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On thin operators relative to an ideal
in a von Neumann algebra

BRUCE A. BARNES

§ 1. Introduction

Let 4 be a von Neumann algebra, let Z be the center of 4, and let X be a proper
closed ideal of 4 with the property that if 7€ 4 and TK= {0}, then T=0. The set of
thin operators of A relative to K, denoted 3y, is the set of operators of the form X+ T
where X¢€Z and T€K. In the case where 4= B(9), the algebra of all bounded linear
operators on a Hilbert space §, and K=K(9), the closed ideal of compact operators
in B(9), this definition is due to R. DouGLAs and C. PEARCY [6]. Let 8, be the col-
lection of all projections in K. If P, Q€6g, then PV Q¢€0¢. This follows from [11,
Lemma 2.1] where the proof is given for the more general case when A4 is an AW *-
algebra. Thus 6y is upward directed in the usual ordering of projections (P=Q
means PQ=0QP=P). In [6], DoucLAS and PEARCY characterized the thin operators
in B(9) relative to K(9) as the set of all operators T that satisfy

lim |PTP~TP| =0
Pcoy

[6, Theorem 2]. Also in [6], they related the 5 function of A. BRowN and C. PEARCY
[4], [10}, to

lim sup ||PTP—TP|.

Peog .

They asked if there is a suitable extension of these results to the case where 4 is a
general von Neumann algebra. ‘ _

In aseries of papers[7],[8] C. OLsEN proved the Douglas—Pearcy characterization
of the thin operators in the general case. Also, she conjectured {8, p. 572]. that the
distance from T€ A4 to I is given by

glerpx sup | PTP—TPj.
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That this conjecture holds when 4=B($) and K=K ($) was proved by C. APOSTOL,
C. Fouay, and L. ZsiD6 in [1].

In [2], for 4 a von Neumann algebra or a C *-factor, C. AposroL and L. Zsip6
made a systematic study of the relationship between the distance of an element T€ 4
from 3, the n function evaluated at 7, and the norm of the inner derivation induced.
onAbyT.

In this paper we make three contributions to this circle of ideas. First, in § 2 we
give a new proof that when A4 is a von Neumann algebra, then 7€ 4 is in 3, if and
only if

lim |TP—PT| = 0.
Peby

We note in this connection that C. OLSEN proves [8, Theorem 2] that it is always the
case that
}!lerglx sup |PTP—-TP|| = p‘é‘& sup |TP = PT|.

Our proof depends only on elementary arguments, and is considerably shorter than
the proof by OLSEN in [7], [8]. Second, in § 3 we introduce a nonspatial form of the n
function of BROWN and PEARcY [4], [10]. The generalized function # is defined on A
using pure states of 4, and is completely independent of any particular representation
of 4 as a von Neumann algebra of operators on a Hilbert space. We prove some of
the elementary. properties of # in § 3. Then in § 4 we prove that n(7T) measures the
distance from T to 3. This is a generalization of [1, Lemma 1.1]. Third, in § 4 we
prove the conjecture of C. Olsen that the distance from T to Jg is given by

Phe%ic sup |[TP—PT|| =1]1Erglxsup |PTP—TP}.

This result provides another proof of the Douglas—Pearcy—Olsen characterization
-of 3. .

At this point we introduce some notation. Throughout this paper 4, Z, K, 0,
and J; will be as stated at the beginning of this §. The identity operator in A4 is denoted
by 1. If B is a subalgebra of 4 and P is a projection in A4, then B,=PBP. Also, if
T€A, then Tp=PTP. The distance of T€A4 from a subspace BC A is denoted
d(T, B), i.e.,

. d(T, B) = inf {|T+ S| : S¢B}.

The set of pure states of A4 is denoted P,. If a€ P, then let @, be the irreducible
representation determined by «, and let , be the corresponding representation space.
The inner product of vectors &, 7€ 9, is denoted by (¢, ).

If POy, then let

A(P) = {a€Py: a(K) = {0} and «(P) = 0}.
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The collection 4(P) plays. an important role in later sections. Now we verify that.
A(P) is nonempty. For assume that PeOg. If AP=K, then K(I—P)={0}. This.
implies that P=1I, a contradiction. Thus, APCK and AP=K. By [5, Théoréme
2.9.5] there exists a maximal left ideal M of A4 such that APC M and K¢ M. By
this same result it follows that there exists « € P, such that oz(AP) {0} and a(K) # {0}..
Therefore a€ 4 (P). :

§ 2. The characterization of the thin operators

In this § we give a new proof of the Douglas—Pearcy—Olsen characterization of’
3k [6], [7], [8]. The main tool in the proof is a result of the present author [3, Lemma
6.1]. Before proving the characterization, we state this result.

2.1. Assume a€P, and T, €4, 1=k=m. Then there exists a sequence of non-
zero projections {E,}C A such that for 1=k=m,

lim | E, T, E, —o(T) E,Jl = 0.
This result is established in [3] using completely elementary arguments.

Theorem 2.2. T€3, if and only if lim |TP—PT| =0.
. Peoy

v

Proof. If T€3J, then it is straigthforward to prove
o - e 1!?3],( |TP—PT]| = 0;

see the proof of [7, Proposition 2.1]. We prove the converse. Assume that (1)
holds. Let ¢=0 be arbitrary. Choose Q€0, such that Pcf,, P=Q implies that
|TP— PT||<e¢. Assume R€0; and R=(J— Q). Then R+ Q€0 and R+-Q=Q. Thus, by
the choice of Q, we have |T(R+Q)—(R+Q)T||<¢ and |TQ—QT | <e. Therefore,.
TR— RT{ <2e. This proves

) if Re€B; and R=171-Q, then |[TR—RT| < 2.

Let o be any pure state of 4 such that «(K)={0}. Then « restricts to'a pure state of
Aj_g. Let S be any operator in 4. Consider the elements of 4;_,, Ty=T;_,.
T,=S;_¢, and T;=(TS);_o. Applying (2.1) to the operators T €A4;_ 4, 1=k=3,
we have that there exists a sequence of nonzero projections {E,} in 4,_, such that
for k 1,2,3

IE,TLE,—a(TYE] ~0 as n— .

Note that since ¢(Q)=0, we have a(R;_p)=ua(R) for all R¢A. Therefore, o
(3) [IE,,TE,,—O((T)E,,” g 0’ ”E,SE,,—OC(S)E"“ - 05 ”En TSE,,—&(TS)E"” - 0.
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Now E,KE, is a nonzero closed ideal in the von Neumann algebra E, AE,. Therefore
for each n we can choose a nonzero projection F,€E,KE,CK. Thus F,sE,=[-Q
for each n=1. It follows immediately from (2) that

) \TF,—F,T| < 2¢ (nz=1)).
Since F,=E, for all n, we have by (3) that

(5 |F,TF,—«(T)F,| -0, |F,SF,—a(S)F,|—+0, [F,TSF,—a(TS)F,| —0.
Now,
[o(T)a(S) —a(TS)| = (T (S)F, —a(TS)F,)| =

= |F,TSF,—a(TS)F,|| +||F,TSF,— F,TF,SF,| +||F,TF,SF,—a(T)x(S)F,|.

The first and third terms of the sum on the right hand side of this inequality abproach
zero by (5). Also, '

|F.TSF, — F,TF,SF,|| = |[F,T(I- F)SF,|| = |F,T-TFJ||S| = 2&{ S|
for all n=1, by (4). Therefore, |a(T)a(S) —a(TS)|<2¢| S|, and since e=>0 is arbitrary,
oa(TS) = a(T)a(S).
.A. similar proof shows that for all Se4,
a(ST) = a(S)a(T) = «(TS).

Thus (ST —T7S)=0 for all S€4 and all a€ P, with a(K)={0}. Therefore T commu-
tes with 4 modulo X, i.e. the natural quotient map of 4 onto 4/K maps T into the
center of A/K. Then by [5, Exercise 7, p. 259], T€3¢.

§ 3. The nonspatial from of the y function

In [4], A. BrROwN and C. PEARCY define a function # on the von Neumann
algebra 4= B(9) relative to the ideal K of compact operators by the formula

Q) n(T) =,,iEnofK(SUP{IIT5*(T€, &)¢ll: &9, Il =1, PE = 0})

If £€9, £ =1, then let w, be the pure state of B(H) given by w(T)=(T¢, £). Ob-
serve that

ITE —(TE, OEI? = 0 (T*T) —|w(T)|*

In this case, {w,: £€H, |&] =1} is exactly the set of pure states & of 4 with the pro-
perty that a(K) > {0}. If ac P, and P€0y, then we use the notations

Q) v T)=(T*"T)~(T)F)? (TeA), A(P)={a€P,: a(K)5> {0}, «(P) = 0}.
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Recall from the Introduction that A(P) is nonempty With the notation above the
formula in (1) takes the form

©) n(T) = jof (sup{y(x, T7): ac4(P)}).
Now 6 is an upward directed set. For a fixed T €A, the net

P —sup{y(a, T) : a€A(P)}
is decreasing on 6. Thus,

n(T) = }}gg}( (sup {y(@, T) : a€A(P)}).

In general, if 4 is a von Neumann algebra and K is a closed ideal of 4, then the
definitions in (2) and (3) make sense. In particular, (3) is a generalized nonspatial
expression of the useful # function of Brown and Pearcy. At times, in order to indi-
cate the dependence of the function 5 on the ideal K, we write ng in place of #. In this
§ we derive the elementary properties of the function #, while in the next §, we show
that n, (T) measures the distance of an operator T¢ 4 from the thin operators rela-
tive to K.

Since for any «€ P, we have y(a, TR =a(T*T)=| T3 it follows that

3.1 n(T) =|T| (TcA).
Next we show that

3.2) T—-nT) isa sem_inorm on A.

That n(AT)=|A{n(T), T€A, /. a scalar, is obvious. Since « is a positive functional on
A, we have

@ a((C+By*(C+B))2 = a(C*C)2 +a(B*B)'",
for all C, B€ A. Also, note that
(o, T) = a((T* —a(T))(T—a(T) D).

Thus, setting C=T—a(T)I and B=S—a(S)Iin (4), we have y(x, T+ S)<y(oz )+
+ 7(e, S). Therefore,

su(p)y(a, T+8) = ( sup y (e, T)+ sup 7(a, S)).
a€ AP

Taking limits over P€0; we have n(T+ S)=n(T)+n(S).
(3.3) If T€¢A and S€K, then n(T+S)=n(T).

To prove (3.3) first observe that #(P)=0 whenever P€0. Since 7 is a seminorm,
it follows that if L is any finite linear combination of projections in 8, then n(L)=0.

4A
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Now assume that S€K. Let ¢=0 be arbitrary. Choose L, a finite linear combination
of projections in 6 such that | S—L||<e¢. Then

n(S) = (S)—nL) =n(S-L) = |S-L| <e.
Thus, #(§)=0. Then n(T)—n(S)=n(T+ S)=n(T)+n(S)=n(T).
(3.9 n(T+X) =n(T) (T€4d, XcZ).

To prove (3.4), assume that a€P,, T€A, and X€Z. Form the irreducible represen-
tation (@,, 9,), and choose £€9, | €] =1, such that

2(8) = (D,(8)¢, &) (S A).
Then &,(X) is the scalar a(X) times the identity operator on H,. Therefore
A(TX) = (@ (T) P, (X)¢, &) = ¢(X)(Po(T)E, &) = a(X)a(T).
P, T+X)? = ((T*+ X*)T+ X))~ |a(T+X) 2 =
= a(T* T)+a(T)a(X)+a(T)a(X) + [t (X) P — (2(T) +2 (X)) (2(T) + (X)) =
= (T T)— |a(T)F = (e, T)™
Therefore n(T+ X)=n(T).

Thus,

§ 4. The distance from the thin operators

Throughout this §, A4 is a von Neumann algebra and X is a closed ideal of 4 with
the property that if 7¢ 4 and TK= {0}, then T=0. When 4 is represented spatially,
this property of K is equivalent to the property that X is weak operator dense in A.
In this § we prove the following theorem.

Theorem 4.1. Let A and K be as above. Then
nx(T) = lim sup |TP—PT| = d(T, 3y).
PEog
The first equality in this statement generalizes a result of R. DouGLAs and C. PeEARCY
in [6], and the second equality is a conjecture of C. OLSEN [8. p. 572].

We prove Theorem 4.1 in several steps. The first of these, the next proposition,
is a direct generalization of [6, Theorem 1].

Proposition 4.2 n(T)=}!irgx sup IIPT(I—P)ll.
€0x
Proof. Let u equal the lim sup on the right hand side of the equality above.

Fix P€0y. Then
. (U-P)T*PT(I—-P)EK,_p.
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The;e exists f€ P, such that (/—P)=1, and
) B(T*PT) = B((I-P)T*PT(I-P)) = | PT(I-P)|.
Note that if PT(I— P)=0, then $(K)= {0}. Also,

@ B(T* (1~ P)T)~ |B(T)[* = B(T*(I-P)T)~|B((I~P)T)| = 0.
Adding (1) and (2) we have
7B, TY* = B(T*T)—|B(T) = |PT(I—P)]*
Therefore,
sup {y(, T) : a€ 4(P)} = | PT(I—P)}.

Taking the lim sup over P€ 6, on both sides of this inequality, it follows that n (T)=p.

Conversely, let § >0 be arbitrary. Fix Pc0,. We proceed to find Q€0 such that
Q=P and

1eT(I-Q) = n(T)—0o.

Then this suffices to prove the inequality u=#n (7).

Assume o€ A(P) is such that

(o, Ty_p) = n(Ty_p)—06.

Denote by o, the restriction of o to A;_p. Then a, is a pure state of 4;_p. Form the
irreducible representation ((D,o, 5,0) of A4;_p. Choose 265,0, izl=1, such that
%(S) = (Po(S)2, 2) (SEA;_p).

Let w=®,(T;-p)z—0y(T;_p)z. Then

Iwl? = “o((I—P)T*(I—P)T(I—P))—|°‘0(T1—P)|2 = y(a, T_p)>
Observe that w1z in §, . Then by Kadison’s Transitivity Theorem [5, Théoréme
2.8.3] there exists a selfadjoint operator S€ K, _p such that &, (S)z Oand @, (S)w—
=w. Then @, (5*)z=0 and &, (S)w=w. Using the spectral resolution of the iden-
tity for S%, it 1s not difficult to show that there exists a sequence of projections {R,}C

C K, _p such that
P, (R)z=0 and &, (R)w —w.

Then
o2 ((I—P)T*R,T(I-P)) = (®,,((I—P)T*R,T(I-P))z, 2)
= “(pao(Rn) ¢ao(TI —P)ZHZ = l |¢ao(Rn)((pao(TI—P)z - aO(TI-P)Z)l |2
= || @y (RIWII? —~ [[W]|%
Therefore

o%((I~P)T*R,T(I-P)) — |wl2, |IWli* = y(a, T7_p)* = (n(T;_p) —5)*.
Set R=R,, for some m so large that

oo((I~P)T*R,, T(I—P)) > ((T;_p) — )

4*
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Now we have :
a(T*RT) = a((T*RT);_p) = a((I~P)T*RT(I-P)).
Also, by (3.3), 7(T;-p)=n(T). Thus PR=RP=0, and a(T*RT)> (n(T)—5)% Let
Q=P+R. Then Q=P and a(Q)=0. Finally
IQT(I-Q)|I = a((I-QT*QT(I-Q)) = «(T*QT) = a(T*RT) > (n(T) -0}~
This completes the proof of the proposition.
If T¢€Ad, X¢Z, and J€K, then by (3.3) and (3.4) we have n(T)=n(T+X+J).

1t follows using (3.1) that q(T)=||T+X+J||. Therefore n(T)=d(T, Ig).
We state this result as a lemma.

Lemma 4.3. ng(T)=d(T, 3g).

Our aim now is to prove the reverse of the inequality appearing in Lemma 4.3.
First we need a technical result. Let I" be the set of all primitive ideals B of 4 such
that K¢ B. For BET, let ng be the natural quotient map of 4 onto 4/B. We show that

@4 IS|l = sup [ms(S)I  (S€A).
Ber

Let @ be the map from A into the C*-direct product of the C*-algebras 4/B,
BeT, given by
Q(S) = (TCB(S))BET'

Since () (BNK)={0}, @ is anisomorphism on K. If S¢4 and S0, then there exists
Ber

JEK such that SJ0. Then ®(SJ)=0, so $(S5)=0. Thus &, is a *-isomorphism of

A, and therefore, an isometry. This proves (4.4).

Lemma 4.5. ng(T)=d(T, 3y).

Proof. Let 4 be the set of all € P, such that «(K)={0}. Assume Tc€A4. We
prove

) supy(e, T) = d(T, 2).
acd

Assume a€4, and let (&,, $,) be the irreducible representation of 4 determined by a.
If £€9,, [El=1, let
W (S) = (P (S)¢, &) (SeA).

By definition [9, p. 216}, w, is representable by (®,, $,). Then by [9, Lemma (4.5.8)] the
*-representation of A associated with w, is unitarily equivalent to (&,, $,). Thus,
w, is a pure state of 4 [9, Theorem (4.6.4)]. Since &,(K) acts irreducibly on $,,
we have w,€4. Let Dy and D, r be the inner derivations determined by T on 4,
and by 9,(T) on B(9,), respectively. Observe that

Y@y, T) = [|D,(T)E ~(2.(T)¢E, EHEN.
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Then by [2, Corollary 1.3]

1
(2) sup ')’((Dg, T) = 3 "Da,T"'
$€EH,, IZI=1

Let £=0 be arbitrary. Choose S€ 4, ||S] =1, such that

N TS—ST| = |Dr|l —e.
Then by (2)

1
3 sup _ p(wg, T) = 5 || 9. (TS —ST)|.
2E€ Dy, IEI=1 :

Let B, be the primitive ideal that is the kernel of &,, and let =, be the natural quotient
map of 4 onto 4/B,. If R¢ 4, then || ®,(R)|| =||r,(R)]. Therefore by (4.4)

iRl = sup ||lm,(R)l| = sup || D, (R)Il.
a€d acd )
Applying this equality to (3), we have
1 1 1
supy(a, T) = = sup | P (TS —ST)|| = = |TS—ST|| = = (| D7l —¢).
a€d _ 2 ac4 2 2
This proves that
1
supy(a, 7) = = [Drll.
a€4
Then by [12, Corollary, p. 148]
sup y(a, T) = d(T, Z).
ac4

This completes the proof of (1).
Now fix Pe€8x. The center of 4;_p is Z;_p. Applying (1) to the algebra 4,.,
and the element (/— P)T(I— P), we have

sup y(o, T) = d((I-P)T(I—-P), Z;_»).
a € A(P)

d((I-P)T(I—P), Z;_p) = jof |(I-P)T(I-P)+(I- P)X(I-F)|

Also,

= d(T, 3y).
Therefore, ng (T =d(T, 3g).
By [8, Theorem 2]

A sup \PTU—-P)| = Aim sup |TP—PT}.

This equality in conjunction with Proposition 4.2, Lemma 4.3, and Lemma 4.5,

proves Theorem 4.1. ,
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Corollary 4.6. Let A and K be as before. Then the following are equivalent

Jor TeA:
I}iergl (TP—PT|| =0, ng(T)=0, and Te€3g.
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