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Probability inequalities‘ of eXponential type
and laws of the interated logarithm

F. MORICZ

Introduction

Let &, &,, ..., &, be random variables (in abbrev1atlon rv); they need not be
independent or identically distributed. Set :

k
Sk = 2 éi and Mn =1m£lx ISkl' .
i=1 - =k=n .

Further, for each vector (&,11, Epass ---s Epar) Of k consecutive &s, let Fy denote:
the joint distribution function.and let ' C

: b+k :
Sb,k = 2 &i = Spar—S (Sb,o =0)

i=b+1

- My = max {|S; 4], [Sy, ), ey 1Sy 4l}-

Thus S;=S,,, and M,=M, ,. Set F,=F, ,. The concern of this paper is to provide
bounds on E {exp (A1M,)} in terms of given bounds on E{exp (4|S;, )}, where 1>0.

We emphasize that it is not assumed that the {s are independent. The only
restrictions on the dependence will be those imposed on the assumed bounds for
E{exp (1|S,,:)}- In point of fact, these assumed bounds are guaranteed under
suitable dependence restriction (e.g., mutual independence, martingale differences,.
weak multiplicativity, or the like). :

Bounds on E{exp (AM,)} are of use in denvmg convergence propertles of S,
as n—eco, For development of such results under various dependence restrictions,
the theorems. of this paper reduce the problem of placing appropriate bounds on
E{exp (AM,)} to the typically easier problem of placmg appropriate . bounds on:

E{exp (A]Sy,:D}-

and
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The proof of our main result (Theorem 1) is based on the “bisection” technique
«of BILLINGSLEY [1; p. 102] and the treatment is in a setting close to that of SERFLING
i[9]. The use of Theorem 1 simplifies and extends the method of SERFLING [1Q] to
-obtain results such as laws of the iterated logarithm, convergence rates thereof,
-etc. under probability inequalities of exponential type. For generalities concerning
-different convergence properties the reader is sent to our main reference [10].

Another extension of Serfling’s method based on the study of the moment inequal-
ities of type E|S, ,|* with a fixed v>0 is dealt with in [6]. :

§ 1. The main result

In the following the function g(F, ;) denotes a non-negative functional depending
©on the joint distribution function of &yiys Eorayeens Eptne Examples are: g(F, )=K"

where a=>0, or g(F, )= ;’ a® where {a;} is a sequence of numbers. (In most

«cases aj is the finite variance of £,, but this plays no role in our results.) In the sequel
«C, Cy, Cy, ... denote positive constants; b, k, /, n non-negative integers and 1 a
posmve real number.

Theo rem 1. Suppose that there exists a non-negative function g(F, ) satisfying

(L.1) 8(Fy )+ 8(Fyve,) = g(Fpud) (all b=0, k=1, I=1)
.such that .

(1.2) E{e!Sol} = Cer'9Fon) (all b= 0, k= 1,2 > 0).
Then .

(13) E{eM) = 8Cet™ s (all n= 1, 1 > 0).

In ’fheorem 1 the bounds may involve parameters of the joint distribution
function of &,, &,, ..., &,, a flexibility particularly useful with non-identically distrib-
nuted rv. :

Proof. We are to find two constants C; and C; not less then 1, for which
(1.4) . E{eM.} = CeH0F)  (n=1, 4 > 0).

‘The proof goes by induction on n. The result is trivial for n=1. Assume now as
induction hypotheses that the result holds for each integer less than n. The function
£(F,) being non-negative and non-decreasing in n, we may assume g(F,)>0. There
-exists an integer A, 1 =h=n, such that

(1.5) | g(Fy_y) =1g(F,) < g(Fy),
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where g(F,_,) on the left is 0 if A=1. Then (1.1) and (1.5) imply

‘ 1
(1.6) g(Fyu-) = 8(Fo,0) —8(Fo,0) < 5 8(F)-
It is obvious that for.1=k<h we have

1Sl = M.o‘.hflﬁ
and for h=k=n o
[Si| = ISh|+Mh n—h-

Also, for ISkSn and 1>0 we have

L AlS = MS,,|+[0g(e‘-Mo ho 1+e‘-Mo. n~h)
Therefore,
AM, = ﬂ.ls,,l-{—log (e"MO,h—l-f-eth,n-h)’ )
whence '

My = ISl (oMo, n-1 + e*Mn, n-1)

for'all 1>0; Let p-and ¢ be positive numbers with 1/p+1/g=1, whose values will be
determined later on. Usmg Holder’s and then Minkowski’s mequalmes we find that

E {e"Mn} = E{eplls,,l}llp E {(ezno.,,_l 4-e*Mn,n- ..)q}l/q =

(1.7
=E {epa\ls,.l}llp ( E {quM,,’ A 1}1/‘1 +E {quM,,_ e h}l/q)'

Since h—1<n, we may apply the induction hypothesis to the rv &, s, ..., §4-y
and conctude by (1.4) that

(1.8) E{e#™Mo,n-1}1/1 = C}1et€a#9Fn-0) = Clltexp [‘;- qcmg(F)]‘
the last inequality following by (1.5). We note that if ~=1, then (1.8) is obvious.
If the indices in (1.2) are restricted to b=h, 1=k=n—b, then only the rv

Ehi1s Enrey ..., &, are involved. Since n—h<n, the mductnon hypothesis applies to
Ehe1s Envas .- Eq- Hence (1.4) yields

(1.9) E{etnn-n}t/t = CH1C1#9F 1 n) = CHexp [3 gCo A g (F,).

where the last inequality follows by (1.6). (If h=n, (1.9) is trivial.)
Finally, (1.2) implies

(1.10) E{epi.ls,_l}llp = CVperra(F,) < CV/perrtg(F,)
Combining inequalities (1.7)—(1.10), we arrive at

E{e*Ma} = 2CMPCHaexp[(p+3 qCo) A2 (F).
Assuming 1 <g<2, and consequently p>2, we have

2CVPCH = C, and p+i9Ci=C,
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provided

2
(1.11) - GEYC ad G= ﬁ.
Choosing, for example, g=3/2 and p=3, the smallest C; and C, satisfying (1.11)
are given by C;=8C and C,=12, as they are given in (1.3). This completes the
induction step and the proof of Theorem 1.

Although the specific values of C, and C, will have no importance for us, the
best value (provided by the above proof) of C, may be taken as C,=6-+4 V2.
(Namely, the expression 2p/(2—g) attains its minimum on (2, «) at p=2+ﬁ.)

The extension of the validity of Theorem 1, when 42 in the exponents on the
right of (1.2) and (1.3) is replaced by a polynomial in 4, say r(A), is of interest in
itself and may be of use in some applications.

. Theorem 2. Suppose that there exist a non-negative function g(F,,) satisfying
(1.1) and a polynomial

r(@) = 3@
i=]

of at least first degree, strictly positive for A=0, such that

(1.12) E{eSonl) = Ce@stFod (all b=0, k= 1, A > 0).
Then
(1.13) | E{etMa) = CeSrtuta (all nz 1, A > 0),

where C, and C, are constants depending only on r(2).

_Proo:f. The proof of Theorem 2 runs along the same lines as that of Theorem I.
The same sort of argument that yielded (1.8)—(1.10) shows that

 E{estMon-ijn = Claexp [% Car(al)g(F)].

E{erhnn-ipis = Clexp |- Cura g ()],

and

E{eplls,.l}l/l) = Cllp exp [;} r(p,l)g(Fn)] .

Combining inequality '(1.7) with the last three ones, we arrive at

(1.19) E{e*Mn} §:2C""C}_"1 exp [[%.r(pl)—i-ila C, r(ql)]g(F,,)) .
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Now we have to choose g<2 (p g/(g—1)) and the constants C,,- C2 in such
a way that

(1.15) 2CVreCle = ¢,
and
(1.16) —r(pl)+ L Car(ql) Cor(d)

hold for all A=0. Condition (1.15) does not cause any dlﬁiculty On the other hand,
(1.16) requires some arguments. Writing

50 = Go[r ) =5 rlah |~ 1o,

we will prove the existence of ¢ and C, such that s(1) =0 for all 1=0.
First we notice that from the assumption on r(1) it immediately follows that
o,>0 and ¢ =0. Then we show that |

1 1
(1.17) r(d) ——Zr(ql) = —Zr(,l)
for all 1=-0, provided ¢ is sufficiently close to 1. Inequality (1.17) is equivalent to
2
(1.18) t(d) = 3r(,1)——q—r(q/1) =0

for all 1>0. We consider only those ¢’s for which g™ '=3/2 minus a small positive
number, say let g""'=5/4. A simple reasoning gives that if

1 m—1

A= max[l,‘ e ;;; |ai|]

or v
0<ix= min[l, ——%—] |
C 2 2 ol
i=l+1
then (1.18) is true. Since ,
: . CHm (D) =r(d)

q—+1+0

uniformly on each finite segment, hence we can choose ¢, 1<q and ¢q™~'=5/4, such
that (1.18) holds for all 1=0. Thus we can-and do fix g=>1 for whlch (1 17) is satisfied.
Let p=q/(g—1) and return to the study of s(4). -
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The behaviour of s(1) for A large enough is determined by the coefficient of 1™,
Hence we have to choose C, such that

am(CZ—_; Cg™= 1 —p"~) >0,
ie.,

2pm—1

This choice implies s(4)=0 for sufficiently large 2, say 1=4,.

In case when 4 is small enough, the coefficient of A'is decisive for the sign of
5(4). In order to ensure that s(1)=0 for sufficiently small 4, say 0<A=4,, we have
to require that

2pl—1
C2 > —2_—qu .
But condition (1.]9) implies this, it suffices to keep in mind only that m=/, p>2,
g>1, and ¢"'<2.

Thus it remains to deal with the case 1,=A=A,. Since the polynomial r(4)

has no zero on 0<A< o, it follows that

= i
1 Aogl;él/ior(/l)

is a positive number. Further, set

R, = max —l—r(pzl).

P amA=4g p

Taking into account that (1.17) holds for all 1>0, we have

1
s(4) E%Czr(/l)—%r(p/l) = ‘4_C2r1_Rp =0

for every A in [Ag, Ao] provided C.=4R,/r,. If, in addition, C, fulfills (1.19) then
we can conclude that s(4)=0, and consequently, (1.16) is satisfied for all A=0.
Finally, if C;=27C then (1.15) is also satisfied.

Continuing our reasoning with (1.14), by (1.15) and (1.16) we arrive at the
desired (1.13). Thus we finished the proof of Theorem 2.

Before coming to the applications, we make a remark on the validity of Theo-
rems 1 and 2. Viewing the proofs, it is striking that we use no full power of a proba-
bility space. In fact, Holder’s and Minkowski’s inequalities were applied only,
which are available in any measure space (X, 4, u). Hence Theorems 1 and 2 are
valid on (X, A4, u) taking integrals over X with respect to y in place of the expectations
on the left-hand sides of the corresponding inequalities. :
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§ 2. Laws of the iterated logarithm as consequences
of a probability inequality of exponential type for S, ,

Now we will discuss the stochastic convergence properties of S, under restrictions.
of type (1.2). The following result, which expresses a form of the law of the iterated:
logarithm, certainly has a broad scope of application.

Theorem 3. Suppose that there exist a positive number K and a sequence {a}
of numbers such that

t

.1 E{e¥Snu) = Cexp(;KA%43,) (@l b=0, k=1, 1> 0),
where '
b+k 1/2
(2.2a) Ay = [ 2> a?] and A,= Ay, = (n— =)
i=b+1 i

Then it follows a law of the iterated logarithm with K, i.e.

. IS,
@3 P{h’,ﬂfl’p GRATloglog Ape = ' = 1

We note that the conclusion of Theorem 3 in the special case g;=1, A2=n>
was proved by SERFLING [10, Theorem 4. 1] for uniformly bounded rv, |&|=B;
having the following properties:

(i) for any v=2 there exists a constant C, such that

(2.4) EIS, ) =Cn" (all b=0, n= 1),
(ii) the inequality

2
P{S,| > y} = 2exp {—2—;2—"} @i n=1)

holds for any y=>0.
The following theorem provides information on the rate of convergence in (2.3)..

Theorem 4. Suppose that (2.1) holds, where
(2.2b) A, —~ o and a,=o0(4,) (n~ ).
Then. for each 0=2K, we have

. a; | S -
25) 2 Fiogd,” {fn @ATToglog A2 = ‘} =

If the factor (@ loglog 4,)"? in the expression (2.5) is replaced by a rougher
factor (log 4,)* with an «=>0, then an essentially better rate of convergence depending.
on a can be achieved, as the following theorem shows.
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Theorem 5. Suppose that (2.1) and (2 2b) hold T hen settmg

MR }
P, =Pisup——-—— =1
{kEE A (log 4p)*

we have for each choice of O0<a~<1/2 and >0

< ai(log 4, '
» R A
Jor a=1/2 and >0

a;

3 e Pa < =
< A£+(2K /K n 4

.and for a=1/2 and f=0
S AP, < o
n

It is instructive to compare Theorem 5 with a result of SERFLING [10, Corollary
5.3.1], which reads as follows: Suppose that in the special case a;=1, A2=n, we have
{2.4) for all v=>2. Then

1 154
e {225 e (log b 1} ==

holds fot: each choice of a0 and 0<pB<1.

The results stated in Theorems 3—S5 are obtained by adaption of more or less
standard arguments [2], [4], and [7] making use of Theorem l. More precisely,
bounds on E {exp (AM, )} are of use in deriving bounds on the tail distribution of
M, . By Chebyshev’s inequality, (2.1) implies

2
r(2.6) P{IS,,! = y} = P{ells.J = e"ll‘} = Cexp [% KA2A?,—}.y] =C exp [_%A?,]’

if s chosen‘as A=y/KA. Here and in the sequel y denotes a positive number. Further,
.also by Chebyshev’s inequality, (2.1) implies via Theorem 1 that

Q2.7 P{M, , = y} = 8Cexp [——zﬁk—].

The proofs below are based on the bounds (2.7) on the tail distribution .of
M, ;, which is of interest in its own right, too. An extra factor of 8 in the coefficient
-on‘the right-hand side of (2.7) will not matter for our purposes, and the bounds we
-derive will decrease with increasing y slowly enough that passing from ) to y%/12
in the exponent will have no important effect.
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Proof of Theorem 3. We have to prove that, for any 8=>2K, with proba-

bility 1 we have
ISa| = (645 loglog A})"

for all n large enough. It is clear that this implies (2.3).
Let =1 be a fixed number and define a sequence of integers 1 =n,=n,=... in
the following way:

2.8 Al

'lk—

=6t<dA2 (k=1,2,..; 4,=0).

This is possible by (2.2a), and obviously nk——oo as koo,
Set

6 — \ 2 2y1/2
= 5% and pu(n) = (04%loglog A3)V2

By the above assumption y=1. Then (2.6) provides

P{|S,| = n(n)} = Cexp(—7yloglog 4) =
By (2.8) we get 2

o cC =1
kZ P{|S,| = u(ny} émkgl-k—v =

C
(log 43 )y

where Z, means that the summation is taken orily once for equal 7}s. In virtue of the

Borel—Cantelli lemma, this yields with probability 1 that
(2.9 Sn| = (642 loglog A2 )2

for all k large enough. !
For an arbitrary n, either n=n, or n,‘<n<n,,+1 for some k. If ny<n<n,,,,
consider
S, Sy #(n) | 1S.—S,| A(n)
W)~ m() ) R wm)

where

a(m) = (12042, _loglog A2)Y? and v, = myy—n,.

Pres Ve =

Since u(n) is non-decreasing, it follows that

|Snl lSnkl [Sn —Snk‘ ﬁ(nk)

. = +— .
u(), — u(m) — A(n)  u(n)
We will show that with probability 1 '

|S,,—S,,k| Mﬂk vie—1
2.11) max — ==
( me<n<nm . ll(nk) 'l“(nk)

(2.10)
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for all k large enough. To this effect, utilize (2.7). Then
P{Mnk.vk -1 = ﬂ(nk)} = 8cexp (_y log logA )'
As above, this implies ,
‘kZ”'P {Mnk, Vk'—l E ﬁ(nk)} < oo’
where Z" means that the summation is extended to such k’s that m,<n,.,—1.

By the Borel—Cantelli lemma we get the wanted (2. 11)
Owing to'(2.8) we have 4} >d* and :

A'z'ln"k"'l = An;‘“-l AZ = 6"(5_1).
ﬁ(nk) _.Vl—zAn,‘,vk-l
p(ny) Ay,

The right-most member here can be made as small as needed if 6 — 1. Hence, combin-
ing (2.9)—(2.11) it follows that, for any £=0, with probability 1

[S,] = [(0+¢)42log log A2]V2

" Thus

= [12(5~ )P,

holds for all n large enough. Since 8+¢ may be chosen arbitrarily close to 2K, the
conclusion of Theorem 3 is proved.

Proof of Theorem 4, Let =1 be a fixed number. We will show that
(2.2b) implies the existence of a strictly increasing sequence {n,} of positive integers
such that

(2.12) =42 <o
for all k large enough.‘Otherwise, for infinitely many n’s, we have
CAZ< 81 and A2, = ok+2

with suitable k’s. This gives that

Ga _ A 8051
Aﬁ+1 A,’;.,.l St+2 F

1

for infinitely many »’s, which contradicts (2.2b).

In proving the convergeénce of the series (2.5), we make use of the convergence
part of the following assertion, applied widely in the theory of numerical series:
Let d;=0 be the terms of a divergent series with partial sums D,. Then the series

. d
- 2 D g Dy
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converges or diverges according as £¢=0 or ¢=0. Hence it is enough to demonstrate
that

_ ' . Sy } Ca
@1 P=F {?L’E’ Gafloglog AN ' = Tog iy

with an appropriate £=0. -
To this effect, let us fix a number 6, so that

(2.19) E 2K<6,<6.

Let ky=ky(n) be deﬁned by m <n=n, ,,. We may assume that n, and consequently
k, are large enrough, so that (2. 12) is satlsﬁed It is obvious that

S _ 15 }
2.15) P, §k=2k'oQk . where Q, = P{n,‘gxlgar):i“ @F Toglog A" = 1¢.

It can be ea'sily checked that

l nx ' ISI I
(2.16) ngp{w_l}ﬂ’{"kggnxmw_n} 01+ Q2 x>

where, for the sake of brevity, we put
1/2
ag(n) = AzloglogA2 and n—[ [ ] ][ .

Repeating the argument that yielded (2.9) in the proof of Theorem 3, we can
establish with ease by (2.6) that

C
(log A2y’

where y,=0,/2K. By (2.14) we have y,>1. Thus, using (2.12), we find that

01,1 = Cexp(—y,loglog 43) =

c =1 1 C

(2 17) k=2klo Ql = (log 5)71 k=2k' k" = (‘)11——1)(10g 5)'yl(k _1)71_1 =
. 271"1C ‘ 211—1C

= - D0og oy kot 2n " — (—1logd(Qog AD—*
provided ky+2= 2(k0—1) 1e ko=4, which we may assume without loss of gen-
erality. '
Leét us now deal with the series S’ Q.- By (2.7) it is bounded from above by
the series = '

8C S’ exp

k=kg

n2AZ, loglog A2
T2, —4%) )

e+

8‘
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and therefore also by

8¢ 5 [ nt loglogAﬁk] sC
expl——————| =
R W PTeos ) 2 Ty
with y,=n2/12(6%2—1), since by (2.12)
A2, 5 1

Ryl o iy

M1

‘Since 6 may be chosen arbitrary close to 1, fix =1 in such a way that y,>1. Then
the same sort of argument that yielded (2.17) shows that

2.18 '3 mC
18) V k=2k'° Qi = (yo—1) log é (log 4227t~

Putting together (2.15)—(2.18), we arrive at (2.13) with e=min (y,, y,)—1.

This completes the proof of Theorem 4.

The proof of Theorem 5 runs along the same lines as that of Theorem 4. We
only notice that after the application of (2.6) and (2.7) we have to use the following
elementary inequalities:

C(logx)™ if 0<a<3 and =0,

exp {—y(log x)*} ={ x~7 if a=3
Cx~# if «>% and B=>0,
where x=2 and C depend only on «, § and y=0.

In the sequel as a particular case, consider a sequence {¢;} of weakly multiplicative
rv, i.e., we assume that

(2.19) Wo=( 2 EY0,0,--0.))P<= (r=4,6,..),

1=i)<ipg<...<i,

L]

where the summation is extended over all integers satisfying only the condition
1=i<i,<...<i,, and further

W =0() (r— ).
This is a generalization of the concept of multiplicativity defined by
(2.20) E{0y0 . 0.} =0 (1Sii<ip<..<i;r=46,..).

The condition (2.20) is stronger than (2.19). Even the former includes the case of a
sequence of martingale differences and the case of mutually independent rv and
special varieties thereof (see REVESZ [7]).



Probability inequalities of exponential type and laws of the iterated logarithm 337

We proved in [5, Lemma 3] that (2.1) is valid with a definite X for uniformly
bounded sequences of weakly multiplicative rv. More precisely, the following
result holds: Let {¢;} be a sequence of rv such that

(2.21) o)) = B(< =) (i=1,2,..)
and
(2.22) Tim sup WX = W(< o).

r—co

Then for every y>0 there exists a constant C, such that for every sequence {a;} of
numbers we have '

[
E{eMSonl} = C,exp[3 (B2 + W2+ A248;] (all =0, k=1, 1> 0),

where

btk o b+k
Spx = 2 a0, and Ag = 2 a.
i=b+1 ; isb+1

Hence, via Theorems 3—5, we obtain

Corollary 1. Let {¢;} be a sequence of rv satisfying (2.21) and (2.22). Let
{a;} be a sequence of numbers with (2.2a). Then there follows a law of the iterated
logarithm for {&;=a,¢;} with K=B*+ W2, ie., .

' . i§1 a;9;
g {"fli“p RGBT WY Alloglog 4,172 1} =1

Corollary 2. Let {¢,} be a sequence of rv satisfying (2.21) and (2.22). Let
{a;} be a sequence of numbers with (2.2b). Then, for each 0>2(B*+ W?), we have

k
az 1_21' a:i(pi
2 Jrog A, {5;‘5’ @Az loglog A — 1} =

Corollary 3. Under the conditions of Corollary 2 we have

k.
2, a;p;
= . 1} e
kzn Ak(log Ak)a

5 a,z,(long,,)” P{sup
n A"
Jor each choice of a=0 and =0,
Corollaries 1 and 2 were proved by the present author [5] in another way, and
the latter one under somewhat more restricted conditions stipulated on {a;}. Laws
of the iterated logarithm, convergence rates in them was proved for multiplicative
rv in the special case @, = 1, A;=n, by SERFLING [8].
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§ 3. Strong convergence and complete convergence

A trivial consequence of the laws of the iteréted.logarithm is the strong law of
large numbers, i.e., under conditions (2.1) and (2.2a) it follows that

S,
G.1) P{F—» } 1.

It is of interest to obtain information on the rate of convergence in (3.1). Besides,
‘'we will give a condition on the sequence {c,} of numbers that

S P{M = e}
n=1 Cn

converge for every e>0, which is referred to as {S,,/c,,} converges completely to zero
in the sense of Hsu and RoOBBINS [3].

Theorem 6. Suppose that there exist a positive number K and a sequence
{a;} of numbers such that (2.1) holds. Furthermore, suppose that with some B=0
we have . :

'(3.2) A, =Cn? (n=ny) and a,=o0(4,) (i~ ).

Then, for each =0, we have
@3 - zerfppllad-

Jor any positive g <exp (¢*/2K); in particular,

ZA:,‘P{sup 'A’z‘l = a} < oo
n kzn

Jor any a=0.

Proof. We use the following elementary iﬂeqﬁalities: A
(i) If 0<u<1, §=>1, and k is a positive integer, then

(3.4 W 4 s w (1Y),
Indeed, if we substitute #** by v then (3.4) becomes
v+H? 4%+ = u(l—v’f‘)‘l,
‘where 0<v<1. Now, if §=1+n with an >0, theﬁ |
v+ +v"’+ = v+ ottt oy = p(l—v7)7,

whlch makes (3.4) evident.
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(i) If 0<w<1 and f=>0 then the series
w+w2"+w3"+

is convergent. Th1s is clear by Bernoulli’s mequahty, accordmg to which n =g (n—1).
After these prehmmanes let us fix sl<a S0 that o<exp (¢2/2K) and fix §>1 in
such a way that -

& ’ £—8
(35) 0 < €Xp [2K52] and g = W .

Then define a strictly mcreasmg sequence {nk} of integers by (2 12) as we did in the
proof of Theorem 4.
By (ii) and (3:5) it is enough to prove that

| » — | k| 2 2
(3.6) I, = P{’fgg yr: = <C5exp 2K52A

for all n large enough. Towards this end, let e, <n§nk +17 We obviously have

g e

K=ty me=<i=moa Af k=k,
- S, = 1

+ 2> P{ max '———-— =g—¢g = Ji+ /. .
k=kq Me=I=nmy m‘ L"g S Ay

Applying (2.6) with y=81Aﬁk gives

SLH=C 2' exp[———Az] C 2’ exp[ 821;]

k=kq k=kg
while the application of (2.7) with y=(¢—¢,) Aﬁk and (3.5) leads us to

[ (e—&,)* 45,

= U —
J. =8C 2 exp 2AKCIE = Aﬁk)] =

k=ky

oo 3 (8—81)25k ] 825"]
§8Ck=2k'oexp[ 24K = 1) _8Ck2k’oexp T
where we used that by (2.12) - ,
o . p = g

s eyl

A2

B +1

To sum up,

I, =J+ C Gl
= -
n 1 J2 9 kZ,:o CXp 2 K
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Now making use of (3.4) with v=exp (—¢?/2K) and of (2.12), we get that

1,=9Cexp [——i 5“0] [1 —exp [—-—si o (6— 1)]]-_1
"= 2K 2K -
(.7

= lSCexp[ 2K62 A% ﬂ] = 18Cexp[ 2K52 Aﬁ] ,
provided

exp [—— Sro(6— 1)] =7

which is the case if n (and a fortiori k) is large enough.
Observe that (3.6) and (3.7) coincide if C; is taken to 18C. This completes the
proof of Theorem 6.

Finally, we consider the question of norming S, in such a way that §,/c, con-
verge completely to zero. The following theorem may be derived.

Theorem 7. Suppose that there exist a positive number K and a sequence
{a,} of numbers such that (2.1) holds. Furthermore, suppose that with some =0
we have (3.2). Then M,[(A%log A,)*g(n), and hence also S,/(4%log A,)*g(n),
converges completely to 0 if g(n)—> oo as n— oo,

Proof. Let e=0 be given. Then we obtain immediately by (2.7) that

M, e2g%(n)log A4, -
> =,,2P{(A,"f]ogA,,)l/2g(n §8}§8C"2'exp[———-——g (23:Kg ]=8C"2'A,l »,

where v, =¢%g%(n)/24K. Taking into account (3.2), it follows that
2 =8C3nFn <o,

since fv, with g(n) tends to « as n—<, Here we suppose that C,=1, but this does
not bother generality. The proof of Theorem 7 is ready.

Condition (3.2) stipulated on the growth of 4,, plays a crucial role in the proofs
of Theorems 6 and 7. Namely, (3.2) ensures the convergence of the series > g
for 0<g<1 (in the proof of Theorem 6) and that of the series > A;#™ for g(n)—~oo
(in the proof of Theorem 7), which fail if, for example, 4,=logn, g=1/2, and
g(n)=loglog n. Of course, it might be some relaxation of (3.2) using another tech-
nique, but we are unable to do so.

Confining attention to a uniformly bounded sequence of weakly multiplicative
rv, we get the following
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Corollary 4. Let {¢;} be a sequence of rv satisfying (2.21) and (2.22). Let
{a;} be a sequence of numbers with (3.2). Then, for each ¢=>0, we have

-

Corollary 5. Let {¢;} be a sequence of rv satisfying (2.21) and (2.22). Under
conditions (3.2) we have
.

We note that Theorem 6 in the special case g;= 1, A2=n, was proved by SERFLING
[10, Theorem 5.2). Furthermore, Corollaries 4 and 5 were proved also by SERFLING
[8] for sequences of uniformly bounded multiplicative rv and for g;=1. The proofs
given above essentially differ from those of Serfling, since in the case of general
sequences {a;} (satisfying merely (3.2)) not only (2.6) but also (2.7) are employed.

> Q“:P{SUP o5
n k=n Ak

k
2, 4;9;

Jor any g<exp [¢¥/2(B2+ W?2)).

1
2 { (AZTog Ay () 126

k
2, ;0
i=1

provided g(n)—~o> as n— oo,
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