On thin operators relative to an ideal in a von Neumann algebra

BRUCE A. BARNES

§ 1. Introduction

Let A be a von Neumann algebra, let Z be the center of A, and let K be a proper closed ideal of A with the property that if $T \in A$ and $T K=\{0\}$, then $T=0$. The set of thin operators of A relative to K, denoted \mathfrak{I}_{K}, is the set of operators of the form $X+T$ where $X \in Z$ and $T \in K$. In the case where $A=B(\mathfrak{F})$, the algebra of all bounded linear operators on a Hilbert space \mathfrak{G}, and $K=K(\mathfrak{H})$, the closed ideal of compact operators in $B(\mathfrak{H})$, this definition is due to R . Douglas and C. Pearcy [6]. Let θ_{K} be the collection of all projections in K. If $P, Q \in \theta_{K}$, then $P \vee Q \in \theta_{K}$. This follows from [11, Lemma 2.1] where the proof is given for the more general case when A is an $A W^{*}$ algebra. Thus θ_{K} is upward directed in the usual ordering of projections ($P \leqq Q$ means $P Q=Q P=P$). In [6], Douglas and Pearcy characterized the thin operators in $B(5)$ relative to $K(\mathfrak{H})$ as the set of all operators T that satisfy

$$
\lim _{P \in \theta_{K}}\|P T P-T P\|=0
$$

[6, Theorem 2]. Also in [6], they related the η function of A. Brown and C. Pearcy [4], [10], to

$$
\lim _{P \in \theta_{K}} \sup \|P T P-T P\| .
$$

They asked if there is a suitable extension of these results to the case where A is a general von Neumann algebra.

In a series of papers [7], [8] C. Olsen proved the Douglas-Pearcy characterization of the thin operators in the general case. Also, she conjectured [8, p. 572]. that the distance from $T \in A$ to \mathfrak{I}_{K} is given by

$$
\lim _{\boldsymbol{P} \in \theta_{\boldsymbol{K}}} \sup \|P T P-T P\| .
$$

Received July 29, 1975, revised March 20, 1976.

That this conjecture holds when $A=B(\mathfrak{y})$ and $K=K(\mathfrak{y})$ was proved by C. Apostol, C. Foiaş, and L. Zsidó in [1].

In [2], for A a von Neumann algebra or a C^{*}-factor, C. Apostol and L. Zsidó• made a systematic study of the relationship between the distance of an element $T \in A$ from \mathfrak{I}_{K}, the η function evaluated at T, and the norm of the inner derivation induced. on A by T.

In this paper we make three contributions to this circle of ideas. First, in § 2 we give a new proof that when A is a von Neumann algebra, then $T \in A$ is in \mathfrak{J}_{K} if and only if

$$
\lim _{P \in \theta_{K}}\|T P-P T\|=0
$$

We note in this connection that C. OlSEN proves [8, Theorem 2] that it is always the case that

$$
\lim _{P \in \theta_{K}} \sup \|P T P-T P\|=\lim _{P \in \theta_{K}} \sup \|T P=P T\|
$$

Our proof depends only on elementary arguments, and is considerably shorter than the proof by OlSEN in [7], [8]. Second, in $\S 3$ we introduce a nonspatial form of the η function of Brown and Pearcy [4], [10]. The generalized function η is defined on A using pure states of A, and is completely independent of any particular representation of A as a von Neumann algebra of operators on a Hilbert space. We prove some of the elementary properties of η in $\S 3$. Then in $\S 4$ we prove that $\eta(T)$ measures the distance from T to \mathfrak{I}_{K}. This is a generalization of [1, Lemma 1.1]. Third, in $\S 4$ we prove the conjecture of \mathbf{C}. Olsen that the distance from T to $\mathfrak{I}_{\mathrm{R}}$ is given by

$$
\lim _{P \in \theta_{K}} \sup \|T P-P T\|=\lim _{P \in \theta_{K}} \sup \|P T P-T P\|
$$

This result provides another proof of the Douglas-Pearcy-Olsen characterization of \mathfrak{I}_{K}.

At this point we introduce some notation. Throughout this paper A, Z, K, θ_{K}, and \mathfrak{J}_{K} will be as stated at the beginning of this \S. The identity operator in A is denoted by I. If B is a subalgebra of A and P is a projection in A, then $B_{P}=P B P$. Also, if $T \in A$, then $T_{P}=P T P$. The distance of $T \in A$ from a subspace $B \subset A$ is denoted $d(T, B)$, i.e.,

$$
d(T, B)=\inf \{\|T+S\|: S \in B\}
$$

The set of pure states of A is denoted P_{A}. If $\alpha \in P_{A}$, then let Φ_{α} be the irreducible representation determined by α, and let \mathfrak{G}_{α} be the corresponding representation space. The inner product of vectors $\xi, \tau \in \mathfrak{S}_{\alpha}$ is denoted by $\langle\xi, \tau\rangle$.

If $P \in \theta_{K}$, then let

$$
\Delta(P)=\left\{\alpha \in P_{A}: \alpha(K) \neq\{0\} \quad \text { and } \quad \alpha(P)=0\right\} .
$$

The collection $\Delta(P)$ plays an important role in later sections. Now we verify that $\Delta(P)$ is nonempty. For assume that $P \in \theta_{K}$. If $A P=K$, then $K(I-P)=\{0\}$. This implies that $P=I$, a contradiction. Thus, $A P \subset K$ and $A P \neq K$. By [5, Théorème 2.9.5] there exists a maximal left ideal M of A such that $A P \subset M$ and $K \nsubseteq M$. By this same result it follows that there exists $\alpha \in P_{A}$ such that $\alpha(A P)=\{0\}$ and $\alpha(K) \neq\{0\}$. Therefore $\alpha \in \Delta(P)$.

§ 2. The characterization of the thin operators

In this § we give a new proof of the Douglas-Pearcy-Olsen characterization of \mathfrak{J}_{K} [6], [7], [8]. The main tool in the proof is a result of the present author [3, Lemma 6.1]. Before proving the characterization, we state this result.
2.1. Assume $\alpha \in P_{A}$ and $T_{k} \in A, 1 \leqq k \leqq m$. Then there exists a sequence of nonzero projections $\left\{E_{n}\right\} \subset A$ such that for $1 \leqq k \leqq m$,

$$
\lim _{n \rightarrow \infty}\left\|E_{n} T_{k} E_{n}-\alpha\left(T_{k}\right) E_{n}\right\|=0
$$

This result is established in [3] using completely elementary arguments.
Theorem 2.2. $T \in \mathfrak{I}_{K}$ if and only if $\lim _{P \in \theta_{K}}\|T P-P T\|=0$.
Proof. If $T \in \mathfrak{J}_{K}$, then it is straigthforward to prove

$$
\begin{equation*}
\lim _{P \in \theta_{K}}\|T P-P T\|=0 \tag{1}
\end{equation*}
$$

see the proof of [7, Proposition 2.1]. We prove the converse. Assume that (1) holds. Let $\varepsilon>0$ be arbitrary. Choose $Q \in \theta_{A}$ such that $P \in \theta_{A}, P \geqq Q$ implies that $\|T P-P T\|<\varepsilon$. Assume $R \in \theta_{K}$ and $R \leqq(I-Q)$. Then $R+Q \in \theta_{A}$ and $R+Q \geqq Q$. Thus, by the choice of Q, we have $\|T(R+Q)-(R+Q) T\|<\varepsilon$ and $\|T Q-Q T\|<\varepsilon$. Therefore, $\|T R-R T\|<2 \varepsilon$. This proves

$$
\begin{equation*}
\text { if } R \in \theta_{K} \text { and } R \leqq I-Q, \text { then }\|T R-R T\|<2 \varepsilon . \tag{2}
\end{equation*}
$$

Let α be any pure state of A such that $\alpha(K)=\{0\}$. Then α restricts to a pure state of A_{I-Q}. Let S be any operator in A. Consider the elements of $A_{I-Q}, T_{1}=T_{I-Q}$, $T_{2}=S_{I-Q}$, and $T_{3}=(T S)_{I-Q}$. Applying (2.1) to the operators $T_{k} \in A_{I-Q}, 1 \leqq k \leqq 3$, we have that there exists a sequence of nonzero projections $\left\{E_{n}\right\}$ in A_{I-Q} such that for $k=1,2,3$

$$
\left\|E_{n} T_{k} E_{n}-\alpha\left(T_{k}\right) E_{n}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Note that since $\alpha(Q)=0$, we have $\alpha\left(R_{I-Q}\right)=\alpha(R)$ for all $R \in A$. Therefore,

$$
\begin{equation*}
\left\|E_{n} T E_{n}-\alpha(T) E_{n}\right\| \rightarrow 0, \quad\left\|E_{n} S E_{n}-\alpha(S) E_{n}\right\| \rightarrow 0, \quad\left\|E_{n} T S E_{n}-\alpha(T S) E_{n}\right\| \rightarrow 0 \tag{3}
\end{equation*}
$$

Now $E_{n} K E_{n}$ is a nonzero closed ideal in the von Neumann algebra $E_{n} A E_{n}$. Therefore for each n we can choose a nonzero projection $F_{n} \in E_{n} K E_{n} \subset K$. Thus $F_{n} \leqq E_{n} \leqq I-Q$ for each $n \geqq 1$. It follows immediately from (2) that

$$
\begin{equation*}
\left\|T F_{n}-F_{n} T\right\|<2 \varepsilon \quad(n \geqq 1) . \tag{4}
\end{equation*}
$$

Since $F_{n} \leqq E_{n}$ for all n, we have by (3) that

$$
\begin{equation*}
\left\|F_{n} T F_{n}-\alpha(T) F_{n}\right\| \rightarrow 0, \quad\left\|F_{n} S F_{n}-\alpha(S) F_{n}\right\| \rightarrow 0, \quad\left\|F_{n} T S F_{n}-\alpha(T S) F_{n}\right\| \rightarrow 0 \tag{5}
\end{equation*}
$$

Now,

$$
\begin{gathered}
|\alpha(T) \alpha(S)-\alpha(T S)|=\left\|\alpha(T) \alpha(S) F_{n}-\alpha(T S) F_{n}\right\| \leqq \\
\leqq\left\|F_{n} T S F_{n}-\alpha(T S) F_{n}\right\|+\left\|F_{n} T S F_{n}-F_{n} T F_{n} S F_{n}\right\|+\left\|F_{n} T F_{n} S F_{n}-\alpha(T) \alpha(S) F_{n}\right\| .
\end{gathered}
$$

The first and third terms of the sum on the right hand side of this inequality approach zero by (5). Also,

$$
\left\|F_{n} T S F_{n}-F_{n} T F_{n} S F_{n}\right\|=\left\|F_{n} T\left(I-F_{n}\right) S F_{n}\right\| \leqq\left\|F_{n} T-T F_{n}\right\|\|S\| \leqq 2 \varepsilon\|S\|
$$

for all $n \geqq 1$, by (4). Therefore, $|\alpha(T) \alpha(S)-\alpha(T S)|<2 \varepsilon\|S\|$, and since $\varepsilon>0$ is arbitrary,

$$
\alpha(T S)=\alpha(T) \alpha(S)
$$

A similar proof shows that for all $S \in A$,

$$
\alpha(S T)=\alpha(S) \alpha(T)=\alpha(T S)
$$

Thus $\alpha(S T-T S)=0$ for all $S \in A$ and all $\alpha \in P_{A}$ with $\alpha(K)=\{0\}$. Therefore T commutes with A modulo K, i.e. the natural quotient map of A onto A / K maps T into the center of A / K. Then by [5 , Exercise 7, p. 259], $T \in \mathfrak{I}_{K}$.

§ 3. The nonspatial from of the $\boldsymbol{\eta}$ function

In [4], A. Brown and C. Pearcy define a function η on the von Neumann algebra $A=B(\mathfrak{y})$ relative to the ideal K of compact operators by the formula

$$
\begin{equation*}
\eta(T)=\inf _{P \in \theta_{K}}(\sup \{\|T \xi-(T \xi, \xi) \xi\|: \xi \in \mathfrak{H},\|\xi\|=1, P \xi=0\}) \tag{1}
\end{equation*}
$$

If $\xi \in \mathfrak{G},\|\xi\|=1$, then let ω_{ξ} be the pure state of $B(H)$ given by $\omega_{\xi}(T)=(T \xi, \xi)$. Observe that

$$
\|T \xi-(T \xi, \xi) \xi\|^{2}=\omega_{\xi}\left(T^{*} T\right)-\left|\omega_{\xi}(T)\right|^{2}
$$

In this case, $\left\{\omega_{\xi}: \xi \in H,\|\xi\|=1\right\}$ is exactly the set of pure states α of A with the property that $\alpha(K) \neq\{0\}$. If $\alpha \in P_{A}$ and $P \in \theta_{K}$, then we use the notations
(2) $\gamma(\alpha, T)=\left(\alpha\left(T^{*} T\right)-|\alpha(T)|^{2}\right)^{1 / 2} \quad(T \in A), \quad \Delta(P)=\left\{\alpha \in P_{A}: \alpha(K) \neq\{0\}, \alpha(P)=0\right\}$.

Recall from the Introduction that $\Delta(P)$ is nonempty. With the notation above the formula in (1) takes the form

$$
\begin{equation*}
\eta(T)=\inf _{P \in \theta_{K}}(\sup \{\gamma(\alpha, T): \alpha \in \Delta(P)\}) \tag{3}
\end{equation*}
$$

Now θ_{K} is an upward directed set. For a fixed $T \in A$, the net

$$
P \rightarrow \sup \{\gamma(\alpha, T): \alpha \in \Delta(P)\}
$$

is decreasing on θ_{K}. Thus,

$$
\eta(T)=\lim _{P \in \theta_{K}}(\sup \{\gamma(\alpha, T): \alpha \in \Delta(P)\})
$$

In general, if A is a von Neumann algebra and K is a closed ideal of A, then the definitions in (2) and (3) make sense. In particular, (3) is a generalized nonspatial expression of the useful η function of Brown and Pearcy. At times, in order to indicate the dependence of the function η on the ideal K, we write η_{K} in place of η. In this § we derive the elementary properties of the function η, while in the next §, we show that $\eta_{K}(T)$ measures the distance of an operator $T \in A$ from the thin operators relative to K.

Since for any $\alpha \in P_{A}$ we have $\gamma(\alpha, T)^{2} \leqq \alpha\left(T^{*} T\right) \leqq\|T\|^{2}$, it follows that

$$
\begin{equation*}
\eta(T) \leqq\|T\| \quad(T \in A) \tag{3.1}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
T \rightarrow \eta(T) \text { is a seminorm on } A \tag{3.2}
\end{equation*}
$$

That $\eta(\lambda T)=|\lambda| \eta(T), T \in A, \lambda$ a scalar, is obvious. Since α is a positive functional on A, we have

$$
\begin{equation*}
\alpha\left((C+B)^{*}(C+B)\right)^{1 / 2} \leqq \alpha\left(C^{*} C\right)^{1 / 2}+\alpha\left(B^{*} B\right)^{1 / 2} \tag{4}
\end{equation*}
$$

for all $C, B \in A$. Also, note that

$$
\gamma(\alpha, T)=\alpha\left(\left(T^{*}-\alpha \overline{(T)} I\right)(T-\alpha(T) I)\right)^{1 / 2}
$$

Thus, setting $C=T-\alpha(T) I$ and $B=S-\alpha(S) I$ in (4), we have $\gamma(\alpha, T+S) \leqq \gamma(\alpha, T)+$ $+\gamma(\alpha, S)$. Therefore,

$$
\sup _{\alpha \in \Delta(P)} \gamma(\alpha, T+S) \leqq\left(\sup _{\alpha \in \Delta(P)} \gamma(\alpha, T)+\sup _{\alpha \in \Delta(P)} \gamma(\alpha, S)\right) .
$$

Taking limits over $P \in \theta_{K}$ we have $\eta(T+S) \leqq \eta(T)+\eta(S)$.

$$
\begin{equation*}
\text { If } T \in A \text { and } S \in K \text {, then } \eta(T+S)=\eta(T) \tag{3.3}
\end{equation*}
$$

To prove (3.3) first observe that $\eta(P)=0$ whenever $P \in \theta_{K}$. Since η is a seminorm, it follows that if L is any finite linear combination of projections in θ_{K}, then $\eta(L)=0$.

Now assume that $S \in K$. Let $\varepsilon>0$ be arbitrary. Choose L, a finite linear combination of projections in θ_{K} such that $\|S-L\|<\varepsilon$. Then

$$
\eta(S)=|\eta(S)-\eta(L)| \leqq \eta(S-L) \leqq\|S-L\|<\varepsilon .
$$

Thus, $\eta(S)=0$. Then $\eta(T)-\eta(S) \leqq \eta(T+S) \leqq \eta(T)+\eta(S)=\eta(T)$.

$$
\begin{equation*}
\eta(T+X)=\eta(T) \quad(T \in A, X \in Z) \tag{3.4}
\end{equation*}
$$

To prove (3.4), assume that $\alpha \in P_{A}, T \in A$, and $X \in Z$. Form the irreducible representation $\left(\Phi_{a}, \mathfrak{H}_{a}\right)$, and choose $\xi \in \mathfrak{H}_{a}\|\xi\|=1$, such that

$$
\alpha(S)=\left\langle\Phi_{\alpha}(S) \xi, \xi\right\rangle \quad(S \in A)
$$

Then $\Phi_{\alpha}(X)$ is the scalar $\alpha(X)$ times the identity operator on H_{α}. Therefore

$$
\alpha(T X)=\left\langle\Phi_{\alpha}(T) \Phi_{\alpha}(X) \xi, \xi\right\rangle=\alpha(X)\left\langle\Phi_{\alpha}(T) \xi, \xi\right\rangle=\alpha(X) \alpha(T)
$$

Thus,

$$
\begin{gathered}
\gamma(\alpha, T+X)^{2}=\alpha\left(\left(T^{*}+X^{*}\right)(T+X)\right)-|\alpha(T+X)|^{2}= \\
\left.=\alpha\left(T^{*} T\right)+\alpha \overline{\alpha(T)} \alpha(X)+\alpha(T) \overline{\alpha(X}\right)+|\alpha(X)|^{2}-(\overline{\alpha(T)+\alpha(X)})(\alpha(T)+\alpha(X))= \\
=\alpha\left(T^{*} T\right)-|\alpha(T)|^{2}=\gamma(\alpha, T)^{2}
\end{gathered}
$$

Therefore $\eta(T+X)=\eta(T)$.

§ 4. The distance from the thin operators

Throughout this \S, A is a von Neumann algebra and K is a closed ideal of A with the property that if $T \in A$ and $T K=\{0\}$, then $T=0$. When A is represented spatially, this property of K is equivalent to the property that K is weak operator dense in A. In this § we prove the following theorem.

Theorem 4.1. Let A and K be as above. Then

$$
\eta_{K}(T)=\lim _{P \in \theta_{K}} \sup \|T P-P T\|=d\left(T, \mathfrak{I}_{K}\right)
$$

The first equality in this statement generalizes a result of R. Douglas and C. Pearcy in [6], and the second equality is a conjecture of C. OlSEN [8. p. 572].

We prove Theorem 4.1 in several steps. The first of these, the next proposition, is a direct generalization of [6, Theorem 1].

Proposition 4.2. $\eta(T)=\lim _{P \in \theta_{K}} \sup \|P T(I-P)\|$.
Proof. Let μ equal the lim sup on the right hand side of the equality above. Fix $P \in \theta_{K}$. Then

$$
(I-P) T^{*} P T(I-P) \in K_{I-P}
$$

There exists $\beta \in P_{A}$ such that $\beta(I-P)=1$, and

$$
\begin{equation*}
\beta\left(T^{*} P T\right)=\beta\left((I-P) T^{*} P T(I-P)\right)=\|P T(I-P)\|^{2} \tag{1}
\end{equation*}
$$

Note that if $P T(I-P) \neq 0$, then $\beta(K) \neq\{0\}$. Also,

$$
\begin{equation*}
\beta\left(T^{*}(I-P) T\right)-|\beta(T)|^{2}=\beta\left(T^{*}(I-P) T\right)-|\beta((I-P) T)|^{2} \geqq 0 \tag{2}
\end{equation*}
$$

Adding (1) and (2) we have

$$
\gamma(\beta, T)^{2}=\beta\left(T^{*} T\right)-|\beta(T)|^{2} \geqq\|P T(I-P)\|^{2}
$$

Therefore,

$$
\sup \{\gamma(\alpha, T): \alpha \in \Delta(P)\} \geqq\|P T(I-P)\|
$$

Taking the lim sup over $P \in \theta_{K}$ on both sides of this inequality, it follows that $\eta(T) \geqq \mu$.
Conversely, let $\delta>0$ be arbitrary. Fix $P \in \theta_{K}$. We proceed to find $Q \in \theta_{K}$ such that $Q \geqq P$ and

$$
\|Q T(I-Q)\| \geqq \eta(T)-\delta
$$

Then this suffices to prove the inequality $\mu \geqq \eta(T)$.
Assume $\alpha \in \Delta(P)$ is such that

$$
\gamma\left(\alpha, T_{I-P}\right)>\eta\left(T_{I-P}\right)-\delta .
$$

Denote by α_{0} the restriction of α to A_{I-P}. Then α_{0} is a pure state of A_{I-P}. Form the irreducible representation $\left(\Phi_{\alpha_{0}}, \mathfrak{H}_{a_{0}}\right)$ of A_{I-P}. Choose $z \in \mathfrak{S}_{a_{0}},\|z\|=1$, such that

$$
\alpha_{0}(S)=\left\langle\Phi_{\alpha_{0}}(S) z, z\right\rangle \quad\left(S \in A_{I-P}\right)
$$

Let $w=\Phi_{\alpha_{0}}\left(T_{I-P}\right) z-\alpha_{0}\left(T_{I-P}\right) z$. Then

$$
\|w\|^{2}=\alpha_{0}\left((I-P) T^{*}(I-P) T(I-P)\right)-\left|\alpha_{0}\left(T_{I-P}\right)\right|^{2}=\gamma\left(\alpha, T_{I-P}\right)^{2}
$$

Observe that $w \perp z$ in $\mathfrak{S}_{a_{0}}$. Then by Kadison's Transitivity Theorem [5, Théorème 2.8.3] there exists a selfadjoint operator $S \in K_{I-P}$ such that $\Phi_{a_{0}}(S) z=0$ and $\Phi_{\alpha_{0}}(S) w=$ $=w$. Then $\Phi_{a_{0}}\left(S^{2}\right) z=0$ and $\Phi_{a_{0}}\left(S^{2}\right) w=w$. Using the spectral resolution of the identity for S^{2}, it is not difficult to show that there exists a sequence of projections $\left\{R_{n}\right\} \subset$ $\subset K_{I-P}$ such that

$$
\Phi_{\alpha_{0}}\left(R_{n}\right) z=0 \quad \text { and } \quad \Phi_{\alpha_{0}}\left(R_{n}\right) w \rightarrow w .
$$

Then

$$
\begin{gathered}
\alpha_{0}\left((I-P) T^{*} R_{n} T(I-P)\right)=\left\langle\Phi_{\alpha_{0}}\left((I-P) T^{*} R_{n} T(I-P)\right) z, z\right\rangle \\
=\left\|\Phi_{\alpha_{0}}\left(R_{n}\right) \Phi_{\alpha_{0}}\left(T_{I-P}\right) z\right\|^{2}=\left\|\Phi_{\alpha_{0}}\left(R_{n}\right)\left(\Phi_{\alpha_{0}}\left(T_{I-P}\right) z-\alpha_{0}\left(T_{I-P}\right) z\right)\right\|^{2} \\
=\left\|\Phi_{\alpha_{0}}\left(R_{n}\right) w\right\|^{2} \rightarrow\|w\|^{2} .
\end{gathered}
$$

Therefore

$$
\alpha_{0}\left((I-P) T^{*} R_{n} T(I-P)\right) \rightarrow\|w\|^{2}, \quad\|w\|^{2}=\gamma\left(\alpha, T_{I-P}\right)^{2}>\left(\eta\left(T_{I-P}\right)-\delta\right)^{2}
$$

Set $R=R_{m}$ for some m so large that

$$
\alpha_{0}\left((I-P) T^{*} R_{m} T(I-P)\right)>\left(\eta\left(T_{I-P}\right)-\delta\right)^{2}
$$

Now we have

$$
\alpha\left(T^{*} R T\right)=\alpha\left(\left(T^{*} R T\right)_{I-P}\right)=\alpha_{0}\left((I-P) T^{*} R T(I-P)\right) .
$$

Also, by (3.3), $\eta\left(T_{I-P}\right)=\eta(T)$. Thus $P R=R P=0$, and $\alpha\left(T^{*} R T\right)>(\eta(T)-\delta)^{2}$. Let $Q=P+R$. Then $Q \geqq P$ and $\alpha(Q)=0$. Finally

$$
\|Q T(I-Q)\|^{2} \geqq \alpha\left((I-Q) T^{*} Q T(I-Q)\right)=\alpha\left(T^{*} Q T\right) \geqq \alpha\left(T^{*} R T\right)>(\eta(T)-\delta)^{2}
$$

This completes the proof of the proposition.
If $T \in A, X \in Z$, and $J \in K$, then by (3.3) and (3.4) we have $\eta(T)=\eta(T+X+J)$. It follows using (3.1) that $\eta(T) \leqq\|T+X+J\|$. Therefore $\eta(T) \leqq d\left(T, \mathfrak{J}_{\mathrm{K}}\right)$.

We state this result as a lemma.
Lemma 4.3. $\eta_{K}(T) \leqq d\left(T, \mathfrak{J}_{K}\right)$.
Our aim now is to prove the reverse of the inequality appearing in Lemma 4.3. First we need a technical result. Let Γ be the set of all primitive ideals B of A such that $K \nsubseteq B$. For $B \in \Gamma$, let π_{B} be the natural quotient map of A onto A / B. We show that

$$
\begin{equation*}
\|S\|=\sup _{B \in \Gamma}\left\|\pi_{B}(S)\right\| \quad(S \in A) \tag{4.4}
\end{equation*}
$$

Let Φ be the map from A into the C^{*}-direct product of the C^{*}-algebras A / B, $B \in \Gamma$, given by

$$
\Phi(S)=\left(\pi_{B}(S)\right)_{B \in \Gamma}
$$

Since $\bigcap_{B \in \Gamma}(B \cap K)=\{0\}, \Phi$ is an isomorphism on K. If $S \in A$ and $S \neq 0$, then there exists $J \in K$ such that $S J \neq 0$. Then $\Phi(S J) \neq 0$, so $\Phi(S) \neq 0$. Thus Φ, is a *-isomorphism of A, and therefore, an isometry. This proves (4.4).

Lemma 4.5. $\eta_{K}(T) \geqq d\left(T, \mathfrak{J}_{K}\right)$.
Proof. Let Δ be the set of all $\alpha \in P_{A}$ such that $\alpha(K) \neq\{0\}$. Assume $T \in A$. We prove

$$
\begin{equation*}
\sup _{\alpha \in \Delta} \gamma(\alpha, T) \geqq d(T, Z) . \tag{1}
\end{equation*}
$$

Assume $\alpha \in \Delta$, and let $\left(\Phi_{\alpha}, \mathfrak{S}_{\alpha}\right)$ be the irreducible representation of A determined by α. If $\xi \in \mathfrak{S}_{\alpha},\|\xi\|=1$, let

$$
\omega_{\xi}(S)=\left\langle\Phi_{\alpha}(S) \xi, \xi\right\rangle \quad(S \in A) .
$$

By definition [9, p. 216], ω_{ξ} is representable by ($\Phi_{\alpha}, \mathfrak{W}_{z}$). Then by [9, Lemma (4.5.8)] the *-representation of A associated with ω_{ξ} is unitarily equivalent to $\left(\Phi_{\alpha}, \mathfrak{F}_{\alpha}\right)$. Thus, ω_{ξ} is a pure state of $A\left[9\right.$, Theorem (4.6.4)]. Since $\Phi_{a}(K)$ acts irreducibly on \mathfrak{S}_{a}, we have $\omega_{\xi} \in \Delta$. Let D_{T} and $D_{\alpha, T}$ be the inner derivations determined by T on A, and by $\Phi_{\alpha}(T)$ on $B\left(\mathfrak{S}_{\alpha}\right)$, respectively. Observe that

$$
\gamma\left(\omega_{\xi}, T\right)=\left\|\Phi_{\alpha}(T) \xi-\left\langle\Phi_{a}(T) \xi, \xi\right\rangle \xi\right\|
$$

Then by [2, Corollary 1.3]

$$
\begin{equation*}
\sup _{\xi \in H_{a}\| \| \|=1} \gamma\left(\omega_{\xi}, T\right)=\frac{1}{2}\left\|D_{a, T}\right\| . \tag{2}
\end{equation*}
$$

Let $\varepsilon>0$ be arbitrary. Choose $S \in A,\|S\|=1$, such that

$$
\|T S-S T\| \geqq\left\|D_{T}\right\|-\varepsilon
$$

Then by (2)

$$
\begin{equation*}
\sup _{\xi \in \mathfrak{S}_{a},\|\xi\|=1} \gamma\left(\omega_{\xi}, T\right) \geqq \frac{1}{2}\left\|\Phi_{a}(T S-S T)\right\| . \tag{3}
\end{equation*}
$$

Let B_{α} be the primitive ideal that is the kernel of Φ_{α}, and let π_{α} be the natural quotient map of A onto A / B_{a}. If $R \in A$, then $\left\|\Phi_{a}(R)\right\|=\left\|\pi_{\alpha}(R)\right\|$. Therefore by (4.4)

$$
\|R\|=\sup _{\alpha \in \Delta}\left\|\pi_{\alpha}(R)\right\|=\sup _{\alpha \in \Delta}\left\|\Phi_{\alpha}(R)\right\|
$$

Applying this equality to (3), we have

$$
\sup _{\alpha \in A} \gamma(\alpha, T) \geqq \frac{1}{2} \sup _{a \in \Delta}\left\|\Phi_{a}(T S-S T)\right\|=\frac{1}{2}\|T S-S T\| \geqq \frac{1}{2}\left(\left\|D_{T}\right\|-\varepsilon\right) .
$$

This proves that

$$
\sup _{a \in A} \gamma(\alpha, T) \geqq \frac{1}{2}\left\|D_{T}\right\| .
$$

Then by [12, Corollary, p. 148]

$$
\sup _{a \in \Delta} \gamma(\alpha, T) \geqq d(T, Z) .
$$

This completes the proof of (1).
Now fix $P \in \theta_{\mathrm{K}}$. The center of A_{I-P} is Z_{I-P}. Applying (1) to the algebra A_{I-P} and the element $(I-P) T(I-P)$, we have

$$
\sup _{\alpha \in \Delta(P)} \gamma(\alpha, T) \geqq d\left((I-P) T(I-P), Z_{I-P}\right)
$$

Also,

$$
\begin{aligned}
d\left((I-P) T(I-P), Z_{I-P}\right)= & \inf _{X \in Z}\|(I-P) T(I-P)+(I-P) X(I-P)\| \\
& \geqq d\left(T, \mathfrak{J}_{K}\right)
\end{aligned}
$$

Therefore, $\eta_{K}(T) \geqq d\left(T, \mathfrak{J}_{\mathbb{K}}\right)$.
By [8, Theorem 2]

$$
\lim _{P \in \theta_{R}} \sup \|P T(I-P)\|=\lim _{P \in \theta_{K}} \sup \|T P-P T\| .
$$

This equality in conjunction with Proposition 4.2, Lemma 4.3, and Lemma 4.5, proves Theorem 4.1.

Corollary 4.6. Let A and K be as before. Then the following are equivalent for $T \in A$:

$$
\lim _{P \in \theta_{\mathrm{K}}}\|T P-P T\|=0, \quad \eta_{K}(T)=0, \quad \text { and } \quad T \in \mathfrak{J}_{K} .
$$

Acknowledgement. The author acknowledges with thanks the many constructive suggestions made by the referee. These suggestions resulted in significant improvements in this paper.

References

[1] C. Apostol, C. Foias, and L. Zsidó, Some results on nonquasitriangular operators, Indiana Univ. Math. J., 22 (1973), 1151-1161.
[2] C. Apostol and L. Zsmó, Ideals in W^{*}-algebras and the function η of A. Brown and C. Pearcy, Rev. Roum. Math. Pures et Appl., 18 (1973), 1151-1170.
[3] B. Barnes, Closed one-sided ideals in certain B^{*}-algebras, Illinois J. Math., 15 (1971), 503514.
[4] A. Brown and C. Pearcy, Structure of commutators of operators, Annals of Math., 82 (1965), 112-127.
[5] J. Dixmier, Les C^{*}-algebres et leurs représentations, Gauthier-Villars (Paris, 1964).
[6] R. Douglas and C. Pearcy, A characterization of thin operators, Acta Sci. Math., 29 (1968), 295-297.
[7] C. Olsen, Thin operators in a von Neumann algebra, Acta Sci. Math., 35 (1973), 211-216, Correction, 36 (1974), 377-378.
[8] C. Olsen, A characterization of thin operators in a von Neumann algebra, Proc. Amer. Math. Soc., 39 (1973), 571—577.
[9] C. Rickart, General theory of Banach algebras, D. Van Nostrand, Inc. (Princeton, N. J., 1960).
[10] N. Salinas, On the η function of Brown and Pearcy and the numerical function of an operator, Canad. J. Math., 23 (1971), 565-578.
[11] F. Wright, A reduction for algebras of finite type, Annals of Math. (2) 60 (1954), 560-570.
[12] L. Zsidó, The norm of a derivation in a W^{*}-algebra, Proc. Amer. Math. Soc., 38 (1973), 147150.

THE UNIVERSITY OF OREGON, EUGENE, OREGON 97403
(Received July 29, 1975, revised March 20, 1976)

