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On some recurrence equations in a Banach algebra 

LAJOS TAKÂCS 

1. Introduction. The aim of this paper is to find the solutions of the recurrence 
equations 

(1) A = M / . - x & J + V W - i } 

and 

(2) A = L W - ^ J + L* { /„_ ,£ . , } , 

and the solution of the system of recurrence equations 

(3) "„ = L K . A + ^ - A ) 

(4) vn = I / K - A + ^ - A } 

where /„, g1; g2, u0, v0, h1, h2, hs, A4 are elements of a Banach algebra R, L is a pro-
jection in R, and L + L * is the identity transformation in R. The solutions of these 
recurrence equations make it possible to determine the stochastic laws of the fluc-
tuations of the partial sums for a sequence of independent and identically distributed 
real random variables and for a semi-Markov sequence of real random variables. 

This paper generalizes and extends some earlier results of the author [11]. 

2. Preliminaries. Let R be a Banach algebra of elements / , / i , / 2 , ••• • We denote 
by 9 the zero element and by e the identity element of R. Denote by | | / | | the norm 
o f / a n d let ||e|| = l. 

Throughout this paper we shall consider transformations T in R which satisfy 
the following conditions : 

(i) The transformation T is a bounded linear transformation of R into itself. 
(ii) The transformation T is a projection, that is, 

T 2 { / } = T { / } for all / 
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400 L. Takács 

(iii) If either T { / } = / or T { / ; } = 0 for i = l, 2, then 

T { / 1 / , } = T { / 1 } T { / , } . 

We note that (iii) can be expressed in the following equivalent form : 

(5) T f / j / a } = T f A T i / ^ + T i T i / J / J - T i / j T i / , } 

for all f x and / 2 . 
The norm of T is defined as the smallest nonnegative number ||T|| for which 

||T{/}||=s||T|| 11/11 for all / 6 R . If T is not the zero transformation, then (ii) implies 
that ||T||isl. 

We define 

(6) T * { / } = / - T { / } 

for any T and/. If T statisfies the conditions (i), (ii), (iii), then T* too satisfies these 
conditions. We have ||T*|| ^ 1 +||T||. 

It will be convenient to introduce here some useful definitions which we shall 
need later. Let us suppose that a0=b0=e and a„=T{a„_1g} and 6„=T*{g6„_1} for 
» = 1 , 2, . . . where g£R. For a nonzero transformation T let us define ¿¿(T) as the 
largest nonnegative number for which 

1 K l l l e l " ^ ~ 
n = 0 

whenever ||g||</i(T) and g€R. Similarly for a nonzero transformation T* let 
us define /¡(T*) as the largest nonnegative number for which 

n=0 

whenever ||gi| </I(T*) and g£R. Obviously 

(7) ¡TU-1 2= n(T) 1 and | | T * | | - ^ / Z ( T * ) s 1. 

If ||T||=0, then we write ¿t(T) = oo and if ||T*||=0, then we write /t(T*) = °o. Let us 
define 

(8) c(T) = min(^(T),/¡(T*)), 

and 

(9) ?(T) = min(c(T), c(T*)). 

We note that if R is a commutative Banach algebra, and if T satisfies (i), (ii), 
(iii), then c(T) = 1. If R is a commutative Banach algebra, then we can prove by 
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mathematical induction that 

« a „ = 2a„-kT{gk} 
k=1 

for n— 1, 2, ... . Hence 

(10) «l |aj3S| |T| | ¿ | |a„-J( | |g | | ) k 

k=l 

for n—1, 2, .... By (10) it follows by induction that 

w - ( r n t " 7 1 ) a , w 
for « = 0 , 1, 2, .... This implies that / I (T) s l . Since £ ( T * ) s l also holds, by (7) and(8) 
we obtain that c (T) = 1. 

3. The method of factorization. In solving various recurrence equations in 
the space R we shall use the method of factorization. It seems the method of facto-
rization in Banach spaces was used for the first time in 1956 by P. MASANI [6]. See 
also G . BAXTER [1], [2] and I. C. GOHBERG [4]. 

Let h(g) be an element of R for where r is some positive real number. 
We say that the element h(g) can be represented by a Taylor series about Q—0 in the 
circle |f?|</" if 

h ( e ) = Z \ e T 
n=0 

and 

2 \ M \ e l " ' « 
n = 0 

for 
Let us suppose that T is a transformation in R which satisfies (i), (ii) and (iii). 

We shall consider various elements h(g) of R for which satisfy one of the fol-
lowing two properties. ; 

Property (a). The element h(g) has an inverse [A(e)]_1, h(0) = e, T { h ( g ) — e} = 
=h(g)—e, T {[/¡(e)] -1—e}=[/i(e)] -1—e, h(g) and [/¡(g)]-1 can be represented by 
a Taylor series about g=0. 

Property (b). T h e e l ement h(g) has an inverse [ / / ( e ) ] - 1 , h(0)=e, T* {h(g)-e}= 
=h(g)-e, T* { [ / ! ( e ) r 1 - e } = [ / z ( e ) r 1 - e , h(g) and [/¡(e)]"1 can be represented by 
a Taylor series about g=0 . 

The method of factorization is based on the following theorem. 

T h e o r e m 1. If g £ R and if\g\ \\g\\^c(T), then there exist two elements g+(g)£ R 

and g~ ( o ) £ R such that 

(11) = 
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where g+ (g) satisfies (a) and g (0) satisfies (b). The elements g+ (g) and g~ (g) are 
uniquely determined by (a), (b) and (11). 

Proof . First, we shall construct two elements g + ( e ) and g~(g) which satisfy 
(a), (b)and (11). Let us suppose that a0=b0=e and an=T {an-1g} and é n =T*{gé n _ 1 } 
for n = l , 2, . . . . Then 

(12) « ( « ) = 2 «.<?"€ R 

for |e| | | f | |</i(T) and 

(13) • 6 ( e ) = 5 è „ e n € R 
n = 0 

for lei ||g|| </Z(T*). From the definitions of a(g) and b(g) it follows immediately that 
a ( 0 ) = 6 ( 0 ) = e , T { a ( g ) - e } = a ( g ) - e , gl {a(g)g}=a{g)-e, T* {b(g)-e}=b(g)-e 
and eT*{gft (e)}=ft (e) -e . 

Now we shall prove that 

(14) (e-gg)b(g)a(g) = b(g)a(g)(e-gg) = e 

and 

(15) . a(Q)(e-Qg)b(e) = e 

for |e| !|g||<c(T). If we take into consideration that T {a (<?)(<? —eg)}=T{e} and 
T* {(e-gg) b(g)}=T* {e}, then by (5) it follows that 

T{b(g)a(g)(e-gg)} = T{e} 
and 

T*{(e-es)è(eMe)} = T*{e}. 
If we add these two equations, then we get 

(16) b(e)a(Q) = e+QT{b(eMe)g)+eT* {gb(e) « (e)}. 

If |el llgll<c(T), then b(g)a(g)£R and in the above equation we can write that 

b ( Q ) a ( g ) = 2 ynQ" 
n = 0 

where y„€R for w=0, 1, 2, ... . By forming the coefficient of e" in (16), we get 

(17) y„ = T {}>„_! g} + T* {#)>„_!} 

for n=1, 2, .... Since y0=e, it follows from (17) by induction that yn—g" for n = 
= 1, 2 This implies (14). 

By (5) it follows also that 

T { a ( e ) ( e - e g ) i ( e ) } = T{e} and T* {a (e ) (e — gg)b(g)} = T*{e}. 

If we add these two equations, then we get (15). 
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We can conclude from (14) and (15) that [a((?)] 1 and [b(o)] 1 exist and 

(18) \a{Q)\~i={e-Qg)b{Q) 

and 

(19) [b(Q)]^ = a(Q){e-Qg) 

for |<?| llgHcCT). 
If we define 

(20) g+(g) = [a(e)]-1 

and 

(21) *-(<?) = [ ¿ ( e ) ] " 1 

for \Q\ ||g||<c(T), theng + (e ) and g~(g) satisfy (a), (b) and (11). 
It remains to show that g+ (q) and g~ (g) are uniquely determined by (a), (b) 

and (11). This fact will be proved as a consequence of Theorem 3. 
In exactly the same way as we proved Theorem 1 we can prove the following 

theorem too. 

T h e o r e m 2. Ifg£R andif\g\ ||g|| < c ( T * ) then there exist two elements / / + ( e ) € R 

and / ¡~( i?)€ R such that > 

(22) e-Qg = h~(g)h+(Q) 

where h+(g) satisfies (a) and h~(g) satisfies (b). The elements h+ (g) and h~(o) are 

uniquely determined by (a), (b) and (22) . 
If w e s u p p o s e that c0=d0=e, cn=T {gc„-i} a n d d„=T* {dn_lg} f or « = 1 , 2 , . . . , 

(23) c ( g ) = Z c n e
n 

(1 = 0 

and 

(24) d(g) = 2dngn, 
/ 1 = 0 

then in Theorem 2 we can write that A+(e)=[c((?)]_1 and h~ {Q)=[d(o)\~l. 
We note that if R is a commutative Banach algebra, then (12), (13), (23) and (24) 

can be expressed in the following explicit forms 

a(0) = c(e) = e x p { - T { l o g ( e - 0 g ) } } and b(g) = d(g) = exp{ -T*{ log(e -eg ) } } 

where 

log ifi-Qg) = - 2 — for | e | | | g | | < l and e x p ( / ) = * + j ? £ 
n=l n n — 1 n! 

for any / 6 R. 
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4. Some linear transformations in R. In this section we shall consider trans-
formations L which satisfy conditions (i), (ii), (iii) and can be represented in the form 

(25) L { / } = T { / } - « ( . / > 

where T is a given transformation satisfying (i), (ii), (iii) and a ( / ) is a complex (or 
real) functional on R. 

We can prove that L satisfies the above conditions if and only if a ( / ) satisfies 
one of the following three sets of conditions: (1) a ( / ) = 0 , (2) a ( c / ) = c a ( / ) for any 
constant c, a ( / i + / 2 ) = a ( / 1 ) + a ( / 2 ) , a ( T { / } ) = a ( / ) , a ( T { / 1 } T { / 2 } ) = a ( / 1 ) a ( / 2 ) , 
a(e)e=T{e}, | a ( / ) | s | |T |P | | / | | , (3) a(c/) = c a ( / ) for any constant c, a ( . / i+ / 2 )= 
= a( . / i )+a( / 2 ) , a(T* { / } ) = « ( / ) , a(T* { / J T * { / 2 } )= - « ( f M f ù , *(e)e=T*{e}, 
l a ( / ) l — l | T * | | 2 | | / | | . 

Later we shall prove that for any L defined by (25) we have 

(26) c(L) = c(T) 
where c(T) is defined by (8). 

We shall state here a few general relations which can be deduced from (5). In 
agreement with (6) we define L* { / } = / — L { / } for any/. 

For any / 6 R we have 

(27) T { T { e } / } = T{e}T{/} and T { / T { e } } = T{/}T{e}. 

By (25) and (27) it follows that i f / € R , r£R and T{y}=T{e}, then 

(28) L{/y) = L{L {/})>} and L{y/} = L{yL{/}} , 

and if / 6 R , )><ER and T*{y}=T*{e}, then 

(29) L*{/y} = L*{L*{/}y} and V { y f ) = L*{rL*{/}}. 

I f / € R , y,€R (z'=l, 2) and T{v,}=T{e} ( f = l , 2), then we have 

(30) L{ V l L{/ }7 2 } = L{ 7 l /y 2 } and L{ ? 1 L *{/}y 2} = 0. 

The first equation follows from the repeated applications of (28). The second follows 
from the first one. 

If / € R , ( i = l , 2) and T*{y i}=T*{e} ( /=1, 2), then we have 

(31) L*{V lL*{/}y2} = L*{ y i / ? 2} and L * { r i L { / } ? 2 } = 0. 

The first equation follows from the repeated applications of (29). The second follows 
from the first one. 

Now we shall consider the solutions of the three recurrence equations stated 
in the Introduction. 

5. The first recurrence equation. Let us consider the recurrence equation (1) 
for « = 1 , 2 , . . . where/0£R, gi€R, g2£R and L satisfies the conditions (i), (ii), (iii) 



On some recurrence equations in a Banach algebra 4 0 5 

and can be represented in the form of (25). Obviously,/n€R for n = \ , 2 , . . . and our 
aim is to determine f„ for n=1, 2 

Denote by r(L) the largest nonnegative number for which 

n=0 

whenever g ^ R , g2€R and 

(32) max (lift», < r ( L ) . 

The inequalities 

( I I L I H - I I L D - ^ . r ^ S c f L ) 

obviously hold; however, later we shall prove that 
(33) r(L) = c(L) = c(T) 

where c(T) is defined by (8). 
If (32) is satisfied, then 

( 3 4 ) F(g) = Z f n Q n 

n=0 

belongs to R, and if we multiply (1) by g" and add for n = 1, 2, ..., then we obtain that 

(35) M F ( e ) ( g - e s O } + L * { ( e - № ) F ( e ) } = / 0 . 

Conversely, if 

(36) *•(<?) = 1 / » V 
n = 0 

belongs to R for \g\<r where r is some positive number, and if (36) satisfies (35), 
then by forming the coefficient of g" for n=0, 1, 2, ..., we obtain that / 0 *=/ 0 and 
/„* (n= 1 ,2 , . . . ) satisfies the same recurrence formula as/„ («= 1, 2,. . .) . Thus neces-
sarily /„*=/, for k=s0. 

We shall demonstrate that F(g) can always be determined by using the method1 

of factorization. Let us assume that 

(37) e-ggi = gtig)gr(e) 

for |e| ||gj||<c(T) and i= 1, 2 where gf(g) and gj"(e) satisfy the properties (a) and (b) 
respectively. We have already proved that such a factorization always exists. By 
using the factorization (37) which depends only on T, we can determine F(g) not 
only for L = T but for any L satisfying (i), (ii), (iii) and (25). 

Theorem 3. 7/"/06R, gjgR, a n d 

/ „ = M / n - l S l l + L W * - ! } 
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for / 1 = 1 , 2, . . . , and if (32) is satisfied, then (34) belongs to R and we have 

(38) F(Q) = [ g f i f f M - ^ L f e f ^ / o f e r t e ) ] - » } ( £ ) } ] [ ^ ( e ) ] - 1 

where gf (Q) and g f (Q) satisfy (a), (b) and (37) . 

Proof . If F(Q) is defined by (38), then it can be represented in the form of 
(36). Since T{g ( - ( e ) }=T{ [gr (0 ) ] - 1 }=T{ e } and 
for /=1 , 2, by (30) and (31) we obtain that 

<39) L { F ( e ) ( e - e g l ) } = L{/«} 

and 

(40) L * { ( e - ^ 2 ) F ( e ) } = L*{/0} . 

If we add (39) and (40), then we get (35). Thus we can conclude that (34) can be 
•expressed in the form of (38). This completes the proof of the theorem. 

We note that if L = T and f0=e, then (38) reduces to 

F(Q) = [ ^ ( I ? ) ] - 1 ^ ) ] - 1 . 

Now let us suppose that in Theorem 3 we have gi = wg and g2=zg where g€R 
and w and z are complex (or real) numbers. In this case by using the factorization 
in Theorem 1 we can choose g^ (e )=g + ( ew) , gr(Q)=g~(Qw), g 2

+ (e )=g + (gz) , and 
,g2 (Q) =g~ (QZ) in Theorem 3. Then by (38) we get 

F(Q) = [G-CEZM-^LIG-IEZ^OTG-IGWII-^+L^TG+IEZM-I/OG+IEW)}] [G+COW)]-1 

(41) 

for |e| max (|w|, |z|) ||g|| <r(L). If, in particular, L = T a n d / 0 = e , then (41) reduces to 

(42) F(Q) = [g-(ez)]- i [g+(e^)]- i . 

Now we are going to prove that in Theorem 1 g+ (q) and g~ (o) are uniquely 
determined by the properties (a) and (b) and by (11). 

If w = l and z = 0 in (42), then the right-hand side becomes [g+(e)] _ 1 . On the 
•other hand in this case by (12) we have F(Q)=O(Q). Accordingly, g + ( e ) = [ a ( e ) ] - 1 

necessarily holds. In a similar way, if w = 0 and z = l in (42), then the right-hand side 
•becomes [g~(e)]_ 1 . On the other hand in this case by (13) we have F(g)=b(Q). 
Accordingly, g -(e)=[6(<?)] - 1 necessarily holds. This proves that in Theorem 1 g + (<?) 
and g~(g) are uniquely determined by the properties (a) and (b) and by (11), and 
that (20) and (21) necessarily hold. 

Having been established that gf (Q) and g~ (Q) ( /=1, 2) are uniquely determined 
iin (38) we can express g (

+(e) and g~(Q) by formulas (18) and (19) and [g^(i?)]-1 

•and [ g f ( e ) ] - 1 by formulas (12) and (13). Proceeding in this way we can conclude 
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from (38) that 

(43) r(L) S c(T) 

necessarily holds. Since evidently r(L)Sc(L), by (43) we have c(T)^c(L). If we 
interchange the roles of L and T, then it follows that c(L)Sc(T) also holds. This 
proves that (26) and (33) are indeed true. 

In particular, it follows from (26) and (33) that if L is defined by (25), and if 
fi(T) = l and /¡(T*) = l, then r(L)=c(L) = l regardless of the values of ||L|| and ||L*||. 

If, instead of (1), we consider the recurrence formula 

(44) : f „ = l ( g l f n - l } + V{fn-lg2} 

for n = l ,2 , ... where/06R, gi€R, R and L satisfies the conditions (i), (ii), (iii) 
and can be represented in the form of (25), and if maxfl lgj , ||g2||)-=KL*)> then 

F(Q)= 2 fne" 
n = 0 . 

belongs to R and can be determined again by the method of factorization. Let us 
suppose that 

e-Qgi = hr(Q)ht(Q) 

for ||g||<c(T*) and i = l , 2 where hf (o) satisfies property (a) and /if (o) satisfies 
property (b). In this case we have 

(45) F(Q) =: [Ai (<?)]-1 [L{[Af (0) ] -YoK (e )} + L*{hi(0)/o[hi(<?)]"*}] [^"(s)]"1 

whenever maxdlgj , ||g2||)</-(L*). 

Note. II R is a commutative Banach algebra and if fa~e, then (38) and (45) 
reduce to 

F(Q) = e x p { - L { log (e - EGL)J - L* { log (e - e g 2 ) } } 

for maxdl^H, ||g2||)< 1. In some particular cases this last result was demonstrated 
in 1952 by F . POLLACZEK [9] a n d in 1958 by J . G . WENDEL [12]. 

6. The second recurrence equation. Let us consider the recurrence equation (2) 
for , « = 1 , 2 , . . . where/0€R, gx€R, ga€R and L satisfies the conditions (i), (ii), (iii) 
and can be represented in the form of (25). Obviously/„€R for n = l, 2, ... and our 
aim is to determine/, for « = 1, 2, . . . . 

Denote by /'*(L) the largest nonnegative number for which 

(46) i h / n i i i i ? r < ~ 
( 1=0 

whenever gi€R, g2€R and 

(47) lff|max(||ft||, | |ft||);^r*(L). 
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We shall prove that for every L 

(48) y(T)/3 r* (L) S 1 

where y(T) is defined by (9). Actually, we shall prove that if 

(49) lei [min tell, HfilD + l l f t - f i l l ] < r(T) 
then (46) is satisfied and this implies (48). 

If (47) is satisfied, then 

(50) F{Q)=2f«Q" 
n = 0 

belongs to R, and if we multiply (2) by g" and add for « = 1 , 2 , . . . , then we obtain that 

(51) M n e M e - e s O R L ^ F t e X e - e g , ) } = / 0 . 
Conversely, if 

(52) F(e) = Zf*e" 
n=0 

belongs to R for |g|</" where r is some positive number, and if (52) satisfies (51), 
then /„*=/„ for all n S 0 . 

The generating function (50) can be determined by the method of factorization. 
Let us apply Theorem 1 to (e—gg 2 ) - 1 (e—QSi)— e—g(e—gg2)_1 (gi—g2) and Theorem 
2 to (e — gg1)~1(e—gg2)=e — g(e — gg1)~1(g2—g1). If (49) is satisfied, then we can 
write that 

( 5 3 ) ( e - g g J - H e - g g D = g+(e)g-(&) 

where (Q) and g~ (Q) satisfy the properties (a) and (b) respectively. 

T h e o r e m 4. 7 / / 0 6 R , g ^ R , g 2 €R and 

fn - L { / H _ l f t } + L * { / , _ l f t } 

for M = 1 , 2 , ..., and if (49) is satisfied, then (50) belongs to R and we have 

(54) F(e) = [M/ote-tern + LM/og+te)}] [g+G?)]-1^-^)-1 

where g+ (g) and g~ (g) satisfy (a), (b) and (53). 

Proof . If F(g) is given by (54), then it can be represented in the form of (52) 
and by using (30) and (31) we can prove that (54) satisfies (51). This proves the the-
orem. 

In a similar way as we proved (53) we can prove that if (49) is satisfied, then we 
can write that 

(55) { e - g g d ( e - g g 2 ) - * = h-{.g)h+(g) 

where h+ (g) and h~ (£») satisfy the properties (a) and (b) respectively. By using (55) 
we can prove the following result. 
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If /o€R, s a €R and 

(56) /„ = L f o / ^ J + L W . - i } 
for »=1 , 2, ..., and if (49) is satisfied, then 

Ho) = i LQ" 
n=0 

belongs to R and we have 

( 5 7 ) F(e) = (e-^-MA+t^-^LItA-i^-^+L^A+i^/o}] 

where h+ (Q) and h~ (q) satisfy (a), (b) and (55). 
If, in particular, L = T a n d / 0 = e in (54), then we get jF(e)=[g+ (e)]_1 (e—Qgz)'1. 

Thus g+ (Q) can also be determined by the recurrence formula (2). If, in particular, 
L = T and f0=e in (57), then we get F(g)=(e-Qg^)-1 [/z+(£>)]_1 and thus h+(g) can 
also be determined by the recurrence formula (56). 

7. A system of recurrence equations. In this section we shall demonstrate that 
the system of recurrence equations (3) and (4) can be solved by using Theorem 4 if 
we apply it to a new Banach algebra S associated with R. Let us denote by S the 
space of matrices 

(58) f = [ { u f ? 
Ly 21 J 2 

where/jgR for y=1, 2. In S let us define the operations of addition, multiplication 
and multiplication by a complex (or real) constant according to the rules of matrix 
algebra and according to the rules established: in R. Define the norm of f either by 

l|f||s = m a x( l l / i i l l +ll/iail> I I / J + 1 1 / J ) 
or alternately by 

||f||s = max(| | /u | | +| | /2 l | | , | | /u | | + | | /„ | | ) . 

We can easily see that S is a noncommutative Banach algebra with zero element 
and identity element 

e e [: a «• 6 e 
respectively. 

If T is a transformation in R which satisfies (i), (ii), and (iii), then let us extend 
the definition of T to S in such a way that we form T element by element for an 
f given by (58), that is 

T{f} = [T { / t f}]u = 1 . a . 

We can easily see that T satisfies (i), (ii) and (iii) in the space S too. 
Now let us consider the system of recurrence equations (3) and (4) for « = 1 , 2 , ... 

where u0£R, i;0£R, /¡¡€R ( / = 1 , 2 , 3 , 4 ) and L satisfies the conditions (i), (ii), (iii) 
and can be represented in the form of (25). We can express (3) and (4) in the following 
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matrix form 

0 0 j - L ( [ e flJkflJrLUo M i n i 

for » = 1 , 2, . . . . This equation is of type (2). If we apply Theorem 4 to the Banach 
algebra S, then 

can be determined by (54). 
If, instead of (3) and (4), we consider the recurrence equations 

U„ = L {£!«„_! +/>2 »„-J 
and 

on = L * { A 3 « n - i + M n - i } 

for n = 1, 2, ..., then we can write that 

(59) 

for n = 1, 2, This equation is of type (56). The solution of (59) can be obtained 
by (57) if we apply it to the Banach algebra S. 

By introducing a Banach algebra of finite or countably infinite matrices with 
elements belonging to R, we can solve a finite or a countably infinite system of recur-
rence equations in R. 

In the next two sections we shall define two Banach algebras R, and Ra, and 
theree transformations T, T0, Tx satisfying (i), (ii) and (iii). If we apply Theorem 
3 and Theorem 4 to these Banach algebras, then we can determine the distributions 
of several random variables depending on the partial sums of a sequence of independ-
ent and identically distributed random variables and of a semi-Markov sequence 
of real random variables. In particular, we can find the distributions of the maximal 
partial sum, the ordered partial sums, the number of positive partial sums, the number 
of changes of sign in the successive partial sums, and the subscript of the first positive 
partial sum. These applications will be discussed in a subsequent paper. 

8. A commutative Banach algebra R1. Let us define R1 as the space of functions 
<P(s) defined for Re ( s )=0 on the complex plane which can be represented in the form 

(60) 4>(s) = E{Ce-s»} 

where // is a real random variable and £ is a complex (or real) random variable for 
which Let us define in Rx the operations to be the pointwise addition, 
multiplication and multiplication by a complex (or real) constant. The zero element 
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of Rj is 0, and the identity element of Rx is 1. Let us define the norm of $ ( 5 ) ^ ! by 

||*|| = i n f E { | { | } 

by where the infimum is taken for all admissible Ç in the representation (60). 
We can easily prove that Rj is a commutative Banach algebra. 
Now we shall consider some transformations in Rx which satisfy (i), (ii) and (iii). 
If <P (.s) Ç Rj is given by (60), then let us define 

(61) *+(j) = E{Çe-s*+} 
for Re (5)^0 and 
(62) 4>-(î) = E {C(e~s" - e-s"+)} 
for Re(s)^0 where rç+=max (0, rç). We have R l 5 Î ' - ^ Ç R j and 

(63) = * + ( i ) + * - ( i ) 

for Re(i) = 0, |<i>+(s)|==||4>|| for Re(5)^0 and |4>-(s)|^2||*|| for Re(i)s=0. 
The function <P+ (s) is regular for ReÇy)>0, continuous and bounded for Re( j )S 

SO and 4>+(0) = <J>(0). 
The function <P~ (5) is reqular for Re(s)<0, continuous and bounded for Re (s) â 

35 0 and 4>~(0) = 0. 
By Liouville's theorem it follows that the above properties uniquely determine 

(s) and <P~ (5) in the representation (63). 
If <t>(s)£Rj, then for Re( i )>0 we have 

$>+(5) = !<?>(0) + lim^-r f Z\dz w 2 w « -0 2?ii ¿> z ( s - z ) 

where Lt = {z:z=iy, — S e e reference [11]. 
For any event A let us define S (A) as the indicator variable of A, that is, S(A)= 1 

if A occurs and ô(A) = 0 if A does not occur. 
Now we define three transformations T, To> Tx in Rx which satisfy the conditions, 

(i), (ii) and (iii). If *(5)€RJ is given by (60), then let 

(64) T{*(i)} = <2>+(s) = E{Ce-s"+), 
(65) T0{*(i)} = <Z>+(s)-i>+(°°) = E{Ce~s"ô(r] > 0)} 
and 
(66) ^ { $ ( 5 ) } = + =0) = E{Ce-s"ô(t] £ 0)}. 

We define T*, T* and T* by (6). We can easily see that these transformations satisfy 
(i), (ii), (iii), ||T|| = ||T0|| = 11̂ 11 = ||T0*|| = JIT*M = 1 and ||T*|| =2. 

If L is any one of the transformations T, T0, T l 5 defined by (64), (65), and (66} 
respectively, then L{4>(j)} can be represented in the form of (25), that is, 

L{*(S)} = T {*(*)} -« (* ) 
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where T{<*>(s)} is defined by (64), and «(<£) = 0 for L = T , a(<P) = <i>+(°°) for L = T 0 , 
and a(<£) = — <p-(—ca) for L=TX . If L is any one of the transformations (64), (65), 
.(66), then by (7), (8) and (26) we have c (L)= l and c(L*) = l. 

If we assume that T is given by (64), then we can formulate the following version 
of Theorem 1. 

T h e o r e m 5. If 4/(s)£Rx and if then there exist two functions 
4>+(s, e)€Ri and ip~(s, e)€Rx such that 

<67) i - e H s ) = ^ + ( s , e ) ^ - ( s , e ) 

for R e ( s ) = 0 where i j / + ( s , g) satisfies property (a) and \j/~(s, g) satisfies property (/?) 
stated below. 

Property (a). The function i p + ( s , g) is regular for R e ( s ) > 0 , continuous, bounded 
and free from zeros for R e ( s ) s O . . 

Property (ft). The function ij/~(s, o) is regular for R e ( s ) < 0 , continuous, bounded 
and free from zeros for R e ( i ) ^ 0 . 

Proof. If i l /+ (s , g) satisfies (a), and i¡/~(s, g) satisfies (ft), then we say that (67) 
is a factorization of 1 — gij/(s). Such a factorization always exists. For example, if 

<68) tfr+(s, g) = Q ( e ) exp {T {log [1 - # ( s ) ] } } 

for Re( j )^0 and ||i^||-=l, and 

<69) ilf~(s, g) = CM exp {T*{log [1 - # ( * ) ] } } 

for Re(s)=§0 and |g| < 1, where C1(Q)Ci(g)=1, then (a), (/?) and (67) are satisfied. 
•Conversely, it follows from Liouville's theorem that conditions (a), (/J) and (67) 
determine i¡/+(s, g) and \j/~(s, g) up to a nonvanishing factor depending only on g. 
Thus (68) and (69) are the general forms of i¡/+(s, g) are (s, g) respectively. 

If in (68) and (69) we choose Cx(g) and C2(g) in an appropriate way, then we 
•can easily see that ij/+(s, g) and ij/~(s, g) satisfy properties (a) and (b) too. 

If we want to solve a recurrence equation of type (1) in the space Rx, then instead 
of (11) we can use the factorization (67). Since in (38) only the product C1 (g) C 2 (g) = 1 
appears, therefore it does not matter how we choose C1(g) and C2(g) in (68) and (69). 

Let us mention one example specifically. Let 

U„(s) = wL{CA„_1(i)1A(i)}+2L+{Cyn_1(i)1A(i)} 

•for /1=1, 2, ... where £/0(s)6Ri, i^(i)€Ri, w and z are complex (or real) numbers, 
and L is any one of the transformations (64), (65), (66). If max (|w|, |z|) ||i/ |̂|-=:l, 
.then 

U(s,g)= 2Un(s)g» 
n=0 
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belongs to R! and by Theorem 3 we have 

U(s, q) = [L{U0(s)ip-(s, ezM~(s, ew)]-1} + 

+L*{<70(*)<A+0, QwM+(s, QZ)]-I}]№+(S, gw)]-^-(S> QZ)]~I 

where ip + ( s , q) and <p~(s, g) are determined by Theorem 5 or by (68) and (69), re-
spectively. 

Finally, we note that in properties (a) and (/?) the requirement of boundedness 
can be replaced by the weaker conditions Jim [ log^ + ( j , G)]/S~0 (Re( j ) sO) and 
J i m [ log <J/~(s, Q)]/S=0 ( R e ( i ) s O ) , respect ively. 

9. A noncommutative Banach algebra Rj. Let I be a fixed finite or countably 
infinite set. We consider complex (or real) matrices A=[a 0] , for which 

M{A} = sup 2 k / l < 00• 
ai HI , 

We shall denote by 0 the zero matrix all of whose elements are zeros, and by I 
the identity matrix. (1=[¿£j], j f j , where du = 1 for i=j and dtj—0 for i^j.) If 
M { A } < co, M{B}<oo and A B = B A = I , then we say that A and B are inverse ma-
trices and write B = A - 1 . 

We say that a matrix function A(i)=[a i y(j)], is continuous, or regular, 
or bounded on a set'D according to whether every is continuous on D, or every 
au(s) is regular on D, or M {A(s)}</sT for s£D where AT is a positive constant. 

Let R2 be the space of all matrix functions 

(70) = [ * y ( 4 , y € / 

defined for Re(s )=0 on the complex plane such that / is a fixed countable set, * ( J (i)€ 
^Ri and 

(71) 11*11 = s u p 2 1 
>e/ jei 

We define the norm of <D(s) by (71). Let us define the operations of addition, multi-
plication and multiplication by a complex (or real) constant in R2 according to the 
rules of matrix algebra. We can easily see that R2 is a noncommutative Banach 
algebra with zero element 0 and identity element I. 

TF < D Í J ) € R 2 is given by ( 7 0 ) , then let 

for Re (s) SO and 
* - ( « ) = ; e / 

for Re(s )^0 where $fj(s) is defined by (61) and y) by (62). 
Obviously, <D+Cs)€R2, 0 _ ( j ) 6 R 2 and 

(72) <D(í) = G+(s)+0-(s) 

13 A 
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for R e ( s ) = 0 . We have M { < D + ( s ) } s | | < I > | | for R e ( i ) s O and M { 0 - ( j ) } S 2 | | 0 | | for 
Re(s)=iO. 

The matrix function i>+ (s) is regular for Re(s)>0, continuous and bounded for 
Re(s)§sOand fl>+(0)=0(0). 

The matrix function fl>"~(s) is regular for Re(s )<0 , continuous and bounded for 
R e ( j ) ^ 0 a n d ® - ( 0 ) = 0 . 

By Liouville's theorem it follows that the above properties uniquely determine 
4>+ (s) and <I>~ (s) in the representation (72). 

Now let us extend the definition of the transformations (64), (65), (66) from the 
space RX to the space R2 in such a way that we form these transformations element 
by element for ®(J)(;R2 , that is, 

(73) T { 0 ( ^ ) > = 0+(s), 

(74) T o ^ C r ) } = < & + ( * ) - 0 > + ( ~ ) , 

and 

(75) T j {<D (s )} = ® + ( * ) + ® - ( - «,) . 

We define T*, T*, T* by (6). We can easily see that these transformations satisfy (i), 
(ii), (hi), ||T|| = ||T0|| = [|Tx|| = ||T„|| =||TJ|| = 1 and ||T*|| =2 . 

If L is any one of the transformations (73), (74), (75) and if ®( i )£R 2 , then 
L { C ® ( i ) } = C L { 0 ( j ) } and L{<D(s)C}=L{®(s)}C for any constant matrix C for 
which M{C}<oo. Furthermore, L{<D(,y)} can be represented in the following form 

(76) L{0(s)} = T{*(s)}-at(0) 

where T { 0 ( j ) } is defined by (73), A ( < D ) = 0 for L = T , A ( < D ) = 0 + ( ° ° ) for L = T 0 , 
and ot(<D) = — <D~ (— for L=T X . If L is any one of the transformations (73), (74), 
(75), then by (7), (8) and (26) we have c(L) = l and c(L*) = l. 

If we assume that T is defined by (73), then we can formulate the following 
version of Theorem 1. 

T h e o r e m 6. IfV(s)€R2 and if ¡¡?| H ^ H 1 , then there exist two matrices 

e)£R2 andV~(s, £>KR2 such that 

(77) I - e < F ( i ) = T + ( i , e ) ' P - ( i , e ) 

for R e ( s ) = 0 where *F+(i, q) satisfies property (a) and q) satisfies property ( f t ) 

stated below. 

Property (a). The matrix *F+(.s, g) has an inverse [ T + ( i , g)]-1 for R e ( s ) ^ 0 , and 
*F+(s, g) and [ ¥ + ( i , (?)]-1 are bounded and continuous for. R e ( s ) s O and regular for 
Re(s)>0. 
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Property (FI). The matrix V (5, Q) has an inverse [V (s, 0)] 1 for R e ( j ) ^ 0 , and 

Q) and e ) ] - 1 are bounded and continuous for R e ( s ) ^ 0 and regular for 

Re(s)<0. 

Proof . The factorization (77) satisfying (a) and (/?) always exists. By the method 
described in the proof of Theorem 1 we can construct two matrices A(s, Q) and B(i, Q) 
such that 

= [ A ( J , E ^ F B C I , E ) ] - 1 

for R e ( s ) = 0 and A(s, Q) satisfies (a) and B(s, Q) satisfies (b). 
If we define 

(78) V+(s, Q) = [A(j, ^ l ^ C ^ e ) 

for R e ( j ) = 0 and 

(79) i , - ( i , e ) = c > ( e ) p ( j , e ) ] - i . 

for Re (5) 32 0 where M f C ^ H « » , M{C 2 (<?)}<«= and C 1(g)C 2(e)=I, then all the 
properties stated in Theorem 6 are satisfied. Conversely, it follows from Liouville's 
theorem that conditions (a), (/?) and (77) determine (s, Q) and 0) up to 
a matrix factor independent of s. This implies that (78) and (79) are the general forms 
of (s, Q) and (s, Q) respectively. 

In a similar way as we proved Theorem 6, we can prove a corresponding version 
of Theorem 2. 

If we want to solve recurrence equations of type (1) and (2) in the space R2, 
then instead of (11), we can use the factorization (77). Since in (38) and in (54) only 
the product C 1 (g )C 2 ( e )= I appears, it is immaterial how we choose C^G) and C2(Q) 
in (78) and (79). We can easily see that although in (76) a(O) is a matrix, not a scalar, 
we can use formulas (38) and (54) unchangeably. Recurrence equations of types 
(44) and (56) in the space R2 can be solved in a similar way by using an analogous 
version of Theorem 6. 

Let us mention one example specefically. Let 

U„(i) = wL {U„ _ x (s) V(s)}+zL* {U„ _! (i) T (j)} 

for n = l, 2, ... where U0(i ,)6R2 , ¥ ( s ) 6 R 2 , w and z are complex (or real) numbers, 
and L is any one of the transformations (73), (74), (75). If |£>| [min (|w|, \z\) + \w—z\] • 
• irI'll < 1 , then 

n = 0 

belongs to R2 and by Theorem 4 we have 

U ( s , Q) = [ L { U 0 ( * ) [ V - ( J , QW, 0 z)] - 1 } + 

+ L*{U0(s)I '+(s, QW, e z)} ] • 0w, e z ^ - ^ - e z ^ i e ) ] - » 

13" 
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where 
P - C z V ( j ) ] - l [ I - e » » V ( i ) ] = V+(s, QW, QZ)*¥~(S, gw, QZ) 

for Re(s)=0 and (s, gw, gz) satisfies property (a) and ^ " ( i , gw, gz) satisfies 
property (/?) in Theorem 6. 

We note that in the case of finite matrices the method of matrix factorization 
has already been used in several fields of mathematics, namely, in the theory of 
systems of integral equations, in the theory of linear prediction of multivariate sta-
tionary stochastic processes and in the theory of Markov chains. We refer to the 
works of G . D . BIRKHOFF [3 ] , N . WIENER [ 1 3 ] , P . M A S A N I [6 ] , N . WIENER and P . M A -

SANI [ 1 4 ] , I . C . GOHBERG a n d M . G . K R E I N [5 ] , M . D . MILLER [7 ] , [8 ] a n d É . L . PRES-

MAN [ 1 0 ] . 
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