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On a property of strictly logarithmic concave functions

V. A. TOMILENKO

1. Introduction. In the work [1] by A. Prékopa the following theorem was
proved. ‘

Theorem 1. Let f(x, y) be a function of n+m variables, where x is an n-compo-
nent and y is an m-component vector. Suppose that f is logarithmic concave in R**™
and let A be a convex subset of R™. Then the function

Ix) = [ f(x;y)dy

is logarithmic concave in the entire space R".

The main result of this work is a similar statement for strictly logarithmic concave
functions. :

Let f be a non-negative logarithmic concave function in R"*™. We denote

D= {z¢R™™: f(2) = 0}, D(x) = {y€R™: f(x,5) >0}, B={xcR": I(x)> O}

The sets D(x) (x€R"), D and B are convex in R", R**™ and R", respectively. The
relative interior of a convex set CC R is denoted by riC (see [2] p. 57) and the closure
of C by C. The basic theorem of this work is -

Theorem 2. Let f(x, y) be a function of n+m variables where x¢R", y€R™.
Suppose f is logarithmic concave in R"*™ and strictly logarithmic concave in ri D,
and let A be convex subset of the space R™. If the sets D(x)C R™ are bounded
Jfor every x€R", then the function I is logarithmic concave in the entire space R”
and strictly logarithmic concave in ri B, ' :

~ The first part of this statement is just Theorem 1. We shall begin with proving
the strictly logarithmic concavity of the function I in ri B with subsidiary statements.

In this work the terminology has been taken from [2].

2. Auxiliary statements. We define the function g: R"*™ — R as follows
8(2) =-Inf(2), z=(x,y)eR™*™
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Under the conditions imposed on f, g is a proper convex function with effective
domain
dom g = {z€R"*™: g(2) < «} = D.
We denote
1 (z) = limsup f(v), v, zER™.
Lemma 1. For all z¢ R**™
' (clg)(2) = —Inf,(2),

where cl g is the closure of the convex function g.
Proof. From the definition of cl g ([2] p. 67—68) and g we have
(cl g)(2) = liminf g(v) = liminf[—In f(v)] = —lim sup ln £(v).

The continuity and strict monotonicity of the logarithm implies that
lim sup In £(v) = In [lim sup f(v)] = In £, (2).

g4

The lemma is proved.
Corollary 1. The function f* is logarithmic concave in R"*™,

Corollary 2. The function f agrees with f, in R**™ except perhaps at relative
boundary points of a convex set D.
Corollaries 1 and 2 follow from Theorem 7.4 [2] and Lemma 1.

Lemma 2. If f is upper semi-continuous on the closed bounded set D R*, then
there exists zy€ D such that

sup f(2) = f(2o).
z€D

Proof. Let sup f(z)=C and &,>0, ¢,~0 as n—~. Then one can find a se-
quence {z,}c D szuecgl that for n=1, 2, ...
' f(z)) = C—s,.
‘Since D is a bounded closed set without loss of generality we may assume that

Z,~2Zy as n—oo, z,€D, and |z,—z)| =¢, for n=1,2, ...

Hence the inequality
) - osup - f(D)=f(z)>C—e¢, n=12 .

29—zl <e,,
is valid. Taking into account the upper semi-continuity of the function f we get
from (1) that ~ L
f(zp) =lim sup f(z2)=C.

n—-oco |z—zg|<e,

Thus f(z,)=C. The lemma is proved.
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Lemma 3. Let z;, Z,€R*™ and O0<A<1. If f is strictly logarithmic concave
in riDC R"™ and Az, +(1 —A)z,€ri D, then the inequality

@ [z + (=D z) = fi(z) /i 7*(22)

is valid.

Proof. Two cases are possible. }

(i) One of the points, either z, or z,, does not belong to D. In this case inequal-
ity (2) is obviously correct.

(ii) Let z,, z,€D. Let us draw a straight line / across the points z; and z, and
choose some point z€INri D. Let qo(ﬂ)=g(yzl-{-(l—u)zg). Then cl¢ is a proper
strictly convex function on [0, 1]. From Theorems 7.4 and 7.5 of [2] it follows that
(cl9) ()=o) for pe (0, 1) and

@ @)(1) = lim v+ (L —¥)g) = lim g(vz,+(1—9)2) = (cl )z,
(e 9)(O) = lim (o —vp) = lim g(vz+(1 —)2) = (cl £)(2),

'where z=p,z; + (1 — ;) 2,. This means that the function cl g is strictly convex on the
set 1N D, that is

3) (©l g)(Azy +(1—2)z,) < Al (@) +(1 (el g)z), 0<i<1.

From (3) and Lemma | it can be seen, that inequality (2) is true. The lemma
is proved. : :

Corollary 3. Let z,, z,€ R**™ and O<li<1. If f is strictly logarithmic concave
inti DC R"™™ and Az, +(1 —A)z,€1i D, then we have the inequality

Sz +(1=1)z) = fA(2) 1~ *(zo).
Q ) .
Lemma 4. If x,6ri B, y,€int D(x,), then zy=(xyyo)€ri D.

Proof. Let P be the projection (x, y) »x from R™*™ onto R". It can be shown that
Bc PD and if B is not empty then the dimension of the set B agrees with that of PD.
Hence ri BCri(PD) and the point (xo, yO)Erl D by Theorem 6.8 of [2]. The lemma is
proved.

3 Proof of Theorem 2. We denote

D, (x) = {yeR™: f, (x, y)>0}

For all x¢ri B the sets D(x) and D « (x) have the same closure and the same interior
(see Corollary 2).
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Let x;, x,€r11 B,0<A<1 and xy=Ax; +(1 — 2)x,. We define the functions f;
and f; as follows:

L) =fi(x, ) if y€A, and f,(y) =0 otherwise;
£0) =f(x:,y) if ycA, and f,(y) =0 otherwise.

For given y€R™ and 4, 0<A<1, we shall denote by S(y; 4) the set of points
(u, v) such that u, v€R™, Au+(1—2A)v=y. .
It can be shown that for all y€ R™

sup ﬂ(xla u)f*}_l(xz’ U) = sup fll(u)le_l(v)
S(y; 4) SO0

and for y€ AND(x,)
sup fi(W)f3~*(@) = 0.
S A

Since f, is logarithmic concave in R"*™ (Corollary 1), the following inequality
will be valid for all y€ R™: '

f*(xm y) = Sup f’lf'(xla u)f}-l(xz, l?).
S(a;y)

We shall prove that for all y€int D(x,) we have
(4) f* (xo’ y) = Ss(yu'lz)f:(Xh u)j;‘l-).(xg, U).

Suppose on the contrary that there could be found a yy€int D(x,) such that

Sy (X0, yo) = sup fi(xy, ) fa* (xg, 0).
S(o; 1)

In this case f,, (xq, ¥o) =0 as (x,, yp)€ri D (Lemma 4). According to Lemma 2 there
exists a point (uy, v,) € S(y,; A) such that

u€D(x), vy€D(xy) and S (%05 ¥o) = S (xy, ug) fi = (x, v).

We have got a contradiction to Lemma 3. So, for all y€int D (x,) inequality (4) is valid.
From the definition of the function I and from Corollary 2 we get

lcxo)=1f oy = [ filx, y)dy.

AND(xp)
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Taking into account (4) and Theorem 3 of [1] we obtain:

[ fGndy= [ sup fiGa, iAo, v)dy =

AND(xg) AND(xy) S5 4
= [ sup @A @dy= [ swp LA O)dy=
DxpnA S0: 4 Rn SG;A)

=[ A0 D[ [0 =] [ ALY [ AGLd]=

R T ORm ANDexy) AND(xy)

= [TCe)P [T (xl

The theorem is proved. '

Corollary 4. Let x;, x,€R" and 0<i< 1. If Ax;+(1—2)x,€ri B, then the
inequality
% 1(2x,+(1—2) x5) > [L(x)P I (P4
is valid. ;

Proof. It follows from Theorem 2 and Corollary 3.

In conclusion the author expresses his gratitude to G. G. Pestov for his help
in carrying out the present work.
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