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Derivations and translations on lattices

' JUHANI NIEMINEN

* 1. Introduction. Let S be a meet-semilattice and ¢ a single-valued mapping

of S into itself. ¢ is called a meet-translation on S [3] if (xAy)=p(x)Ay for each

pair of elements x, y€S. If S=L is a lattice and (p a smgle-valued mapping of L
mto L such that .

C eVp) = p(Ve() and @ (xhy) = (@EANEOINS)

for-each pair x, y€L, then ¢ is called a derwatton on L [5]. As shown by SZASZ in
[5], a single-valued mapping on a lattice L is a derivation on L if and only if it is a
meet-translation as well as an endomorphism on L. :

- Each meet-translation ¢ on S has the followmg properties [3]: p(x)=x,
(p((p(x)) o(x), and x= y=>(p(x)5(p(y) Moreover, in a lattice L the fixedelements
of o, i.e. the elements t=¢(¢), constltute an ideal K, of L [4] As shown in [4], X,
determmes @ uniquely. ‘

“In this note we shall 1llummate the dependence of ¢ from the propernes of the
1deal K,. ‘

A smgle-valued mapping ¢ of a Jom-sermlattxce | 4 mto itself is called a join-
translation on V, if ¢ (x\V y)=¢(x)V y for each pair x, y€'V. The results on translations
in the papers [1]—[4] are given in terms of Jom-translatlons As we shall consider’
here meet-translations, we always use the dual of the corresponding result obtained
in the papers [1]—][4].

i

" 2. Derivations on lattices. We denote by J (L) the lattlce of all 1deals ofa
Iattxce L;(z]= {xlxsz x, zEL}

Theorem 1. An ideal I of a Iattzce L generates a meet-translatwn go on L suck
thatI K, if and only if for each yeL there is an element keL such that IN(y]= (k).

Proof. If I=K,fora meet-translation @ on L, then IA(y]=(¢ ( y)] for each yeL
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Conversely, let TA(y]=(k] for each y€ L. We put ¢(y)=k and show that ¢ is
a meet-translation on L. Obviously ¢ is single-valued and K,=1. IA(xAy]=
=(IA(x])A(y]; thus ¢ (xAy)=¢(x)Ay and the theorem follows.

Theorem 2. Let D be anideal of a lattice L generating a meet-translation ¢ on L.
Then ¢ is a derivation on L if and only if DA((yIV (x])=(DA()V(DA(]) for each
pair of elements x, y€L. :

Proof. As D generates a meet-translation ¢ on L, DA(y]=(k] for each
yeL. Let the condition of the theorem be valid for the elements x, y€L.
Then DA(xV y]=(D/\(x])V(D/\(y]), whence ¢(xVy)=o@(x)Ve(y). Furthermore,
DAxA=(DAGDAOGI=(DAGNAK={(DACHAOGRV{DA)A(x]} which im-
plies that ¢ (xAy)=(@ (x)Ay)V (¢ (P)Ax).

" Conversely, let ¢ be a derivation on L and K, the ideal generating it. Accordmg
to the properties of ¢, K,A(x]=(¢(x)]. So (p(xV =0 x)Ve(y) implies that
K,AxVy=(e(xVy)]=(e (x)]V (e (M) =(K, A=)V (K, (»]). This completes the proof.

An element x of a lattice L is called distributive, if xA(yVz)=(xAy)V(xAz)
for each pair y, z€ L. The following lemma shows that the condition of Theorem
2 reduces to the distributivity of D in the lattice S (L). .

Lemma 1. Let T be an ideal of a lattice L such that TA((x]V( y])—‘
=(TADV(TA () for each two elements x, ye L. Then TA(IV K)= (T/\I)V(T/\K)
for each two elements I, KEJ (). '

Proof. Asis well known it is sufficient to show that TA(IV K)S(TAI)V (T/\K)
Let x¢ TA(IVK), i.e. x€T and x=iVk for some ic] and k€K. Then (x]E (i]V (k]
and x€(x]=TAKIS(TAG)V(TAK)S(TAIV(TAK), and the lemma follows.

The lattice S(L) of a modular lattice L is modular. Already the relation
TAUIN K)=(TAIV (TAK) implies the neutrality of T in a modular lattice [6, Thm.,
103 and its corollary). So we can write

Corollary 1. A4 meet-translation ¢ on a modular lattice L is a derwatwn on L

if and only if K, is a neutral element of the lattice #(L). .

By the join of two derivations. ¢ and X on a lattice L we mean the mapping

@(x)VA(x) on L and by the meet the mapping ¢ (x)AA(x). In the following we con-

sider some conditions under which the join and meet defined above are also de-
rivations on L.

Theorem 3. The meet of two derivations @ and A on a lattice L is aIway's\;z
derivation on L. Moreover, the join of ¢ and A is a derivation on L if K, and K, are
neutral ideals of L.

Proof. (K,AK)Ax]1=(K,ADA(KA(])=(¢(x)AA(x)] and so K;AK, gen-
erates a meet-translation which is @(x)AA(x). Further, (K,AK)A(xVy]l=
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=K, A {K;A(xVyl}, and by applying now K; and K, sequently, (K,AK,)A(xVy]=
={(K,AKQNGDV{(K,AKIA(]},  whence  @(xVy)AL(xVy)=(o(x)ALF))A-
V((p (»AL(y)). This means that the meet of A and ¢ is a join-endomorphism, too,
and the first assertion follows.

Let the ideals K, and K; be neutral and let us consider the ideal K,V K.
K,V KIA ] =(K,AGE)V(KAE)=(e )]V (A(x)] =(9(x)VA(x)]. Thus the ideal
K,V K; generates a meet-translation B(x)=A(x)V ¢(x) on L. The join of two neutral
ideals is also a neutral ideal, and so (K,V K)A(xVy]={(K,V KA (]} V{(K,V K)HA
A(y]}. Hence B(x) is a join-endomorphism on L and also a derivation on L.

In [5, Thm. 3] SzAsz has shown that the product @i of two derivations on a
lattice L is always a derivation, and moreover, i(x)=¢(1(x))=p(x)AA(x).

As shown by SzAsz {5, Thm. 2], the derivations of a lattice L are exactly those
meet-translations of L that are also endomorphisms on L. As immediate corollary
of the construction of KOLIBIAR in [1, Thm. 1], we can write

Theorem 4. On a modular lattice L there is a one-to-one 'correspondcnce

between meet-translations ¢ and congruence relations 0, having the property
- (i) There is in L a neutral ideal T such that every rest class modulo 0, contains
exactly one element of T.

The congruence relation 8, relating to the meet-translatton ¢ and the meet-transiation
@q relating to the congruence relation 0,, are charactenzed by (ii) and (iii), respectively:

(i) X8,y =0 (x)=0(»), x, y€L;

(iii) @o(x)=x"€T for which x6,x".

Now we can prove an extension of [2, Thrh. 1]

Theorem 5. Let L be a modular lattice. The set of all congruence relations
0, relating to the derivations ¢ on L constitutes a sublattice of the lattice (L) of all
congruence relations on L.

Proof. According to Theorem 4, x0,y=(x]AK,=(y]AK,, for each derivation
¢ on L. As L is modular, for each derivation ¢ on L the ideal K, is a neutral element of
J(L) (Corollary 1). Hence, for any two derivations ¢ and 2 on L the mappings
o(x)VA(x) and @(x)AA(x) are derivations on L, too (Theorem 3). Let B(x)=
=@ (x)AL(x). We prove 6,=0,V 8, by showing that 1) 6,V0,=80,, and 2) 6,V0,=
=0,.

1) x8,y=(xIAK,=(VAK,=(IANKAK)=(VIANK,AK ) =x0gy, and  so
0,=0;. Similarly we see that 8, =6, whence 6,V 0,=6;.

2) Let x0,y(XIAKAK,=(VAKAK,<=xA@(x)AL(X)=yAe(y)Ai(y). On
the other hand, xA@(x)8,xA@(x)AA(x), and moreover, x0,xA\@(x). Hence,
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x(0,V0,)xAp(x)AA(x). Similarly we. see”that y(6, V09yA¢(y)/\A(y), and by
combining these results we obtain x(8,V 6,)y. Thus 6,V 0,=6,. :

Let a(x)=¢(x)VA(x); we prove that 6,=8,A8, by showing that 3) 0,%0 /\P
and 4) 6,=6,A0,.

3) Let x(0,A0)y<x0,y and x6,y e (xJAK,=(IAK, and (x]AK;= (y]/\K,,:»
= (x)A K,V K)=(IN(K,V K;)<>x0,y. Thus 6,=06 o0,

4) Let x0,y=(xX]AN K,V K;)= (y]/\(K VK,1)=>(x]/\(K VKDAK, —(x]/\K =
=N K, VKIANK,=(¥]JAK,, dand so xO,y. Similarly we set. that x0,y, too. Con-’
sequently, x(0,A6,)y, which lmphes the desired result.

‘.

A meet-translation ¢ on a lattice L s called a weak derwatwn onL,ifo(e (x)V y) =
=@ (x)V o () for each two elements x, y€L.” -

1

Theorem 6. Let M be an ideal of a lattice L generating a ’meet-transla’tﬂién'
@ on LT hen @ is a weak derivation on L lf and only if MA((x]V( y)=(MA (x])V
V(M A( 1) for each two elements x, y€L and x€M.

The proof follows the lines of that of Theorem 2, and hence we omit it. Further
the proof of the following lemma is analogous to that of Lemma 1, and hence it
is omitted. . - L

Lemma 2. Let T be an zdeal of a lattice L such that TA((x]V (¥))=(TAx])V
V(TA(¥]) for each two elements x,y€L, x€T. Then TA(IVK)= (T/\I)V(T/\K)
Jor each two elements I, Ke #(L), ICT.

- As-shown by SzAsz {4, Thms. 4 and 5], the dlstrlbutmty and modulanty of
a lattice L can be characterized by derivations and weak derivations of L, respectively.
It is interesting to see that these characterizations reduce the distributivity:(the
modularity) of L to the distributivity (the modularity) of S(L), as one can deduce
from Theorem 2 and Lemma 1, and from Theorem 6 and Lemma 2, respectively.-

- 3. Meet-translations on meet-semilattices. In this section we shall show a corinec-
tion between meet-translations on meet-semilattices and lattices. We shall considei
meet-semilattices only, and hence we shall use the brief expression semilattice in=
stead of meet-semilattice. Note that in S a nonvoid set I is an ideal if (i) x€I and
r=x imply r€l, and (i) x, y€I imply xAy€l S is up-directed if for each’ pair
X, y€ S there is an element k¢ S such that k=x, y. In particular, if S is up—dlrected
then IA Jis an ideal of Sfor each two ideals 7and J of S. '

Theorem 7. Let S be an up-directed semilattice and ¢ a meet-trans)ééioé
on S. Then ¢ generates a meet-translation ¢° on the lattice (L) of all ideals of S
defined as follows: ¢ (I)= {x|x = @ (y); yeI€ S(S)}.

Proof. At first we show that @?(J) is an ideal: of S. Let xE(p’(I) and r=x:
Then there exists an y€7 such that r=x=¢@(y), and so re¢?(l). Let a,bE(p“(I)
Thus aAbz=¢ (¥ )N (3)=0(¥a\ys), Where y,Ay,€1; therefore aAb€@®(l). i
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Clearly ¢? is a single-valued mapping on #(S); thus it remains to show that
O (UN)=¢?(DAJ. Let x€@?(INJ). Then there is an element y€IAJ such that
x=Z@(y). On the other hand, y=iAj with some i€ and j¢J, and ¢ ()= (iAj)=
=@@)\j. Thus xz=@(@()Aj with ¢(i)€@?(l) and jeJ, whence x€@?(I)AJ. This
shows that p? (IAJ)E p? (DA J.

Let now x€@?(IDAJ. Then x=rAj for some r€¢?(l) and j¢J. Furthermore,
there exists an i€l such that r=¢(#), and so x=¢@(@)Aj=¢(EAJ), where iAjeINJ.
Therefore, x€@?(IAJ), and the relation ¢?(I)AJS@?(TAJ) holds. Consequently,
" (INJ)=¢? () \J, and the theorem follows.

Let [z)={x|x=z, x, z€ S}. The validity of the following assertion is obvious..

Theorem 8. A meet-translation ¢ on F(S) is generated by a meet-translation
Aon S, ie. @=2%, if and only if for each x€ S there is an element k€ S such that

¢ ([x)=[k)-
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