not full (e.g. while the add buf is successful) the
sender virtual queue callback is never used, since the used buffers are cleaned at the
beginning of the the ndo start xmit method. However, when there is no more
space, the kernel is told not to call this method anymore, and so the only way to
free used buffer after that is to use the callback.

The device emulator part of the TX path is implemented with the same scheme
presented in section 4.2.3 (see figure 4.4), where the guest notification are initially
enabled. In this way the guest notification are moderated when the guest sender
is faster than the QEMUBH TX processing cycle. The TX processing is done
basically calling qemu sendv packet(sg)6, where sg is the SG list extracted by
the avail ring. A copy is not performed in the hypervisor, but is necessary to map
the guest physical memory onto the hypervisor virtual memory, since the virtio
descriptors contains physical addresses. This mapping, however, is done internally
by the virtqueue.pop(), so it’s not visible to the device emulator.

4.3.2 RX path

The RX path uses the receiver virtual queue (rvq), where the virtual queue callback
is initially enabled on the driver side. At initialization time, the driver must pro-
vide the hypervisor with some receive buffers, otherwise it cannot accept incoming

5This is a variant of the enable cb method that delays the abilitation in the future. The variant
is implented only if the Virtio EVENT IDX feature is set. However, you cannot specify how far in
the future the abilitation will take place.

6This is a simple variant of the qemu send packet() function, that accepts a scatter-gather array.

72

packets7. In other words, the driver has to fill the avail ring with receive buffers
calling add buf() as many times as possible. A pointer to an empty sk buff is
passed as token.

On the device emulation side (virtio-net frontend), the guest notification are ini-
tially enabled. When the hypervisor receives a packet, the network backend in-
vokes the virtio net receive method, that performs the following actions:

1. If there are no receive buffers to use, enable guest notifications, so that we
will be notified when more receive buffers are added to the avail ring. Then
return 0 (the number of bytes received). When the QEMU network core
sees that the virtio-net frontend is not able to receive the packet, it puts the
received packets into an internal queue (see section 2.2.4). When the guests
notification comes, the frontend invokes qemu flush queued packets(),
so that the QEMU network core tries again to invoke virtio net receive
on each queued packet. After we enable guest notifications, we must double
check for more avail buffers, otherwise the usual race condition can show
up.

2. Pop a receive buffer from the virtual queue (rvq.pop(sg)).

3. Copy to this receive buffer the ethernet frame passed to virtio net receive.

4. Pushes the used buffer to the used ring. To be precise, the push operation
is not performed with the push method, but in two (or more) splitted calls.
Firstly the fill method is called to put an used SG list in the ring without
updating the user ring index, and then the flush method is called to update
the used ring index. The reason for this is that in general we need more avail
SG lists (and so more pop) for a single ethernet frame. Since we don’t want
to expose an used index that corrispond to a incomplete ethernet frame we
can update the used index only when the received packets is completely in
the used ring.

5. Notify the guest with rvq.notify().

The driver part of the RX path is implemented with the same scheme presented
in section 4.2.3. The NAPI polling function is scheduled by the receiver virtual
queue callback, which also disable further callbacks. The polling function polls
for used receive buffers calling rvq.get buf(), that returns the sk buff token.
Each used buffer is processed by the receive buf() function, which invokes the
netif receive skb() as last operation. When the working cycle exits, it means
that the NAPI budget is over or that no more used buffer are ready. At this point the
polling function has made room in the avail ring and so refills it with new receive
buffers8.

7We’ve seen the same problem with e1000 in section 2.5.4.
8Observe that the receive buffer management is very similar to the one employed by e1000.

73

After that the callbacks are enabled and the usual double check performed (with
callbacks disabling and NAPI rescheduling if there are more used buffers).

4.3.3 Other details

In this section we’ve outlined the most important details about virtio-net imple-
mentation. However, we have skipped some details such as out-of-memory (OOM)
managment, and receive buffer allocation/deallocation and processing. In fact three
types of receive buffers can be used: small buffers, big buffers and mergeable
buffers. For further information refer to the source code.

Another important feature is the use of TSO/GSO9 kernel support (introduced in
section 2.3), that allows to transmit and receive very big packets (up to about
64KB). These features lead to huge improvements in TCP throughput with ref-
erence to a case in which TSO/GSO packets are not used.

4.3.4 Performance analysis

In this section we will preform the same experiments presented in section 3.1, so
that we can compare the result with the e1000 performance (patched or unpatched).

TX performance

The results in 1-VCPU case are shown in table 4.1. We can see that the interrupt
rate is very low and the performance is good (∼ 160 Kpps). At the same time, the
TX notification rate is almost zero.
What happens here is that the producer (the guest) is faster than the consumer (the
hypervisor) in the TX direct PCC: This is why the hypervisor (almost) never needs
to exit from its working cycle and so (almost) never enables guest notifications.

Since the guest is faster, the sender avail ring should be always close to full: As
soon as the hypervisor consumes some avail buffers, the guest should replenish the
avail ring, tell the kernel to stop sending packets, and enable interrupts. In the TX
reverse PCC, in other words, the consumer (the guest) is faster than the producer
(the hypervisor). In this scenario, therfore, the interrupt rate should be very high,
because the system would enter in a permanent almost-full state:

1. The sender queue avail ring has space for only one (or a very few) packet,
therefore rapidly replenishes the ring and enables the interrupts.

2. As soon as the hypervisor processes the next TX packet (making room in the
queue), it notifies the guest. The cycle go on from point 1.

9Generic Segmentation Offload is a network driver feature that extends the TSO concept to other
protocols, such as UDP.

74

Virtio-net 1-VCPU 2-VCPUs

Interrupt rate 0.822 0.8 KHz
TX packet rate 158.1 154.8 Kpps
TX bitrate 130.3 127.6 Mbps
TX notifications 0.007 0.007 Mbps

Paravirtualized e1000 1-VCPU 2-VCPUs

Interrupt rate 0.37 0.58 KHz
TX packet rate 183.4 182.9 Kpps
TX bitrate 135.1 133.1 Mbps
TX notifications rate 0.4 0.34 KHz
MMIO write rate 1.2 1.4 KHz
MMIO read rate 0.4 0.55 KHz

Table 4.1: Guest to host statistics with paravirtualized solutions. The table on the
top shows virtio-net performance, while the table on the bottom shows paravirtual-
ized e1000 performance. Each table reports a set of measurements for the 1-VCPU
case and one for the 2-VCPUs case.

In this situation we should have nearly one interrupt per packet, and so bad perfor-
mance. However, from table 4.1 we don’t see this circumstance because of the way
the interrupts are enabled. As we have seen in section 4.3.1, the enable cb delayed
method is used in place of enable cb. In this way the interrupts are enabled after
a while, and not immediately. In the current implementation, the interrupt are en-
abled when the hypervisor has processed 3

4 of the pending packets in the queue10.
Therefore when an interrupt comes, 75% of the queue is empty, and not just one
packet. In other words, the system enters a state in which the guest is notified every
192 packets11, and still the queue is never empty (so the hypervisor never stops)
because the guest is fast to replenish the queue. In conclusion we should expect
an interrupt rate of 158.115K pps

192 = 0.823 KHz, which is exactly what we have in the
table.

Although not implemented with timers, the enable cb delayed method is just
a different incomplete form of interrupt moderation. It is used to moderate the
notification rate within a PCC where the consumer is faster than the producer:
In our case the producer is the hypervisor, which produces used buffers, and the
consumer is the driver, which consumes (free) used buffers. In order to see the
mitigation effects, we have tried to run the same experiment with a modified virtio-
net driver, where enable cb is used in place of enable cb delayed. The results

10In our case the queue is full of pending packets.
11The current default size for a virtual queue is 256, and so 256 · 0.75 = 192.

75

Interrupt rate 108.4 KHz
TX packet rate 110.4 Kpps
TX bitrate 91.0 Mbps
TX notifications 0.007 Mbps

Table 4.2: Guest to host statistics with 1 VCPU per guest, when the
enable cb delayed method is not implemented

are shown in table 4.2.
As we can see, here the situation is exactly the one we described previously (the
almost-full state), with an interrupt for each TX packet. The TX packet rate oscil-
lates between 80 Kpps and 150 Kpps, the system is very unstable and has a very
low responsiveness: Interrupt mitigation was definitely required in this case.

It’s very important to observe that you cannot always use this form of mitigation,
because of its incompleteness: there is not a mechanism to force timely notification
of pending events. Even worse, it can be the case that a pending event stalls forever
in a queue. In our case, the TX reverse PCC, there is not such a problem, for two
reasons:

• On the TX path, the comunication master is the guest, and so when it calls
enable cb delayed() we are sure that the pending TX buffers will be pro-
cessed by the slave (the hypervisor) as soon as possible, and so the interrupt
will be sent for sure, e.g. the pending events cannot stall.

• Considering the way the TX path is implemented (see section 4.3.1), we
don’t care about having used TX buffers freed as soon as possible, since they
are basically freed when needed.

In the RX path we are not so lucky (see the next subsection).

The results for the 2-VCPU test case are shown in table 4.1, and are very similar
to results for 1-VCPU case, since there is no significant work that can be done in
parallel.

RX performance

The measured critical rate is about 110 Kpps, which is not very high if compared
with what we get with e1000 (adding the mitigation patch). The collected statistics
are shown in table 4.3.
Also in this case, the reason for low performance is tied to the lack of interrupt
mitigation. As we can see, the interrupt rate is very high (57 KHz), because Virtio
does not limit the interrupt rate in any way. From an high interrupt rate we can
infer that in the RX direct PCC, the consumer (the NAPI) is faster than the producer

76

Virtio-net 1-VCPU 2-VCPUs

Interrupt rate 57.6 43.5 KHz
RX packet rate 103.0 100.1 Kpps
RX stream 127.6 124.0 Mbps
RX notification 0.007 0.004 Mbps

Paravirtualized e1000 1-VCPU 2-VCPUs

Interrupt rate 3.8 3.7 KHz
RX packet rate 317.3 315.4 Kpps
RX bitrate 231.0 229.6 Mbps
RX notifications 0.001 0.002 Mbps
MMIO write rate 7.5 7.4 KHz
MMIO read rate 3.8 3.7 KHz

Table 4.3: Host to guest statistics with paravirtualized solutions. The table on the
top shows virtio-net performance, while the table on the bottom shows paravirtual-
ized e1000 performance. Each table reports a set of measurements for the 1-VCPU
case and one for the 2-VCPUs case.

(hypervisor): This results in only about 2 packets processed by the polling function
for each interrupt. We could add mitigation in the same way we have added it in
the TX inverse PCC (see the previous subsection): Using the enable cb delayed
method in place of the enable cb method when exiting from the NAPI working
cycle. However, this simply cannot be done:

• On the RX path, the master is the hypervisor and so the guest (the slave),
when calling enable cb delayed(), cannot know when the next packet
will be received by the hypervisor, and therefore cannot know when a total
of 192 packets will be received. Since the Virtio mitigation is incomplete,
up to 191 RX packets could stall in the used ring. Of course, this is not
acceptable.

• Latency is affected negatively by the mitigation in this case.

A complete form of mitigation is here the only solution, but this has not been
implemented yet.

On the RX reverse PCC the consumer (hypervisor) is slower than the producer
(guest) and consequently the RX notification rate is very good (about zero notifi-
cations).

The measured results for the 2-VCPU case are shown in table 4.3. There is not

77

a substantial difference with the 1-VCPU case, because there is not enough paral-
lelism in the guest to exploit.

4.4 Porting paravirtualization to e1000

In the previous sections we’ve seen how is possible to get good performance using
a paravirtualized I/O solution. Virtio drivers are efficient because the only make
use MMIO accesses and interrupts to notify the other peer of a virtual queue, and
exchange data and metadata through shared memory. However, the Virtio interface
must also be general enough to support different kind of devices and is not specif-
ically tailored to the network device world: Most of the complications come from
the need of a paravirtualized disk device. As an example, a network driver doesn’t
need two rings (avail and used) for each virtual queue, and doesn’t even need to
separate the ring from the descriptor table. The descriptor table and two indices
in that table would have been enough. Moreover, a complete mitigation scheme
is not implemented, and this is a limitation in same situations (see section 4.3.4,
RX performance), Lastly, the Virtio solution requires a completely new set of de-
vice drivers/emulators, which is a greater effort than modifying an existing device
driver/emulator.

In this section we will see how is possible to extend the e1000 interface in order
to adopt the paravirtualization paradigm. As usual, we will try to minimize the
modifications to the existing code, so that the proposed patch can be easy to test
and mantain.

4.4.1 Asynchronous TX Processing

In the e1000 emulation we’ve seen so far, the TX processing is done by a VCPU
thread (section 2.4.1). A better solution however, is to employ the processing/no-
tification scheme presented in section 4.2.3 (e.g. NAPI-like moderation), in which
the hypervisor processing is done asynchronously using a QEMUBH. In this way
the TX processing is executed by the IOThread in parallel to the VCPUs.

4.4.2 Communication Status Block

In order to implement an efficient communication scheme we have to remove,
where possible, MMIO accesses that exchange data, leaving only accesses that
implement guest notifications to the hypervisor. As an example, writes to TDT and
RDT registers are used for two functions:

1. (notify) Notify the hypervisor that there is something new to process (new
Tx descriptors to process or new Rx descriptors to use).

2. (status) Tell the hypervisor which descriptors have just been added.

78

A notification (1), however, is not always necessary12, while status information
exchange (2) is always desirable, so that the other peer is always updated and it’s
less likely to exit from its working cycle. It would then be better to split these
functions: TDT/RDT writes should be used only for notifications, while status
exchange can be done using shared memory. For these reasons a dedicate block
of shared memory, called Communication Status Block (CSB), has been allocated
in the guest memory. The CSB is a set of 32-bits words that are used to exchange
information about the status of the communication without VMExits.

The CSB contains the following words:

• TXSNTS (Tx Software Next To Send): is synchronized with the tx next to use
variable (when in a coherent state). In short, where the ndo start xmit
starts to insert new TX descriptors in the TX ring. It is used to replace the
status information function of the TDT register.

• TXHNTS (Tx Hardware Next To Send): is synchronized with the TDH reg-
ister. In short, where the hardware takes the next TX descriptor to process.

• TXSNTC (Tx Software Next To Clean): is synchronized with the tx next to clean
variable. In short, where the TX interrupt routine takes the next used TX de-
scriptor to clean.

• RXSNTP (Rx Software Next To Prepare): is synchronized with the rx next to use
variable. In short, where the driver adds new RX descriptors to use for re-
iceving new frames.

• RXHNTR (Rx Hardware Next To Receive): is synchronized with the RDH
register. In short, where the hardware takes the next RX descriptor to use for
an incoming frame.

• RXSNTR (Rx Software Next To Receive): is synchronized with the rx next to clean
variable. In short, where the RX interrupt routine takes the next used RX de-
scriptor to push the received frame to the network stack.

• TXNTFY (Tx Notify Flag): Set/Cleared by the hardware to enable/disable
TX notifications. At the end of the ndo start xmit method, the driver
always updates TXSNTS, and updates also TDT only if TXNTFY is set.

• RXNTFY (Rx Notify Flag): Set/Cleared by the hardware to enable/disable
RX notifications. After adding new RX descriptors in the ring, the driver
always updates RXSNTP, and updates also RDT only if RXNTFY is set.

Some words (TXSNTS, TXSNTC, RXSNTP and RXSNTR) are always written by
the software (the driver) and read by the hardware (the device emulator). The other

12For example, it’s not necessary if the other peer is in its working cycle.

79

words (TXHNTS, RXHNTR, TXNTFY and RXNTFY) are always written by the
hardware and read by the software.

How we can see, these variables capture in each moment the status of the com-
munication (both RX and TX). Most of them are just shadow copies of registers
(TXHNTS and RXHNTR) or shadow copies of existing driver variables (TXSNTS,
TXSNTC, RXSNTP and RXSNTR), therefore nothing new so far. Shadow copies
of registers are useful because the driver can read them without a VMExit. Shadow
copies of existing variables are useful only for technical reasons: they allow us to
have all the interesting variables in a contiguous chunk of physical memory so
that the driver can to tell the hardware only the CSB physical address. Otherwise
the driver should tell the hardware a different physical address for each interesting
variable13.

On the other end, TXNTFY and RXNTFY are something new. These are used
by the hardware to disable TDT writes and RDT writes when these are not ne-
cessary. As we have outlined in section 4.4.1, the idea is to implement the usual
producer/consumer scheme (NAPI-like moderation), which requires a method for
the consumer to disable producer notifications.

Similarly to what happens to the other shared memory structures (e.g. TX/RX
rings), the hardware must be told where the CSB has been allocated in the guest
physical memory. For these reason, two 32-bit registers, CSBBAH (CSB Base Ad-
dress High) and CSBBAL (CSB Base Address Low) have been added to the register
set. The driver must write the physical address of the CSB to these registers.

4.4.3 Implementation

This section briefly reports what changes have been added to the RX and the TX
path to implement e1000 paravirtualization. The changes are relative to the exist-
ing implementation of e1000, possibly improved with the moderation patch. As we
have already observed, interrupt moderation is very useful within PCCs in which
the hypervisor is the producer, and the guest is is faster than the hypervisor. How-
ever, the paravirtualization patch is independent on the moderation patch. The
driver batching mechanism, on the other hand, is not intended to be used jointly
with paravirtualization, simply because this would not make any sense: Since par-
avirtualization exports the status of the communication, there’s no need to flush
pending TX descriptors, we just have to notify the hypervisor when necessary.

A new parameter, paravirtual, has been added to the e1000 module. The pa-
rameter value can be specified only at module loading time and cannot be changed

13In the existing e1000 driver the memory for these variables is not allocated all together, so the
driver data memory is not necessarily contiguous.

80

dynamically. When paravirtual is 0, the driver is the original one, and the de-
vice emulator (e1000 frontend) behaves as usual14. When paravirtual is 1, the
driver allocates the CSB, initializes it, and writes its physical address to the CSB-
BAH and CSBBAL registers. On the hypervisor side, the emulated e1000 hardware
switches to “paravirtual mode” when the driver writes to the CSBBAL register and
CSBBAL/CSBBAH registers specify together a non-null address.

At initialization time, the CSB words are set to 0, except for TXNTFY and RXNTFY
that are initialized to 1.

Changes in the TX path

At the end of the ndo start xmit method in the e1000 original driver, where the
TDT would be updated, we changed the code so that TXSNTS is updated, while
the TDT is updated only if TXNTFY is set. In the TDT write handler, TXNTFY
is cleared to disable further notifications and the QEMUBH is scheduled. The
QEMUBH handler invokes the start xmit function, so that the TX processing
(working) cycle is entered. The working cycle can exit because we processed
too many descriptors (256 in the current implementation) or because there is no
more work to do. If the working cycle has processed at least one descriptor, the
QEMUBH is rescheduled. Otherwise TXNTFY is set to 1, and the usual double
check is performed. If new work is found, TXNTFY is cleared and the QEMUBH
rescheduled. If new work hasn’t come yet we don’t reschedule the QEMUBH.
Note that we reschedule even if just one descriptor has been processed, and not
only if a full burst (256) of descriptors has been processed: This is a form of spin-
ning that can be useful when dealing with fast backends, because we make the
QEMUBH more likely to be rescheduled, and so the TX notification more likely
to be disabled. The spinning can work well in this case because, after reschedul-
ing, the QEMUBH handler is not executed immediately, but in the next event-loop
iteration, so that the guest has some time to post more work in the queue.

Changes in the RX path

At the end of e1000 alloc rx buffers in the original driver, where the RDT
would be updated, we changed the code so that RXSNTP is updated, but RDT
is updated only if RXNTFY is set. In the RDT write handler, if the RDT write
actually gives some new receive buffers, RXNTFY is cleared to disable further RX
notifications. Remember that in this last case qemu flush queued packets() is
called (see section 2.2.4). When the hardware runs out of receive buffers, the e1000
can receivemethod returns 0. Before returning, however, it has to set RXNTFY,
so that when new receive buffers are put in the RX ring, a RDT write can flush the
queued packets (if any). After notifications have been enabled, as usual, a double
check is performed in order to avoid race conditions.

14To keep the code simple, the CSB is always allocated even if paravirtual is 0.

81

Other changes

Since we know to be in a virtual machine environment, some more optimizations
can be done. In particular, after writing to IMS and IMC registers (see section
3.1.1), we can avoid reading the STATUS register to flush the previous register
write, since there’s no need to do so on the emulated hardware.

4.4.4 Improvement analysis

In this section we will perform the usual experiments (see section 3.1), so that we
can evaluate the performance improvements. The e1000 module has been loaded
with the following parameters:

Parameter Value

TxIntDelay 0
TxAbsIntDelay 0
InterruptThrottleRate 4000
batching 0
paravirtual 1

TX performance

The results for 1-VCPU case are shown in table 4.1.
As we can see, performance are better with reference to the previous tests (both
e1000 and Virtio). The interrupt rate is very low, thanks to mitigation and NAPI.
The TX notification are minimized because of the usual NAPI-like scheme. Note
that the total MMIO access rate is 1.611, which is about 4.35 times the interrupt
rate: 3 MMIO accesses per interrupt are due to the ICR read and IMC and IMS
write, while 1.35 access per iterrupt are due to the TX notifications.

The results for the 2-VCPU test case (shown in table 4.1) are very similar.

RX performance

In the 1-VCPU case the measured critical rate is about 315 Kpps, which is the best
result so far. Table 4.3 shows the statistics when the VM accepts an incoming rate
of about 317 Kpps.
The very good result is due to the interrupt moderation, the NAPI, the MMIO
access optimizations (avoid reading the STATUS register to flush the register write)
and the RX notification moderation. The total MMIO access rate is 11.318 KHz,
which means about 11.318KHz

3.774KHz ∼ 3 MMIO access per interrupt. These three interrupt
are the ICR read, and the IMC and IMS writes. RX notifications are essentially
absent, because these notifications are enabled only when the RX ring has not
receive buffers to use, e.g. when the hypervisor start to be faster than the guest on

82

the RX path. In our case the incoming rate is still too low to make that situation
very likely.

With 2 VPCUs the measured critical rate is also about 315 Kpps. Table 4.3 shows
the statistics when the VM accepts an incoming rate of about 315 Kpps.

83

Chapter 5

Conclusions and future work

In this work we have shown how is possible to boost the packet-rate performance
of an e1000 network adapter in a Virtual Machine environment. First of all we
analyzed the existing implementation and we pointed out its problems and bottle-
necks. Then we proposed a patch to the QEMU e1000 frontend (the moderation
patch) and a patch to the Linux e1000 driver (the batching patch) that can be used,
independently on each other, to improve performance. Both patches are very sim-
ple and don’t extend the e1000 interface specification. After that we analyzed
the Virtio I/O paravirtualization framework and provided a small extension to the
e1000 interface that allows to remove some inefficiency by porting the I/O paravir-
tualization concepts to the e1000 platform.

Comparing the TX and RX performance of the existing e1000 implementation with
our best results (e1000 paravirtualization) we have obtained a 8.9× speed-up on
the TX path and a 22× speed-up on the RX side. This packet rate performance
is comparable or superior to the Virtio performance and is obtained with small
modification to the e1000 driver and device emulator.
A short paper ([12]) collecting the ideas presented in this work, in combination
with the VALE ([11]) fast software switch, has been submitted to USENIX ATC’13.

More work can be done to achieve further improvements with the e1000 platform.
In particular, three aspects can be optimized:

• Packet-rate: Although this parameter is the optimization objective of these
thesis, we can further improve performance removing some packet copies.
For example, the current e1000 device emulation copies a TX packet from
the guest memory to a local buffer: this copy is essentially useless and it can
be avoided with some memory mapping efforts.

• Latency: Interrupt moderation worsens latency, so we should implement
some euristics aimed at bypassing moderation delay when the network traf-
fic requires low latency more than high packet rate (e.g. HTTP transactions).

84

Moreover, MSI/MSI-X ([8]) interrupts can be used in place of the classic
interrupt mechanism.

• TXP throughput: The key for performance here is big packets, more than
high packet rate. The bigger packets you can make, the higher throughput
you can get. TSO/GSO features must be exploited, like Virtio does.

85

Bibliography

[1] The QEMU project. http://www.qemu.org.

[2] Adams, K., and Agesen, O. A comparison of software and hardware techniques for x86 virtualization.

[3] Agesen, O., Mattson, J., Rugina, R., and Sheldon, J. Software techniques for avoiding hardware virtual-
ization exits. In Proceedings of the 2012 USENIX conference on Annual Technical Conference (Berkeley,
CA, USA, 2012), USENIX ATC’12, USENIX Association, pp. 35–35.

[4] AMD. Secure Virtual Machine Architecture Reference Manual, May 2008.

[5] Bellard, F. Qemu, a fast and portable dynamic translator.

[6] Chisnall, D. The Definitive Guide to the Xen Hypervisor. Prentice Hall, 2007.

[7] Corporation, I. PCI/PCI-X Family of Gigabit Ethernet Controllers Software Developers Manual.

[8] Emulex. Msi and msi-x: New interrupt handling improves system performance with emulex lpe12000 8gb/s
pcie fibre channel hbas.

[9] Huang, Q. An introduction to virtual machines implementation and applications. SIGOPS Oper. Syst. Rev.
42, 5 (2006), 5–14.

[10] Neiger, Gil Santoni, A. Intel virtualization technology: Hardware support for efficient processor virtual-
ization. Intel Technology Journal 10, 3 (2006).

[11] Rizzo, L., and Lettieri, G. Vale, a switched ethernet for virtual machines. In Proceedings of the 8th
international conference on Emerging networking experiments and technologies (New York, NY, USA,
2012), CoNEXT ’12, ACM, pp. 61–72.

[12] Rizzo, L., Lettieri, G., andMaffione, V. Revisiting virtualized network adapters.

[13] Russell, R. virtio: towards a de-facto standard for virtual i/o devices. SIGOPS Oper. Syst. Rev. 42, 5 (July
2008), 95–103.

[14] Smith, J. E., and Nair, R. Virtual Machines - Versatile Platforms for systems and processes. Elsevier, San
Francisco, CA, USA, 2005.

[15] Sugerman, J., Venkitachalam, G., and Lim, B.-H. Virtualizing i/o devices on vmware workstation’s hosted
virtual machine monitor. In Proceedings of the General Track: 2002 USENIX Annual Technical Conference
(Berkeley, CA, USA, 2001), USENIX Association, pp. 1–14.

[16] VMWare. Performance evaluation of vmxnet3.

[17] Wang, J., Wright, K.-L., and Gopalan, K. Xenloop: a transparent high performance inter-vm network
loopback. In Proceedings of the 17th international symposium on High performance distributed computing
(New York, NY, USA, 2008), HPDC ’08, ACM, pp. 109–118.

[18] Yehuda, B. Utilizing iommus for virtualization in linux and xen.

86

