On a property of strictly logarithmic concave functions

V. A. TOMILENKO

1. Introduction. In the work [1] by A. Prékopa the following theorem was proved.

Theorem 1. Let f(x, y) be a function of n+m variables, where x is an n-component and y is an m-component vector. Suppose that f is logarithmic concave in R^{n+m} and let A be a convex subset of R^m . Then the function

$$I(x) = \int_A f(x, y) \, dy$$

is logarithmic concave in the entire space Rⁿ.

The main result of this work is a similar statement for strictly logarithmic concave functions.

Let f be a non-negative logarithmic concave function in \mathbb{R}^{n+m} . We denote

$$D = \{z \in \mathbb{R}^{n+m} : f(z) > 0\}, \quad D(x) = \{y \in \mathbb{R}^m : f(x, y) > 0\}, \quad B = \{x \in \mathbb{R}^n : I(x) > 0\}.$$

The sets D(x) $(x \in \mathbb{R}^n)$, D and B are convex in \mathbb{R}^m , \mathbb{R}^{n+m} and \mathbb{R}^n , respectively. The relative interior of a convex set $C \subset \mathbb{R}^k$ is denoted by ri C (see [2] p. 57) and the closure of C by \overline{C} . The basic theorem of this work is

Theorem 2. Let f(x, y) be a function of n+m variables where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$. Suppose f is logarithmic concave in \mathbb{R}^{n+m} and strictly logarithmic concave in ri D, and let A be convex subset of the space \mathbb{R}^m . If the sets $D(x) \subset \mathbb{R}^m$ are bounded for every $x \in \mathbb{R}^n$, then the function I is logarithmic concave in the entire space \mathbb{R}^n and strictly logarithmic concave in ri B.

The first part of this statement is just Theorem 1. We shall begin with proving the strictly logarithmic concavity of the function I in ri B with subsidiary statements.

In this work the terminology has been taken from [2].

2. Auxiliary statements. We define the function $g: \mathbb{R}^{n+m} \to \mathbb{R}$ as follows

$$g(z) = -\ln f(z), \quad z = (x, y) \in \mathbb{R}^{n+m}.$$

Received June 13, 1975.

Under the conditions imposed on f, g is a proper convex function with effective domain

$$\operatorname{dom} g = \{z \in R^{n+m} : g(z) < \infty\} = D.$$

We denote

$$f_*(z) = \limsup_{v \to z} f(v), v, z \in \mathbb{R}^{n+m}.$$

Lemma 1. For all $z \in \mathbb{R}^{n+m}$

$$(\operatorname{cl} g)(z) = -\ln f_{+}(z),$$

where cl g is the closure of the convex function g.

Proof. From the definition of cl g(2) p. 67—68) and g we have

$$(\operatorname{cl} g)(z) = \lim_{v \to z} \inf g(v) = \lim_{v \to z} \inf \left[-\ln f(v) \right] = -\lim_{v \to z} \sup \ln f(v).$$

The continuity and strict monotonicity of the logarithm implies that

$$\limsup_{v \to z} \ln f(v) = \ln \left[\limsup_{v \to z} f(v) \right] = \ln f_*(z).$$

The lemma is proved.

Corollary 1. The function f_* is logarithmic concave in \mathbb{R}^{n+m} .

Cosollary 2. The function f agrees with f_* in R^{n+m} except perhaps at relative boundary points of a convex set D.

Corollaries 1 and 2 follow from Theorem 7.4 [2] and Lemma 1.

Lemma 2. If f is upper semi-continuous on the closed bounded set $D \subset \mathbb{R}^k$, then there exists $z_0 \in D$ such that

$$\sup_{z\in D}f(z)=f(z_0).$$

Proof. Let $\sup_{z \in D} f(z) = C$ and $\varepsilon_n > 0$, $\varepsilon_n \to 0$ as $n \to \infty$. Then one can find a sequence $\{z_n\} \subset D$ such that for n = 1, 2, ...

$$f(z_n) > C - \varepsilon_n.$$

Since D is a bounded closed set without loss of generality we may assume that

$$z_n \to z_0$$
 as $n \to \infty$, $z_0 \in D$, and $|z_n - z_0| \le \varepsilon_n$ for $n = 1, 2, ...$

Hence the inequality

(1)
$$\sup_{|z_0-z|<\varepsilon_n} f(z) \ge f(z_n) > C - \varepsilon_n, \quad n = 1, 2, ...$$

is valid. Taking into account the upper semi-continuity of the function f we get from (1) that

$$f(z_0) = \lim_{n \to \infty} \sup_{|z-z_0| < \varepsilon_n} f(z) \ge C.$$

Thus $f(z_0) = C$. The lemma is proved.

Lemma 3. Let $z_1, z_2 \in \mathbb{R}^{n+m}$ and $0 < \lambda < 1$. If f is strictly logarithmic concave in $\mathrm{ri}\ D \subset \mathbb{R}^{n+m}$ and $\lambda z_1 + (1-\lambda)z_2 \in \mathrm{ri}\ D$, then the inequality

(2)
$$f_*(\lambda z_1 + (1 - \lambda) z_2) > f_*^{\lambda}(z_1) f_*^{1 - \lambda}(z_2)$$

is valid.

Proof. Two cases are possible.

- (i) One of the points, either z_1 or z_2 , does not belong to \overline{D} . In this case inequality (2) is obviously correct.
- (ii) Let $z_1, z_2 \in \overline{D}$. Let us draw a straight line l across the points z_1 and z_2 and choose some point $z \in l \cap ri D$. Let $\varphi(\mu) = g(\mu z_1 + (1 \mu)z_2)$. Then $cl \varphi$ is a proper strictly convex function on [0, 1]. From Theorems 7.4 and 7.5 of [2] it follows that $(cl \varphi)(\mu) = \varphi(\mu)$ for $\mu \in (0, 1)$ and

$$(\operatorname{cl} \varphi)(1) = \lim_{v \neq 1} \left(v + (1 - v)\mu_0 \right) = \lim_{v \neq 1} g\left(vz_1 + (1 - v)z \right) = (\operatorname{cl} g)(z_1),$$

$$(\operatorname{cl} \varphi)(0) = \lim_{v \neq 1} \left(\mu_0 - v\mu_0 \right) = \lim_{v \neq 1} g\left(vz_2 + (1 - v)z \right) = (\operatorname{cl} g)(z_2),$$

where $z = \mu_0 z_1 + (1 - \mu_0) z_2$. This means that the function cl g is strictly convex on the set $1 \cap \overline{D}$, that is

(3)
$$(\operatorname{cl} g)(\lambda z_1 + (1 - \lambda)z_2) < \lambda(\operatorname{cl} g)(z_1) + (1 - \lambda)(\operatorname{cl} g)(z_2), \quad 0 < \lambda < 1.$$

From (3) and Lemma 1 it can be seen that inequality (2) is true. The lemma is proved.

Corollary 3. Let $z_1, z_2 \in \mathbb{R}^{n+m}$ and $0 < \lambda < 1$. If f is strictly logarithmic concave in ri $D \subset \mathbb{R}^{n+m}$ and $\lambda z_1 + (1-\lambda)z_2 \in \mathrm{ri} D$, then we have the inequality

$$f(\lambda z_1 + (1-\lambda)z_2) > f^{\lambda}(z_1)f^{1-\lambda}(z_2).$$

Lemma 4. If $x_0 \in \text{ri } B$, $y_0 \in \text{int } D(x_0)$, then $z_0 = (x_0 y_0) \in \text{ri } D$.

Proof. Let P be the projection $(x, y) \rightarrow x$ from R^{n+m} onto R^n . It can be shown that $B \subset PD$ and if B is not empty then the dimension of the set B agrees with that of PD. Hence ri $B \subset \text{ri}(PD)$ and the point $(x_0, y_0) \in \text{ri } D$ by Theorem 6.8 of [2]. The lemma is proved.

3. Proof of Theorem 2. We denote

$$D_*(x) = \{ y \in R^m : f_*(x, y) > 0 \}.$$

For all $x \in \text{ri } B$ the sets D(x) and $D_*(x)$ have the same closure and the same interior (see Corollary 2).

Let $x_1, x_2 \in \text{ri } B$, $0 < \lambda < 1$ and $x_0 = \lambda x_1 + (1 - \lambda)x_2$. We define the functions f_1 and f_2 as follows:

$$f_1(y) = f_*(x_1, y)$$
 if $y \in \overline{A}$, and $f_1(y) = 0$ otherwise;

$$f_2(y) = f_*(x_2, y)$$
 if $y \in \overline{A}$, and $f_2(y) = 0$ otherwise.

For given $y \in \mathbb{R}^m$ and λ , $0 < \lambda < 1$, we shall denote by $S(y; \lambda)$ the set of points (u, v) such that $u, v \in \mathbb{R}^m$, $\lambda u + (1 - \lambda)v = y$.

It can be shown that for all $v \in \mathbb{R}^m$

$$\sup_{S(y;\lambda)} f_*^{\lambda}(x_1, u) f_*^{1-\lambda}(x_2, v) \ge \sup_{S(y;\lambda)} f_1^{\lambda}(u) f_2^{1-\lambda}(v)$$

and for $y \in \overline{A} \cap \overline{D}(x_0)$

$$\sup_{S(y;\lambda)} f_1^{\lambda}(u) f_2^{1-\lambda}(v) = 0.$$

Since f_* is logarithmic concave in R^{n+m} (Corollary 1), the following inequality will be valid for all $y \in R^m$:

$$f_*(x_0, y) \ge \sup_{S(\lambda; y)} f_*^{\lambda}(x_1, u) f_*^{1-\lambda}(x_2, v).$$

We shall prove that for all $y \in \text{int } D(x_0)$ we have

(4)
$$f_*(x_0, y) > \sup_{S(y; \lambda)} f_*^{\lambda}(x_1, u) f_*^{1-\lambda}(x_2, v).$$

Suppose on the contrary that there could be found a $y_0 \in \text{int } D(x_0)$ such that

$$f_*(x_0, y_0) = \sup_{S(y_0; \lambda)} f_*^{\lambda}(x_1, u) f_*^{1-\lambda}(x_2, v).$$

In this case $f_*(x_0, y_0) > 0$ as $(x_0, y_0) \in \operatorname{ri} D$ (Lemma 4). According to Lemma 2 there exists a point $(u_0, v_0) \in S(y_0; \lambda)$ such that

$$u_0 \in \overline{D}(x_1), \quad v_0 \in \overline{D}(x_2) \quad \text{and} \quad f_*(x_0, y_0) = f_*^{\lambda}(x_1, u_0) f_*^{1-\lambda}(x_2, v_0).$$

We have got a contradiction to Lemma 3. So, for all $y \in \text{int } D(x_0)$ inequality (4) is valid. From the definition of the function I and from Corollary 2 we get

$$I(x_0) = \int_{A} f(x_0, y) \, dy = \int_{A \cap D(x_0)} f_*(x_0, y) \, dy.$$

Taking into account (4) and Theorem 3 of [1] we obtain:

$$\int_{A \cap D(x_0)} f_*(x_0, y) \, dy > \int_{A \cap D(x_0)} \sup_{S(y; \lambda)} f_*^{\lambda}(x_1, u) f_*^{1-\lambda}(x_2, v) \, dy \ge$$

$$\ge \int_{D(x_0) \cap \overline{A}} \sup_{S(y; \lambda)} f_1^{\lambda}(u) f_2^{1-\lambda}(v) \, dy = \int_{R^m} \sup_{S(y; \lambda)} f_1^{\lambda}(u) f_2^{1-\lambda}(v) \, dy \ge$$

$$\ge \left[\int_{R^m} f_1(y) \, dy \right]^{\lambda} \left[\int_{R^m} f_2(y) \, dy \right]^{1-\lambda} = \left[\int_{\overline{A} \cap D(x_1)^{-1}} f_*(x_1, y) \, dy \right]^{\lambda} \left[\int_{\overline{A} \cap D(x_2)} f_*(x_2, y) \, dy \right]^{1-\lambda} =$$

$$= [I(x_1)]^{\lambda} [I(x_2)]^{1-\lambda}.$$

The theorem is proved.

Corollary 4. Let $x_1, x_2 \in \mathbb{R}^n$ and $0 < \lambda < 1$. If $\lambda x_1 + (1 - \lambda)x_2 \in \operatorname{ri} B$, then the inequality

(5)
$$I(\lambda x_1 + (1 - \lambda)x_2) > [I(x_1)]^{\lambda}[I(x_2)]^{1 - \lambda}$$

is valid.

Proof. It follows from Theorem 2 and Corollary 3.

In conclusion the author expresses his gratitude to G. G. Pestov for his help in carrying out the present work.

References

- [1] A. PRÉKOPA, On logarithmic concave measures and functions, *Acta Sci. Math.*, 34 (1973), 335—343.
- [2] Р. Рокафеллар, Выпуклый анализ, Изд-во Мир (Москва, 1973).

CHAIR OF MATH. ANALYSIS UNIVERSITY TOMSK TOMSK 634010, USSR