Note on an embedding theorem

J. NÉMETH

Let $\varphi \equiv \varphi_p$ (p>1) be a nonnegative increasing function on $[0, \infty)$ with the following properties:

$$\frac{\varphi(x)}{x}$$
 and $\frac{\varphi(x)}{x^p}$ as $x \to \infty$.

The set of measurable functions f on [0, 1] for which $\int_0^1 \varphi(|f(x)|) dx < \infty$ will be denoted by $\varphi(L)$.

If $f \in \varphi(L)$, the "modulus of continuity of f with respect to φ " will be defined by

$$\omega_{\varphi}(\delta;f) = \sup_{0 \le h \le \delta} \overline{\varphi} \left(\int_{0}^{1-h} \varphi(|f(x+h) - f(x)|) dx \right) \quad (0 \le \delta \le 1),$$

where $\overline{\varphi}(x)$ denotes the inverse function of $\varphi(x)$. Given a function φ and a non-decreasing continuous function ω with $\omega(0) = 0$, $H_{\varphi}^{\omega} \equiv H_{\varphi}^{\omega(\delta)}$ will denote the collection of functions f(x) satisfying the condition

$$\omega_{\varphi}(\delta, f) = O(\omega(\delta)).$$

LEINDLER [2] gave a sufficient condition for $H_{\varphi}^{\omega(\delta)} \subset \varphi(L) \Lambda(L)$, where $\Lambda(x)$ is a "slowly increasing" function. Namely he proved the following:

Theorem A. ([2], Theorem 1) Let $f \in \varphi(L)$ $(\varphi = \varphi_p, p \ge 1)$ and let $\{\lambda_k\}$ be a nonnegative monotonic sequence of numbers such that

$$\sum_{k=m}^{\infty} \frac{\lambda_k}{k^{1+\varepsilon}} \leq K(\lambda) \frac{\lambda_m}{m^{\varepsilon}},$$

Received September 5, 1975.

¹⁾ K and K_i denote either absolute constants or constants depending on certain functions and numbers which are not necessary to specify; $K(\alpha, \beta)$ and $K_i(\alpha, \beta)$ denote positive constants depending only on the indicated parameters. These constants are not necessarily the same at each occurrence.

where $\varepsilon = (4[p+1]+2)^{-1}$; 2) and let $\Lambda(x) = \sum_{k=1}^{x} \frac{\lambda_k}{k}$. 3) Then

(1)
$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n} \cdot \varphi\left(\omega_{\varphi}\left(\frac{1}{n}, f\right)\right) < \infty$$

implies $f \in \varphi(L) \Lambda(L)$ and

$$\int_{0}^{1} \varphi(|f(x)|) \Lambda(|f(x)|) dx \leq K(\varphi, \lambda) \left\{ \sum_{n=1}^{\infty} \frac{\lambda_{n}}{n} \varphi\left(\omega_{\varphi}^{\perp}\left(\frac{1}{n}, f\right)\right) + \int_{0}^{1} \varphi(|f(x)|) dx \right\}.$$

In the present paper we are going to prove that for certain functions $\omega(\delta)$ condition (1) is also a necessary for

$$H_{\sigma}^{\omega(\delta)} \subset \varphi(L) \Lambda(L)$$
.

More precisely, we prove the following

Theorem. Let $\omega(\delta)$ be a nondecreasing, continuous function with $\omega(0)=0$, for which the limit

(2)
$$\lim_{h\to 0} \frac{\omega\left(\frac{h}{2}\right)^{4}}{\omega(h)}$$

exists, and let $\{\lambda_k\}$ be a nonnegative monotonic sequence of numbers satisfying $\lambda_{k^2} \leq K\lambda_k$ for any k. Then a necessary and sufficient condition for

$$(3) H_{\varphi}^{\omega(\delta)} \subset \varphi(L) \Lambda(L)$$

is that

$$\sum_{n=1}^{\infty} \frac{\lambda_n \varphi\left(\omega\left(\frac{1}{n}\right)\right)}{n} < \infty,$$

where $\Lambda(x)$ means the same as in Theorem A.

1. We make use of the following:

Lemma ([3], Lemma 13). Let A(u) be a nonnegative nondecreasing function on $[0, \infty)$ such that $A(u^2) \leq KA(u)$ for any $u \in [0, \infty)$ and let B(u) be a nonnegative function on [0, 1]. Then

$$\int_{0}^{1} B(u) A(B(u)) du < \infty \quad implies \quad \int_{0}^{1} B(u) A\left(\frac{1}{u}\right) du < \infty.$$

- 2) [y] denotes the integral part of y.
- a) \sum_{a}^{b} , where a and b are not necessarily integers, means a sum over all integers between a and b.
- 4) In the proof we shall use instead of (2) only the condition $\frac{1}{\sqrt[p]{2}} < \underline{\lim}_{h \to 0} \frac{\omega(h/2)}{\omega(h)}$, where p is from the definition of the function $\varphi = \varphi_p$.

2. Proof of the Theorem

The sufficiency of (4) was proved in Leindler [2]. The necessity of (4) will be proved indirectly. Suppose that

(5)
$$\sum_{n=1}^{\infty} \frac{\lambda_n \varphi\left(\omega\left(\frac{1}{n}\right)\right)}{n} = \infty.$$

but (3) holds. Then we can construct a function f_0 leading to a contradiction.

The construction of this function is similar to that of LEINDLER [1] made in the case $\varphi(x) = x^p$. We define $f_0(x)$ as follows:

$$f_0(x) = \begin{cases} \varrho_n, & \text{if } x = 3 \cdot 2^{-n-2}, \\ 0 & \text{if } x = 0, x \in \left[\frac{1}{2}, 1\right], x = 2^{-n}, \\ \text{linear on } [2^{-n-1}, 3 \cdot 2^{-n-2}], [3 \cdot 2^{-n-2}, 2^{-n}], \end{cases}$$

(n=1, 2, ...), where $\varrho_n = \overline{\varphi} \left(2^{n+1} \left(\varphi \left(\omega \left(\frac{1}{2^n} \right) \right) - \varphi \left(\omega \left(\frac{1}{2^{n+1}} \right) \right) \right) \right)$. First we show that $f_0(x) \in H_{\varpi}^{\omega(\delta)}$. Let

(6)
$$h \in (2^{-k-3}, 2^{-k-2}], k \ge 2$$

Then

$$\int_{0}^{1-h} \varphi(|f_{0}(t+h)-f_{0}(t)|) dt = \left(\int_{0}^{3h} + \int_{3h}^{1-h} \right) \varphi(|f_{0}(t+h)-f_{0}(t)|) dt = I_{1} + I_{2}.$$

We have

$$I_{1} \leq K(\varphi) \int_{0}^{4h} \varphi(|f_{0}(x)|) dx \leq K \int_{0}^{2^{-k}} \varphi(|f_{0}(x)|) dx \leq$$

$$\leq \sum_{n=k}^{\infty} \int_{2^{-n-1}}^{2^{-n}} \varphi(|f_{0}(x)|) dx \leq K_{1} \sum_{n=k}^{\infty} \varphi(\varrho_{n}) 2^{-n-1} =$$

$$= K_{1} \sum_{n=k}^{\infty} \left[\varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right) - \varphi\left(\omega\left(\frac{1}{2^{n+1}}\right)\right) \right] = K_{1} \varphi\left(\omega\left(\frac{1}{2^{k}}\right)\right) \leq K_{2} \varphi(\omega(h)).$$

Next we prove that for any k:

(7)
$$\sum_{n=0}^{k} 2^{-n} \varphi \left(\frac{2^{n}}{2^{k}} \bar{\varphi} \left(2^{n} \varphi \left(\omega \left(\frac{1}{2^{n}} \right) \right) \right) \right) \leq K \varphi \left(\omega \left(\frac{1}{2^{k}} \right) \right).$$

To prove (7) we mention first of all that by (2) and (5)

(8)
$$\lim_{h\to 0} \frac{\omega\left(\frac{h}{2}\right)}{\omega(h)} = 1$$

follows. For, if $\lim_{h\to 0} \frac{\omega(h/2)}{\omega(h)} < q < 1$, then we have

$$\varphi\left(\omega\left(\frac{1}{2^{n+1}}\right)\right) \leq q\varphi\left(\omega\left(\frac{1}{2^n}\right)\right)$$

which by $\lambda_{k^2} \leq K_1 \lambda_k$ implies the contrary of (5).

By (8) we may assume that there exists a positive number α such that $0 < \alpha < 1$ and that for any $n > n_0$

(9)
$$\omega\left(\frac{1}{2^{n-1}}\right) \leq \sqrt[p]{2} \cdot \alpha \omega\left(\frac{1}{2^n}\right).$$

Hence by $\varphi(kx) \le k^p \varphi(x)$ (k > 1), we have

(10)
$$\varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right) \leq 2\alpha^{p} \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right),$$

or

(11)
$$2^{n-1}\varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right) \leq \alpha^{p}2^{n}\cdot\varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right).$$

Since $\bar{\varphi}(kx) \leq \sqrt[p]{k} \bar{\varphi}(x)$ for $k \leq 1$ we have by (11)

(12)
$$\overline{\varphi}\left(2^{n-1}\varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right)\right) \leq \alpha \cdot \overline{\varphi}\left(2^n\varphi\left(\omega\left(\frac{1}{2^n}\right)\right)\right),$$

and consequently

$$(13) \qquad \frac{2^{n-1}}{2^k} \bar{\varphi} \left(2^{n-1} \varphi \left(\omega \left(\frac{1}{2^{n-1}} \right) \right) \right) \leq \frac{\alpha}{2} \frac{2^n}{2^k} \bar{\varphi} \left(2^n \varphi \left(\omega \left(\frac{1}{2^n} \right) \right) \right).$$

Since $\varphi(kx) \le k\varphi(x)$ for $k \le 1$, we obtain by (13),

$$\varphi\left(\frac{2^{n-1}}{2^k}\,\overline{\varphi}\left(2^{n-1}\,\varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right)\right)\right) \leq \frac{\alpha}{2}\,\varphi\left(\frac{2^n}{2^k}\,\overline{\varphi}\left(2^n\,\varphi\left(\omega\left(\frac{1}{2^n}\right)\right)\right)\right).$$

Hence,

$$2^{-n+1}\varphi\left(\frac{2^{n-1}}{2^k}\,\bar{\varphi}\left(2^{n-1}\varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right)\right)\right) \leqq \alpha\cdot 2^{-n}\varphi\left(\frac{2^n}{2^k}\,\bar{\varphi}\left(2^n\varphi\left(\omega\left(\frac{1}{2^n}\right)\right)\right)\right),$$

which implies (7), since $0 < \alpha < 1$.

Having (7) we can estimate I_2 . Since

$$|f_0(t+h)-f_0(t)| \le h \cdot 2^{n+2}(\varrho_n+\varrho_{n-1})$$
 if $2^{-n-1} \le t \le 2^{-n}$, $1 \le n \le k-1$,

we have

$$\begin{split} I_2 &\leq \int\limits_{2^{-k}}^{2^{-1}} \varphi \left(|f_0(t+h) - f_0(t)| \right) dt = \sum_{n=1}^{k-1} \int\limits_{2^{-n-1}}^{2^{-n}} \varphi \left(|f_0(t+h) - f_0(t)| \right) dt \leq \\ &\leq K(\varphi) \sum_{n=0}^{k} 2^{-n} \varphi \left(\frac{2^n}{2^k} \varrho_n \right) \leq K_1(\varphi) \sum_{n=0}^{k} 2^{-n} \varphi \left(\frac{2^n}{2^k} \overline{\varphi} \left(2^n \varphi \left(\omega \left(\frac{1}{2^n} \right) \right) \right) \right) \leq \\ &\leq K_2(\varphi) \cdot \varphi \left(\omega \left(\frac{1}{2^k} \right) \right) \leq K_3(\varphi) \cdot \varphi \left(\omega(h) \right); \end{split}$$

and hence,

$$f_0(x) \in H_{\alpha}^{\omega}$$
.

Finally we prove that

$$f_0(x) \notin \varphi(L) \Lambda(L)$$
.

By (5)

(14)
$$\sum_{n=1}^{N} \frac{\lambda_n \varphi\left(\omega\left(\frac{1}{n}\right)\right)}{n} \to \infty \quad \text{as} \quad N \to \infty.$$

Using (14) and $\lambda_{2n} \leq K_1 \lambda_n$, furthermore that for any N there exists an integer N_1 such that $\varphi\left(\omega\left(\frac{1}{N_1}\right)\right) \leq \frac{1}{4K_1} \varphi\left(\omega\left(\frac{1}{N}\right)\right)$, an easy computation gives that

(15)
$$\sum_{n=1}^{\mu} \Lambda(2^n) \varphi(\varrho_n) 2^{-n} \to \infty \quad \text{as} \quad \mu \to \infty.$$

Indeed, if $2^{\mu} > N_1$, we have

$$\begin{split} &\sum_{k=1}^{N} \lambda_{k} k^{-1} \varphi \left(\omega \left(\frac{1}{k} \right) \right) \leq 2 \sum_{k=1}^{N} \lambda_{k} k^{-1} \left[\varphi \left(\omega \left(\frac{1}{k} \right) \right) - 2K_{1} \varphi \left(\omega \left(\frac{1}{N_{1}} \right) \right) \right] \leq \\ &\leq 2 \sum_{k=1}^{2^{\mu}} \lambda_{k} k^{-1} \left[\varphi \left(\omega \left(\frac{1}{k} \right) \right) - 2K_{1} \varphi \left(\omega \left(\frac{1}{2^{\mu}} \right) \right) \right] \leq \\ &\leq 2 \left[\sum_{n=1}^{\mu} \sum_{k=2^{n-1}+1}^{2^{n}} \lambda_{k} k^{-1} \varphi \left(\omega \left(\frac{1}{k} \right) \right) - 2K_{1} \Lambda (2^{\mu}) \varphi \left(\omega \left(\frac{1}{2^{\mu}} \right) \right) \right] + K_{2} \leq \\ &\leq 2 \left[\sum_{n=1}^{\mu} \varphi \left(\omega \left(\frac{1}{2^{n-1}} \right) \right) \sum_{k=2^{n-1}+1}^{2^{n}} \lambda_{k} k^{-1} - 2K_{1} \Lambda (2^{\mu}) \varphi \left(\omega \left(\frac{1}{2^{\mu}} \right) \right) \right] + K_{2} \leq \\ &\leq 2 \left[\sum_{n=2}^{\mu} 2K_{1} \varphi \left(\omega \left(\frac{1}{2^{n-1}} \right) \right) \sum_{k=2^{n-2}+1}^{2^{n-1}} \lambda_{k} k^{-1} - 2K_{1} \Lambda (2^{\mu}) \varphi \left(\omega \left(\frac{1}{2^{\mu}} \right) \right) \right] + K_{3} \leq \\ &\leq K_{4} \left[\sum_{i=1}^{\mu-1} \varphi \left(\omega \left(\frac{1}{2^{i}} \right) \right) \sum_{k=2^{i-1}+1}^{2^{i}} \lambda_{k} k^{-1} - \Lambda (2^{\mu}) \varphi \left(\omega \left(\frac{1}{2^{\mu}} \right) \right) \right] + K_{3} \leq \\ &\leq K_{4} \left[\sum_{i=1}^{\mu-1} \varphi \left(\omega \left(\frac{1}{2^{i}} \right) \right) \left(\Lambda (2^{i}) - \Lambda (2^{i-1}) \right) - \Lambda (2^{\mu}) \varphi \left(\omega \left(\frac{1}{2^{\mu}} \right) \right) \right] + K_{5} \leq \\ &\leq K_{4} \sum_{n=1}^{\mu-1} \Lambda (2^{n}) \left[\varphi \left(\omega \left(\frac{1}{2^{n}} \right) \right) - \varphi \left(\omega \left(\frac{1}{2^{n+1}} \right) \right) \right] + K_{5} \leq \\ &\leq K_{4} \sum_{n=1}^{\mu} \Lambda (2^{n}) \varphi (\varrho_{n}) \cdot 2^{-n} + K_{5}, \end{split}$$

which proves (15) by (14).

It is clear that for any m

$$\int_{1/2^{m+1}}^{1} \varphi(|f_0(x)|) \Lambda\left(\frac{1}{x}\right) dx = \sum_{n=0}^{m} \int_{2^{-n-1}}^{2^{-n}} \varphi(|f_0(x)|) \Lambda\left(\frac{1}{x}\right) dx \ge$$

$$\geq \sum_{n=0}^{m} \Lambda(2^n) \int_{2^{-n-1}}^{2^{-n}} \varphi(|f_0(x)|) dx \ge K_6 \sum_{n=0}^{m} \Lambda(2^n) \varphi(\varrho_n) 2^{-n},$$

and thus, by (15), we get

(16)
$$\int_0^1 \varphi(|f_0(x)|) \Lambda\left(\frac{1}{x}\right) dx = \infty.$$

Since $\lambda_{k^2} \leq K_1 \lambda_k$, we have

(17)
$$\Lambda(u^2) \leq K_2 \Lambda(u),$$

thus, by (16) and applying our Lemma, we obtain

(18)
$$\int_0^1 \varphi(|f_0(x)|) \Lambda(\varphi(|f_0(x)|)) dx = \infty.$$

Using (17) and the properties of the function φ , we have

(19)
$$\Lambda(\varphi(x)) \leq K_3 \Lambda(x),$$

whence by (18) and (19)

$$\int_{0}^{1} \varphi(|f_{0}(x)|) \Lambda(|f_{0}(x)|) dx = \infty$$

follows, that is,

$$f_0 \notin \varphi(L) \Lambda(L)$$

The proof of our Theorem is completed.

References -

- [1] L. Leindler, On embedding of classes H_p^{ω} , Acta Sci. Math., 31 (1970), 13—31.
- [2] L. Leindler, On imbedding theorems, Acta Sci. Math., 34 (1973), 231—244.
- [3] П. Л. Ульянов, Вложение некоторых классов функции H_p^{ω} , Изв. АН. СССР, сер. матем.. 32 (1968), 649—686.

BOLYAI INSTITUTE ARADI VÉRTANÚK TERE 1. 6720 SZEGED, HUNGARY