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On thin operators relative to an ideal 
in a von Neumann algebra 

BRUCE A. BARNES 

§ 1. Introduction 

Let A be a von Neumann algebra, let Z be the center of A, and let K be a proper 
closed ideal of A with the property that if T£A and TK= {0}, then T= 0. The set of 
thin operators of A relative to K, denoted is the set of operators of the form X+T 
where X£Z and T£K. In the case where ,4=£(§) , the algebra of all bounded linear 
operators on a Hilbert space and K=K(£>), the closed ideal of compact operators 
in B(§>), this definition is due to R . DOUGLAS and C. PEARCY [6]. Let QK be the col-
lection of all projections in K. If P, Q£QK, then PVQ£6K. This follows from [11, 
Lemma 2.1] where the proof is given for the more general case when A is an AW-
algebra. Thus 9K is upward directed in the usual ordering of projections (P=Q 
means PQ = QP=P). In [6], DOUGLAS and PEARCY characterized the thin operators 
in B(§>) relative to K(§) as the set of all operators T that satisfy 

lim \\PTP-TP\\ = 0 
P € 8 K 

[6, Theorem 2]. Also in [6], they related the t] function of A. BROWN and C. PEARCY 
[4], [10], to 

lim sup \\PTP-TP\\. 
p € f l K 

They asked if there is a suitable extension of these results to the case where A is a 
general von Neumann algebra. 

In a series of papers [7], [8] C. OLSEN proved the Douglas—Pearcy characterization 
of the thin operators in the general case. Also, she conjectured [8, p. 572]. that the 
distance from TdA to 3K is given by 

lim sup || FTP-771 . 
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That this conjecture holds when A=B(g>) and K=K(£>) was proved by C. APOSTOL, 
C. FOJAS, and L. ZSIDÓ in [1]. 

In [2], for A a von Neumann algebra or a C*-factor, C. APOSTOL and L. ZSIDÓ. 
made a systematic study of the relationship between the distance of an element T£A 
from 3K , the t] function evaluated at T, and the norm of the inner derivation induced 
on A by T. 

In this paper we make three contributions to this circle of ideas. First, in § 2 we 
give a new proof that when A is a von Neumann algebra, then T£A is in 3K if and 
only if 

Jim \\TP—PT\\ = 0. 

We note in this connection that C. OLSEN proves [8, Theorem 2] that it is always the 
case that 

lim sup \\PTP-TP\\ = lim sup \\TP = PT\\. 
^ k pieK 

Our proof depends only on elementary arguments, and is considerably shorter than 
the proof by OLSEN in [7], [8]. Second, in § 3 we introduce a nonspatial form of the r¡ 
function of BROWN and PEARCY [4], [10]. The generalized function tj is defined on A 
using pure states of A, and is completely independent of any particular representation 
of A as a von Neumann algebra of operators on a Hilbert space. We prove some of 
the elementary, properties of t] in § 3. Then in § 4 we prove that rj (T) measures the 
distance from T to 3 K . This is a generalization of [1, Lemma 1.1]. Third, in § 4 we 
prove the conjecture of C. Olsen that the distance from T to 3K is given by 

lim sup \\TP—PT\\ = lim s u p | | P 7 ! P - R P | | . PíeK
 pzeK 

This result provides another proof of the Douglas—Pearcy—Olsen characterization 
o f 3 K . 

At this point we introduce some notation. Throughout this paper A, Z, K, 9K, 
and 3X will be as stated at the beginning of this §. The identity operator in A is denoted 
by /. If B is a subalgebra of A and P is a projection in A, then BP=PBP. Also, if 
TiA, then TP=PTP. The distance of T£A from a subspace Be A is denoted 
d(T, B), i.e., 

¿(J, J?) = inf{||:r+S||:Se2?}. 

The set of pure states of A is denoted PA. If <x£PA, then let 4>a be the irreducible 
representation determined by a, and let be the corresponding representation space. 
The inner product of vectors is denoted by (f , t). 

If P£0K, then let 

A(P) = {aePA: ot(K) ^ {0} and a ( P ) = 0}. 
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The collection A (P) plays an important role in later sections. Now we verify that 
¿(P) is nonempty. For assume that Pi8K. If AP=K, then A' ( / - i , ) = {0}. This 
implies that P—l, a contradiction. Thus, APczK and AP^K. By [5, Théorème 
2.9.5] there exists a maximal left ideal M of A such that APczM and K<tM. By 
this same result it follows that there exists a £ P A such that <y.(AP) = {(5\ and afA')^ {0}. 
Therefore a €zl(P). 

§ 2. The characterization of the thin operators 

In this § we give a new proof of the Douglas—Pearcy—Olsen characterization of 
[6], [7], [8]. The main tool in the proof is a result of the present author [3, Lemma 

6.1]. Before proving the characterization, we state this result. 

2.1. Assume CNCPA and TK£A, L^KSM. Then, there exists a sequence of non-
zero projections {En}cA such that for l ^ k ^ m , 

lim \\EnTkEn-a(Tk)£J = 0. 
n - CXJ 

This result is established in [3] using completely elementary arguments. 

Theorem 2.2. T£3K if and only if lim \\TP-PT\\ =0. 
^«ic 

Proof. If r^Sjj, then it is straigthforward to prove 

(1) • lim \\TP-PT\\ = 0; 

see the proof of [7, Proposition 2.1]. We prove the converse.. Assume that (1) 
holds. Let e > 0 be arbitrary. Choose Q<ZOA such that P<ZOA, P=Q implies that 
|| TP - PT\\ < e. Assume R£0k and R^ ( / - Q). Then R + Q £ DA and R+ Q ë Q. Thus, by 
the choice o f Q, we have \\T(R+Q)-{R + Q)T\\<b and \\TQ-QT\\<e. Therefore,. 
j| 77?-.R7 ,H2e. This proves 

(2) if R£6K and R S I-Q, then H T L R — < 2S. 

Let a be any pure state of A such that a (K) = {0}. Then a restricts to a pure state of 
AJ^Q. Let S be any operator in A. Consider the elements of AJ.q, T1=T1-Q, 
T2=SJ_Q, and T3=(TS)[-Q. Applying (2.1) to the operators TK£A,_Q, 
we have that there exists a sequence of nonzero projections {£"„} in Aj-q such that 
for ¿ = 1 , 2 , 3 

\\EnTkEn-x(.Tk)En\\ -0 as n - <*>. 

Note that since a ( 0 = 0 , we have A(RI^Q)=OI(R) for all R£A. Therefore, • 

(3) \\EnTE„-<x(T)En\\ - 0 , |i£„5£n-a(S)£„|! - 0, \\EnTSEn-a(TS)En\\ 0. 



268 B. A. Barnes 

Now EnKEn is a nonzero closed ideal in the von Neumann algebra EnAEa. Therefore 
for each n we can choose a nonzero projection Fn £ E„ KEn c K. Thus Fn^En^I—Q 
for each « s 1. It follows immediately from (2) that 

(4) \\TF„ — FnT\\ < 2e ( i t s 1). 

Since F„^En for all n, we have by (3) that 

<5) \\F„TFn—cc(T)Fn\\ — 0, ||FB5F„—a(S)FJ — 0, | |FBrSF„-a(re)FJ - 0. 

Now, 

| « ( 2 > ( S ) - a ( r S ) | - | | a ( r ) a ( 5 ) F „ - a ( r S ) F j S 

^ ||FnTSFn—a(TS)Fn\\ +1|Fn TSF„ - Fn TF„SFJ + || F„ TFnSFn - a ( 7 ) a ( S ) F J . 
The first and third terms of the sum on the right hand side of this inequality approach 
zero by (5). Also, 

| |Fnr5Fn-F„7FnSFJ = \\FnT(I-Fn)SFn\\ ^ \\FnT-TFn\\ ||S|| ^ 2e||S|| 

for all n s 1, by (4). Therefore, \<x (T) a (5) - a (TS) | < 2e|| 51|, and since e > p is arbitrary, 

a (75) = a ( 7 > ( S ) . 

A similar proof shows that for all S£A, 

a(ST) = <x(S)<x(T) = <x(TS). 

Thus a.(ST—TS)=0 for all S€A and all a£PA with ot(A') = {0}. Therefore Tcommu-
tes with A modulo K, i.e. the natural quotient map of A onto A/K maps T into the 
center of A/K. Then by [5, Exercise 7, p. 259], 

§ 3. The nonspatial from of the 17 function 

In [4], A. BROWN and C. PEARCY define a function rj on the von Neumann 
algebra A = B(§>) relative to the ideal AT of compact operators by the formula 

(1) f,(T) = inf (sup{||7?—(ri, № • Hill = 1, PS = 0}) 

If 5 l l ^ l l = 1, then let £04 be the pure state of B(H) given by coi(T)=(TS, f). Ob-
serve that 

\ \ n - ( n , £KII2 = a>;(T*T)-\cof(T)\\ 

In this case, {cô : ||£|| = 1} is exactly the set of pure states a of A with the pro-
perty that {0}. If a £PA and P£9K, then we use the notations 

(2) y(a, T) = (a(F*T) — |a(r)|2) l /2 (T^A), J(P)={«€PA : a(K) * {0}, a ( P ) = 0}. 
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Recall from the Introduction that A (P) is nonempty. With the notation above the 
formula in (1) takes the form 

(3) N(T) = inf (sup{y(a, T) : ol^A(P)}). pee K 

Now 9K is an upward directed set. For a fixed T£A, the net 

P — sup{y(a, T): a<=d(P)} 
is decreasing on 9K. Thus, 

n(T) = Urn (sup{7(a, T): J (/>)}). 

In general, if A is a von Neumann algebra and K is a closed ideal of A, then the 
definitions in (2) and (3) make sense. In particular, (3) is a generalized nonspatial 
expression of the useful q function of Brown and Pearcy. At times, in order to indi-
cate the dependence of the function rj on the ideal K, we write t]K in place of r\. In this 
§ we derive the elementary properties of the function t\, while in the next §, we show 
that rjK(T) measures the distance of an operator T£A from the thin operators rela-
tive to K. 

Since for any a£PA we have y(a, Tf^a{T*T)^\\T\\2, it follows that 

(3.1) R,(T) ^ | | n i (T£A). 
Next we show that 

(3.2) T--ri(T) is a seminorm on A. 

That rj(Ar) = |A|»j(r), T^A, I a scalar, is obvious. Since a is a positive functional on 
A, we have 

(4) a((C+B)*(C+B))112 a(C*C)1/2 + a(B*B)112, 

for all C, B£A. Also, note that 

y(<x, T) = a((r*-a7T)I)(T-oL(T)I)f\ 

Thus, setting C=77—a(7 ,)/and B=S-a(S)Iin (4), we have y(a, J) + 
+ y (a, S). Therefore, 

sup 7 (a, T+S) 5= ( sup y (a, T)+ sup y(a, S)). 
AZA(P) AIA(P) TTZHP) 

Taking limits over P£DK we have t](T+S)^ri(T)+ri(S). 

(3.3) If T£A and S£K, then rj(T+S) = t\(T). 

To prove (3.3) first observe that T](P)=0 whenever P£6K. Since JJ is a seminorm, 
it follows that if L is any finite linear combination of projections in 9K, then //(Z,)=0. 

4 A 
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Now assume that 5 6 K . Let e > 0 be arbitrary. Choose L, a finite linear combination 
of projections in 8K such that ||S—Z,||«=e. Then 

q(S) = \ri(S)-r,(L)\ S r,(S-L) ||£-L|| < e. 

Thus, I/(S)=0. Then r](T)-r,(S)^rl(T+ S)^t](T)+ti(S)=ri(T). 

(3.4) n(T+X) = r,(T) {T£A,XZZ). 

To prove (3.4), assume that a € P A , T£A, and X£Z. Form the irreducible represen-
tation §„), and choose <!;€$„ ||£|| = 1, such that 

« ( S ) = 0 ( S M ) . 

Then (X) is the scalar ol(X) times the identity operator on HA. Therefore 

a(TX) = (*a(T)*a(X)Z, 0 = «(*)<<№)& 0 = a(X)a(T). 
Thus, 

y(a, T+Xf = c^+^Xr-l-jr))-!<*(?> X)l2 = 

= a ( r r ) + a l r ) a ( Z ) + a ( r ) a l * ) + | a ( Z ) | 2 - ( a ( J ) + a(Z))(a(r) + a W ) - . 

= d(T*T) — \a(T)\2 = y(a, J)2. 

Therefore II(T+X) = T](T). 

§ 4. The distance from the thin operators 

Throughout this §, A is a von Neumann algebra and A" is a closed ideal of A with 
the property that if T£A and TK= {0}, then 7 = 0 . When A is represented spatially, 
this property of K is equivalent to the property that K is weak operator dense in A. 
In this § we prove the following theorem. 

Theorem 4.1. Let A and K be as above. Then 

r,K(T) = lim sup \\TP-PT\\ = d(T, 3X). 

The first equality in this statement generalizes a result of R. DOUGLAS and C. PEARCY 
in [6], and the second equality is a conjecture of C. OLSEN [8. p. 572]. 

We prove Theorem 4.1 in several steps. The first of these, the next proposition, 
is a direct generalization of [6, Theorem 1]. 

Propos i t ion 4.2. rj(T)= lim sup | |P7( / -P) | | . 
pteK 

Proof. Let n equal the lim sup on the right hand side of the equality above. 
Fix P£0X . Then 

(I-P)T*PT(I-P)£KJ-P. 
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There exists P£PA such that P(I-P) = 1, and 

(1) 0(T*PT) = P((I-P)T*PT(I-P)) = \\PT(I-P)\\2. 

Note that if PT(I-P) ^ 0, then P (K) # {0}. Also, 

(2) P(T*(I-P)T)-\P(T)\* = p(T*(I-P)T)-\p((I-P)T)\*S;0. 

Adding (1) and (2) we have 

y(P, Tf = P(T*T)-\P(T)\2 s \\PT(I-PW. 
Therefore, 

s u p { y ( a , T) : A£A(P)} ^ \\PT(I-P)\\. 

Taking the lim sup over P£ 6K on both sides of this inequality, it follows that t] (T) ë/i. 
Conversely, let ¿ > 0 be arbitrary. Fix P£0K. We proceed to find Q£9K such that 

g S - P a n d 
n e r ( / - f i ) i i 

Then this suffices to prove the inequality n^r}(T). 
Assume a€ à(P) is such that 

y(ct,TI_P)^r,(TI_P)-ô. 

Denote by a0 the restriction of a to Aj_P. Then a0 is a pure state of AI_P. Form the 
irreducible representation S^) of A,_P. Choose ||z[] = 1, such that 

«O(S) = (*JS)z, z> (SÇ^X-P). 

Let W — _P)Z—(X0(Ti_p)Z. Then 

IMI« = X0((I—P)T*(I—P)T(I—P)) — \(X0(Ti_p)\2 = Tj_Py. 

Observe that w±z in Then by Kadison's Transitivity Theorem [5, Théorème 
2.8.3] there exists a selfadjoint operator S^K^p such that <Pao(S)z=0 and 4>aJS)w= 
=w. Then $ a o (S 4 )z=0 and (¡>„JS'z)w=w. Using the spectral resolution of the iden-
tity for S2, it is not difficult to show that there exists a sequence of projections {-/?„} c 
cATj^p such that 

4>xa(Rn)z = 0 and <Pao(Kn)w -
Then 

x0((I-P)T*RnT(I-P)) = (<Pao((I—P)T*RnT(I—Pj)z, z) 

= = ||^„WK0(r i_P)z-a0(rJ_P)z)||2 

= l l<W.)HI 2 - IIHI2-
Therefore 

«0((I-P)T*RNT(I-P)) - ||W||2, \\WR = Y(OI,TI_PR^(R,(TI.P)-ÔY. 

Set R=Rm for some m so large that 

A0((I-P)T*RMT(I~P)) > {R,(TJ_P)-ÔY. 

4« 
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Now we have 
a (T*RT) = x((T*RT)i_P) = a 0((I-P)T*RT(I-P)). 

Also, by (3.3), ti(TI_P)=ri(r). Thus PR=RP=0, and а(Т*РТ)=-(ц(Т)-5)2. Let 
Q=P+R. Then QsP and a ( 0 = 0 . Finally 

\\QT(I-QW S <x((I-Q)T*QT(I-Q)) = <x(T*QT) ё a(T*RT) > (r,(T)-5y. 

This completes the proof of the proposition. 
If T^A, X£Z, and J£K, then by (3.3) and (3.4) we have Q(T)=TI(T+X+J). 

It follows using (3.1) that п(Т)ЩТ+Х+7\\. Therefore TJ(T)Sd(T, 3K). 
We state this result as a lemma. 

Lemma 4.3. t]K(T)Sd(T, 3K). 
Our aim now is to prove the reverse of the inequality appearing in Lemma 4.3. 

First we need a technical result. Let Г be the set of all primitive ideals В of A such 
that K<t B. For В£Г, let nB be the natural quotient map of A onto A/B. We show that 

(4.4) l|S|| = sup||jt„(5)|| (S€i4). 
BiT 

Let Ф be the map from A into the C*-direct product of the C*-algebras A/B, 
В£Г, given by 

Since П (ВПК) — {0}, Ф is an isomorphism on K. If S£A and 5 ^ 0 , then there exists 

J£K such that SJ^O. Then Ф(57)^0, so 4>(S)?*0. Thus Ф, is a ^isomorphism of 
A, and therefore, an isometry. This proves (4.4). 

Lemma 4.5. r\K(T)*=d(T, 3K). 

Proof. Let A be the set of all X£PA such that ol(K)^{0}. Assume T£A. We 
prove 

(1) sup у (a, T) s d(T, Z). 

Assume a£ J, and let (Фа, §a) be the irreducible representation of A determined by a. 
I f € e s „ | | f l | = l , le t 

= О (SZA). 

By definition [9, p. 216], co^ is representable by (Фа, Then by [9, Lemma (4.5.8)] the 
"•-representation of A associated with a>{ is unitarily equivalent to (Фа, §>a). Thus, 
co( is a pure state of A [9, Theorem (4.6.4)]. Since Фа(К') acts irreducibly on § a , 
we have Let DT and Da>T be the inner derivations determined by T on A, 
and by Фа(Т) on j5(§a), respectively. Observe that 

у(со(,Т) = \\Фл(ТК-(Фа(ТК, 
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(2) sup y((Ot,T) = -\\Da>T\\ 

Then by [2, Corollary 1.3] 

y((os,T)= 1 
{€H„. II{H=1 

Let e > 0 be arbitrary. Choose S£A, ||S|| = 1, such that 

UTS-Sri] S\\DT\\-e. 
Then by (2) 

(3) sup Y (CO{, T) s 1 | |«fA(RA-sr)| | . 
i€«..ll{ll=l Z 

Let Ba be the primitive ideal that is the kernel of <PX, and let NA be the natural quotient 
map of A onto A/BIf R£A, then |1<J>,CR)II = IKWII- Therefore by (4.4) 

PII=sup||jiaOR)ll = sup||<M*)ll-a£J aCJ 

Applying this equality to (3), we have 

sup y (a, 7 ) £ sup ||<Pa(TS—5J)|| = 1 | | 7 S - S r | | £ l ( | |Z> r | | -e) . 
NIA A(A Z 

This proves that 

supy(a , T)^\\\DT\\ 

Then by [12, Corollary, p. 148] 

sup y (a, T) S d(T, Z). 
a (A 

This completes the proof of (1). 
Now fix P£dK. The center of A,_P is Z,_P . Applying (1) to the algebra A,^P 

and the element (I-P)T(I-P), we have 

sup y (a, 7 ) ^ d((I-P)T(I-P), Z,_P). 
« E MP) 

Also, 
d{(I-P)T(l-P), ZJ_P) = inf \\(/-P)T(I-P)+(I-P)X(l-P)\\ 

3K). 
Therefore, tiK(T)^d(T, 3K). 

By [8, Theorem 2] 

lim sup \\PT(1-P)\\ = lim sup \\TP—PT\\. 

This equality in conjunction with Proposition 4.2, Lemma 4.3, and Lemma 4.5, 
proves Theorem 4.1. 
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Corollary 4.6. Let A and K be as before. Then the following are equivalent 
for T£A: 

lim \\TP-PT\\ = 0, t]K(T) = 0, and Ti 3 K . 

Acknowledgement. The author acknowledges with thanks the many constructive 
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