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Lebesgue-type decomposition of positive operators 

T. ANDO 

1. Introduction 

Our main concerns in this paper are bounded (linear) positive, i.e. non-negative 
definite, operators on a Hilbert space §>. Given a positive operator A, we say a positive 
operator C to be A-absolutely continuous if there exists a sequence {C„} of positive 
operators such that CJC and C„SunA for some a „ s 0 (n = 1,2,. . .) . Here C„\C 
means that C. ̂ . . . and C„ converges strongly to C. A positive operator C 
is said to be A-singular if O^D^A and O s D s C imply D=Q. These definitions are 
motivated by the corresponding notions in measure theory (cf. [3]). In accordance 
with a well-known theorem of measure theory (cf. [3] § 32), by an A-Lebesgue de-
composition of a positive operator B we shall mean a decomposition B=BC+BS 

into positive operators such that Bc and Bs are ^(-absolutely continuous and ^-singu-
lar, respectively. 

In a recent paper [1] ANDERSON and TRAPP proved that given a (closed) sub-
space ©, each positive operator B is written uniquely as a sum of two positive opera-
tors B=C+D such that ran(C1 / 2)g© and ran(Z>1/2)n© = {0}. Here C1/2 is the positive 
square-root of C, and "ran" stays for "range". If ran (A) = (S, that is, if A has closed 
range, then ran(C1 '2)^© implies CSaA for some ocSO while ran(D1/2)H(5 = {0} is 
equivalent to the ^(-singularity of D (see ,§ 3). The above cited result shows that 
^-Lebesguc decomposition is always guaranteed and is unique in case A has closed 
range. 
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The purpose of this paper is to construct an ^4-Lebesgue decomposition for each 
positive operator and to Jind a condition for the uniqueness of ^-Lebesgue de-
compositions. 

2. Lebesgue decomposition 

Let us recall a useful binary operation in the class 0> of all positive operators, 
which is defined and called parallel addition by ANDBRSON and TRAPP [1]. The 
parallel sum A:B of two positive operators A and B is determined by the formula: 

((A : B)h, h) = inf {(Ag, g)+(B(h-g),h-g)}. 

The expression on the right side defines really a positive operator. For, define a new 
scalar product on the direct sum by 

(g®k, g'®k') = (Ag, g')-\-(Bk, k'). 

Let ft be the associated Hilbert space and © the closure of the manifold 
{g©/c:g-|-/;=0}. The expression is equal to ((I-P)(0®h),0®h) where P is the 
projection from ft onto (5. 

Obviously, A, BmA:BmO, and AxmA2 implies Ax\BmA2-.B. Now since (nA):B 
increases along with n and is bounded by B from above, we can introduce an opera-
tion [A] in the class & by the formula: 

[A]B = lim (nA): B, 
11-*- OO 

where lim means strong limit. Since (nA):B\[A]B and (nA):B^nA, by definition 
[A]B is ^-absolutely continuous and [A]B^B. Remark that the operation [A] is 
monotone in the sense that BX^B2 implies [A]B1^[A]B2. This operation is not 
additive. 

The above definition is motivated by a consideration of ANDERSON and TRAPP 
([1]; Theorem 12) as well as a proof of the Lebesgue decomposition theorem in 
measure theory (cf. [3]; § 32). 

Lemma 1. Let A and B be positive operators. Then B is A-absolutely conti-
nuous if and-only if[A]B=B. 

Proof . As remarked above, [A]B is always ^4-absolutely continuous. Suppose 
that B is yl-absolutely continuous. Then by definition there exists a sequence {2?m} 
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such that Bmt B and BmsamA for some a m >0. The definition of parallel addition 
yields, with the convention 0/0=0, that 

> ' i i , t 
,.„ (((nA); B,„)h, h) = inf {(nAg, g)+(BJh-g), h-g)} 

= (Bmh, h) + inf {((nA+BJg, g)-2\(Bmg, h)[} 

= (Bmh, h) + inf MW(nA+BJg, g)~2X\(Bmg, /2)|} , 

hence 

This implies 

Now since by the monotonity of the operation [A] 

B £ [A]B S [A]Bm = Bm, 

taking the limit of Bm we have B=[A]B. This completes the proof. 

Theorem 2. Let A be a positive operator. Then for each positive operator B the 
decomposition 

B = [A]B + (B-[A]B) 

is an A-Lebesgue decomposition with A-absolutely continuous [A]B and A-singular 
B—[A]B. Moreover [A]B is the maximum of all A-absolutely continuous positive 
operators C with C=áB. 

Proo f . Hie operator [A]B is ^-absolutely continuous and [A]B^B. If a posi-
tive operator C is ^(-absolutely continuous and C^B, the monotonity of [A] and 
Lemma 1 imply that C=[A]C^[A]B. Therefore [AJB has the maximum property in 
question. It remains to show the ^(-singularity of B—[A]B. Suppose that 0 ^ D ^ A 
and 0 ^ D s B — [ A ] B ' . Since D is obviously ^4-absolutely continuous, by definition 
so is the sum [.A]B+D. On the other hand, the maximum property of [A]B implies 
[A\B+DS:[A]B, hence D=0. Thus B-[A]B is ^-singular by definition. This com-
pletes the proof. 

C o r o l l a r y 3. Let A and B be positive operators. Then B is A-singular if and only 
if[A]B=0. 

-in h h\ i i m J M _ = (Bmh, h)- sup jT——- v 
«es {(nA + Bm)g,g) 

0 = (Bmh, h) - (((nA) : B„)h, h) 

sS sup 
(B„,g, g)(Bmh, h) 

o e s (nam
 1 +1) (Bmg, g) n+a,„ 

Bm = Jim (nA): Bm = [A]Bm. 

(Bh;h). ' 

3* 
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3. Characterization of absolute continuity 

Some order relations between two positive operators can be expressed in terms 
of then- range spaces. Here a basic tool is supplied by the following lemma due to 
DOUGLAS ([2] Theorem 2.1). 

L e m m a 4. For bounded linear operators S and T the following conditions are 
mutually equivalent: 
(a) ran ( 5 ) g r a n (T), 
(b) There exists a ^ O such that SS*rSaTT*, 
(c) There exists a bounded linear operator R such that S—TR, Here R is uniquely 

determined under the additional requirement that R* vanishes on the orthocomple-
ment of ran (T*). 
When applied to the square roots of positive operators A and B, Lemma 4 

yields that ran (B112) Q ran (A1/2) is equivalent to the existence of ai^O such that BsoiA, 
a condition stronger than the ^(-absolute continuity of B. Lemma 4 shows further 
that ran (A11*) fl ran (B1'2) = {0} implies the ^-singularity of B. Conversely, in view of 
the general formula 

ran (A1'2) fl ran (B1/2) = ran ((A : B)1/2) 

([1] Theorem 11) and the inequality 0^A:BsA, B, the ^(-singularity of B implies 
ran (A1'2) D ran (_e1/2) = {0}. Our purpose in this section is to find a characterization 
of ^-absolute continuity in this direction. 

T h e o r e m 5. Let A and B be positive operators. Then B is A-absolutely conti-
nuous if and only if the linear manifold {h:Bll2h£ran (A112)} is dense in §>. 

Proo f . Suppose that the linear manifold £> = {/z:51/2/i€ran (,41/2)} is dense in §>. 
Since the orthocomplement of the kernel of A112 coincides with ran (All2)~, the closure 
of ran (A112), the correspondence h->g from £> to ran (A112)", defined by Bll2h = A1/2g, 
determines a linear operator T with domain T). As easily follows from the bound-
edness of A112 and B112 ([2] Theorem 2.1), T is closed. Now since T is a densely defined 
closed operator, its adjoint T* is a densely defined closed operator (cf. [4]; V, § 3.1). 
Since A1I2TQB112 by definition, the boundedness of A112 and B1'2 yields T*All2=B112. 
Let T*— FSbe the polar decomposition of T* (cf. [4]; VI, §2,7); S is an (unbounded) 
.positive self-adjoint operator whose domain coincides with that of T* and V is a 
partial isometry with initial space r a n ^ ) - and final space ran (T *)~. Then ran (A112) 
is included in the domain of S, and for all h£§> 

\\SAll2h\\2 = (Bh, h). 
Consider the spectral representation 

CO II 

S = f XdE(X) and let Sn = f XdE(X) (n = 1 ,2, . . . ) . 
o o 
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Then we can readily verify that All2S*A1121B and A1'2 S2A1/2Sn2A, hence B is A-
absolutely continuous. 

Suppose conversely that B is ^(-absolutely continuous. Then by definition there 
exists a sequence {5,,} such that t B and Bn^a„A for some oc„feO. By Lemma 4 for 
each n there exists a bounded linear operator Rn such that B]j2=All2Rn and R* vanishes 
on the orthocomplement of ran(A1 / 2). Then B„^B„+1 implies RllR*^Rn+1R*+1. 
Let X denote the linear manifold of all g with sup ||2i*g|| < and define a functional 
(p on X by the formula " 

<p(g) = sup WR^gV = lim 
It ll~y oo 

The functional (p is closed in the sense that if lim gn~h and if 
«-»•OO 

lim <p(g„—gm)=0, then and lim (p(h—gn)=0. Further, since, by definition 
of {£„}, for all h£T> 

sup ||R$A1/2h\\2 = sup ||Bl'2h\\2 = (.Bh, h) < -
71 n 

and since every R* vanishes on the orthocomplement of ran(^41/2), the linear manifold 
D includes the dense set ran (A112)+(¡5 Q ran (A112))- Thus cp is densely defined, closed 
and expressed as the limit of the bounded quadratic forms \\R*g\\2. Now in view of a 
theorem on quadratic forms ([4]; VI, § 2,6) there exists an (unbounded) positive self-
adjoint operator S such that its domain coincides with X and \\Sg\\2=(p(g). Then we 
have for all h 

\\SA1/2h\\2 = (Bh, h) = ||51/2/?||2, 

hence there exists a partial isometry V with initial space ran (Bll2)~ such that SA1I2= 
= VBm. This implies All2SQB1/2V*, and consequently 

V* (X) g {h : B1/2h£ ran (A1'2)}. 
Since X) is dense in and Fis a partial isometry with initial space ran (B1,2)~, we can 
conclude 

ran (.B1/2)- g {h: B1/2h<i ran (A1/2)}~. 

Finally since B112 vanishes on the orthocomplement of ran (B112), the subspace 
{h: Bll2h£rm(All2)}~ includes this orthocomplement, too, hence coincides with the 
whole space £>. This completes the proof. 

4. Uniqueness condition 

Let A be a positive operator. Then ^-absolute continuity is additive in the sense 
that the sum of two positive operators is ^-absolutely continuous whenever both 
summands are so. ^-singularity is not always additive while it is hereditary in the 
sense that ^-singularity of the sum of two positive operators implies ^-singularity of 



258 T. Ando 

both summands. ^-absolute continuity,is not always hereditary. These discrepancies 
can cause non-uniqueness in ^-Lebesgue decomposition. 

Let us say a positive operator B to be A-strongly continuous if B^aA for some 
oe=rO, or equivalently, as is remarked in § 3, if ran (B11*) g ran (A1'2). Then A-strong 
continuity is additive as well as hereditary. > 

T h e o r e m 6., Let A be'q 'positive operator. Then a positive operator B admits a 
unique A-Lebesgue decomposition if and only if [A] B is A-strongly continuous, that is, 
[A]B^uA for some a.^0. 

Proof . Suppose that [A]B is -strongly continuous and take an arbitrary 
^4-Lebesgue decomposition B=C+D with ^4-absolutely continuous C and .¿-singular 
D. Theorem 2 implies D^[A]B—C^0. The positive operator \A]B—C is /1-strongly 
continuous as well as ^(-singular so that it must be equal to 0. Therefore B admits' a 
unique ^-Lebesgue decomposition. 

Suppose conversely that [A]B is not ^(-strongly continuous. Then by Lemma 1, 
Lemma 4 and Theorem 5 the linear manifold ®s={/z; ([^]5)1/2A<Eran (A112)} is dense 
in §> but not closed. As in the proof of Theorem 5 there exists a closed operator with 
domain D, so that, there exists a (bounded) positive operator S with ran (S) = £> 
(cf. [2]; Theorem 1.1). We may assume S2^\l. Since ran (S) is not closed and 
[A]B^0 by assumption, there exists a separable (closed) subspace © such that SP= 
=PS, ([A]B)- P=P-([A]B)TiO and ran(SP) is not closed, where P is the ortho-
projection onto ©. Then in view of a theorem of VON NEUMANN ([2] Theorem 3.6) 
there exists a unitary operator U0 on the separable Hilbert space © such that 

ran (SP) fl ran (U0SP) = {0}. 

Let us define a unitary operator Uon § by U=U0P+(I—P). Then it follows from the 
properties of © and U0 that 

DO £/*(£) 

Consider the positive operators defined by • ' 

D = ([A]B)ll2U*S?U(\A]B?12 and. C = \A]B-D. 
First we shall show that C is ^-absolutely continuous. Since 

[A]B = ([^4] B)112 U* (/—S2) U([A] Bf '2 is j [A]B, 

by Lemma 4 (cf. [2]; Corollary 2.1.1) there exists a bounded invertible operator R 
such that C1/2R=([A]B)112. Then we have 

{h : Cll2h£ ran (A11'')} = R(T>). 
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Since X> is dense in §> and R is invertible, R(T>) is dense in § too, so that the above 
relation implies the ^-absolute continuity of C by Theorem 5. 

Let us prove 'that D is not ^(-absolutely continuous. Suppose the contrary, 
Then Theorem 5 implies that ran (Z>1/2) fl ran (A112) is dense in ran(D1/2). On the other 
hand, by Lemma 4 and definition of D we have 

ran (D1/2) fl ran (A1'2), = ran {([A]B)ii2U*S) fl ran (A1/2). 

Take an arbitrary h such that ([A] B)1,2U*Sh Gran (A1/2). This requirement is equivalent 
to U*Sh£T) by the definition of D. Since ran (S) = T>, it follows that 

([A]B)1,2U*She(lA]Bf/2(T)n U*(X>)) Q (M]£)1/2(£©®). 

Since § 0 © reduces [A] B, we can conclude 

ran (D1/a) fl ran (A1/2) Q § 0 ® . 

Finally since P commutes with S, U and [A] B, the subspace © reduces D1/2 and 
D1/2(©) ^ {0} according to ([A]B)P?i 0. Therefore the above inclusion relation leads 
to a contradiction that ran (£>1/2) fl ran (A1/2) is not dense in ran(D1/2). 

Now consider a decomposition B=C1+D1, where C1=C+[A]{D-\-(B—[A]B)} 
and D^B—Cx. This is an ^-Lebesgue decomposition. In fact, obviously Cx is 
positive ^(-absolutely continuous while is positive .¿-singular by Theorem 2, 
because 

Dx = {D+(B~[A]B))-[A]{D+(B-[A]B)}. 

Finally Cx does not coincide with [A] B, For otherwise the relation 

[A]{DHB-[A]B)} = [A]B-C = D 

would imply the ^(-absolute continuity of D by Theorem 2, which is a contradiction. 
Thus B admits an ^-Lebesgue decomposition different from the one given in Theo-
rem 2. This completes the proof of the theorem. 

Coro l la ry 7. The following conditions for a positive operator A are mutually 
equivalent: 
(a) ran,(A) is closed, 
(b) A-absolute continuity is hereditary, 
(c) Each positive operator admits a unique A-Lebesgue decomposition. 

Proof . (a)=>(b) is immediate, because under the closedness of ran (A) it is 
easy to prove the equivalence of ^(-absolute continuity and ^(-strong continuity. 
(b)=>(c) is proved just as in the first part of the proof of Theorem 6. (c)=>(a): Let P 
be the orthoprojection onto the closure of ran (A). Then obviously P is ^(-absolutely 
continuous. Now (c) implies by Theorem 6 that P ^ a A for some aSO, which is 
equivalent to the closedness of ran (A). This completes the proof. 
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