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On differentiation 

LEON W. COHEN 

Homage to the memory of F. Riesz 

The ideas developed by F. RIESZ in his proof [1] that a monotonic function is 
almost everywhere differentiable are used here to prove: 

Theorem 1 . I f f and (p increase on an open interval (a,b) then df/d(p is finite 
except on a subset of (a, b) of ^-measure zero. 

Theorem 2. If the increasing function f is absolutely continuous relative to the 
increasing function cp on (a, b) then 

f(b —) —f(a +) = J df/dep dfi<p. 0 

This closes a gap left by the Radon—Nikodym theorem. The obvious definition 

can not be ,used for Theorem 1 as the following example shows. Let f{x) be — 1 for 
x<0, 0 for x=0, 1 for x>0, and let <p(x) be —1 for and 1 for x^O. 
Then dfjdcp|0, by (1), does not exist and ^({0}) — 2. However 

U m m - m — i. 
h\o,ftto (p(h) — cp(k) 

This suggests that dfldcp be defined as the common value, if it exists, of the upper and 
lower derivates of / relative to (p. 

For any real function / on (a, b) and all I=(u,v)c(a,b) let f(T)=f(v)—f(u). 

Received September 19, 1975. 
') These theorems seem to by be a part of the oral mathematical tradition but diligent inquiry 

by the author did not disclose any written record of their proofs. 
The author is indebted to the referee for refinements and improvements of his manuscript. 
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Defin i t ion . Let / a n d (p be real functions on (a, b), xd(a, b) and assume that 
<p(/)^0 for sufficiently small I containing x. Set 

Dtpf(x) - sup inf /(/)/<•/>(/), D*f(x) = inf sup /(/)/<?(/). 
x(.l<zJ x£J xStc/ 

li D,pf(x)=d(x)=D"'f(x) let dfld<p\x=d(x). 
In the manner of Riesz, we consider the Dini derivates of /relative to (p. 

Def in i t ion . If / a n d (p are functions on (a, b) and x£(a, b) let 

Do f ( x \ _ sup jnr -/(*) D,p f<x\ _ inf su f ( y ) - f i x ) 
<p(y)-<p(x)' <P(y)-<P(xy 

Di№ = sup inf Dlf(x) = inf sup 

provided that the denominators do not vanish. If the four derivates have a common 
value let if be dipf(x). The following two statements are immediate consequences of 
the definitions. 

P ropos i t i on 1. df/d(p\x—d(x) if and only if for all sequences of open intervals 
(xk, yk) containing x such that yk—xk-»0 

Jim —— 7—r — a(x). 
* <P(yk)-<P(xk) 

Corol lary , (a) Iff(x+),f(x—), <p(x+), (p(x—) are finite and <p (x )-A<p(x—) 
then df/d(p\x is finite, (b) If f and <p increase on (a, b) dnd (p is not continuous at 
x£(a, b) then 0^df/dcp\x< + 

Propos i t i on 2. lim =d{x) if and only if d,.f(x)=d(x). 
y~^(p{y)-(p{x) 

Propos i t i on 3. If (p increases on (a,b) and dlpf(x) is finite then df/d(p\x= 
=drpf(x). 

Proof . For any s > 0 there is some ¿>-0 such that if x — d < y ' < x < y " < x + 5 
then 

(1) _ _ _ _ _ _ < 4 > / ( x ) + e . 

Consider the points P'(<p(y'), / ( / ) ) , P(<p(x),f(x)), P" {<p{y")J(y")) in the (<p,/> 
plane and the slopes S', S, S" of P'P, P'P", PP" respectively. Since q> increases on 
(a, b) it follows from (1) that the strict inequalities cp ( < <p (x) < (p (y") hold. Hence 

min {5", 5"'} g i s m a x {5", 5""}. 
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Consequently 

</»/(*)-b ^ Dvf(x) S Dvf(x) == d„f(x)+B for all e > 0. 

The conclusion follows from the definition of dfjdcp\x. 

It is convenient to fix some notation. We use / and (p for increasing functions on 
a closed interval [a, b]. For x£(a, b) 

<Px(x) = sup cp(y), (pe(x) = inf <p{y), E(cp) = {x\(px(x) < <pe(x)}. 

Then on (a, b), cpx and <pa increase, (p'"=^(p^(pe, (p>J-=(p'\ cpee=cpe and, if (x, y) ^ 0, 
(x, y)—E(cp) is uncountable since E(cp) is the countable set of discontinuities of cp. 

The exceptional set E ( f , cp) 

The sets 

E?Mf°) = Ma, b)\Dfp{x) -< Dfp{x)}, 

E?X(fk) = {*€(«, b)\Dff-(x) < Dff-(x)}, 

E'iUP) = {*€(o, b)\Dff*(x) = + ->}, 

modeled on the similar sets in [1], are called the Riesz sets. 
The set C{q>), next to be defined, is determined by the intervals on which <p is 

constant. Let 

cx = {y\(p(y) = <p(x)} and Xx = inf Cx, qx = sup Cx for x£(a,b). 

The sets Cx are disjoint and contain x. The set of non-empty {Xx, qx) is countable. 
Let these open intervals be (A„, q„) and let [A„, <?„] be their closures, and set 

C((P)= U & . f t j n (0,6). 
a 

P r o p o s i t i o n 4. If x£(a, b) — C(<p) anda<-x'<6, (p(x')<(p(x)<(p{x"). 

Proof . Otherwise x'dCx or x"£Cx. In either case (Xx, qx) ^ 0 and x£[Xx, g j c 
c: C((p), contrary to hypothesis. 

The exceptional set for / and cp on [a, b] is 

E ( f , cp) = E ( f ) U E(cp) U C(cp) U EtR (/<9 U E f t ( f x ) U ( / * ) . 

P r o p o s i t i o n 5. If x£(a, b)-{E{f, cp)-E((p)), then Osdf/d(p\x< + °°. 
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P r o o f . Consider x£(a,b)—E(f,(p) and a < i ' < x < x * < / ) . Since E(f)U 
U E(q>) U C(cp) we infer from Proposition 4 

f i x ' ) S fix') ëf°(x') =g/*(*) = / ( * ) = / « ( x ) S /*(**) s / ( x * ) ë / « (x ' 0 , 
<pA(x') S <p(x') ^ (pe(x') < </(x) = <p(x) = f / ( x ) < f / (x" ) S <p(x") S <-/>«(•*"); 

and hence, 
P(x)-P(x') ^ / (x ) —fix') ^ fx(x)—fx(x') ^ 
(pX(x)-(pX(x0 ~ (p(x)-<p(x') - <p0(x)-(pe(x') ' 

fx(x")~f\x) ^ fix") / (x ) f<(x")~f°{x) 
(p'W)~<f*ix) - (pix")-<pix) - (p*(xr>~(p*(x) 

Therefore, 
0 == — D f / C * ) — £ £ / ( * ) — W * ( * ) 

0 S Z>r/A(x) s D?/(x) s Dlfix) == Dff*(x) + ». 
Since the Riesz sets exclude x it follows from their defining inequalities and (1) that 

0 ^ D f f i x ) = Dlfix) = Dtfix) = Dlfix) = Dtf'ix) < + 
By Proposition 3, 
(2) 0 â df/d<p\x < + « > for x£(a, b)—E(f, <p). 
By the Corollary to Proposition 1 

( 3 ) for 

The conclusion follows from (2), (3). 

Toward / i„ (£( / , <p)-E(<p))=0 

We summarize the properties of measure which play a role in what follows. 
For an increasing function cp defined on an open interval / of R and any Ac I, let 

/¿„(A) = i n f { 2 <K4)M<= U / „ /„ = («„, ¿>„)c [a,„ 6 „ ] c / } . 
n 

P r o p o s i t i o n 6. For [a„6„], (x ,y) , (x,y], [x,y\, {x} and A„ subsets of I 
we have: 

(a) nM) = ¡ n f { 2 < P ( 4 ) M c (J I„, I„ = («„, b„), a„, *„<№)}• 
n n 

(b) Ai„((x, j ) ) = (pxiy)-<PQix\ f*v((x, y]) = <pe(y)-(peix), 

(c) ix«i{x}) = (p°ix)-(pxix). 
(d) If nviAn) = 0 for «€N, ii,p((J A„) = 0. 
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Propos i t ion 7. If (p.ij/ increase on I then nv(A)=¡i^(A) for all Ac.1 if and 
only if 

(1) E((p) = E(\j/) and (p(x)—>l/(x) is constant on I—E((p). 

Proof. Assume (1). Then, by Proposition 6(a), fi^(A)=^(A) for Ac I. Conver-
sely, the latter equality implies E((p)=E(if/) by Proposition 6(c) and then, choosing 
a£I-E((p), q>(x)-(p(a)=ii<p([a, x])=n,ll([a, x])=il/(x)-il/(a) for x£l-E((p), x>a, 
and a similar argument applies if x£I—E((p), x<a, by Proposition 6(b). 

Corollary. For all A a I, n^(A)=iiip(A)-n<pa(A), 

Propos i t i on 8. ^((£(/)UC(<p))-£(<p))=0, 

Proof. By the definition of C((p), 

( E ( f ) U C(cpj) —E(cp)c ( E ( f ) -E(cp)) U (U iK, an)U ({!„, Q„\n€ N} -E(cp)) ) . 
n 

The first and last sets are countable and <p is continuous at each of their points. 
Since for each n, cp is constant on (A„, q„), (pe(h„)=(p*(Q„) for all n. The result now 
follows from Proposition 6(d). 

The 'rising sun' theorem [1] is used as a lemma to show that the three Riesz 
sets are of ^-measure zero. 

Lemma. If g is a realfunctionon [a, b], g(a)^g(a+), g(b)^g(b—), andg(x 
^max )} for a<x<b, then there are sequences (a„,b„), (cn,d„) of 
disjoint subintervals of (a, b) such that 

(a, 6) |gO) > g(x) for some ye (a, x)} = (J (a„, b„), 
n 

(a, Z>)|£0) > g(x) for some y£ (x, b)} = U (c„, d„), 
n 

g(a„) is g(b„~), g(c„+) ss g(d„) for all n. 

Propos i t ion 9. If f,(p increase on [a, b], f(a)=f(a+), f = f e , <p(b) = (p(b—), 
(p=(pk, />0, and g=f—t(p then g satisfies the hypotheses of the Lemma. 

Proof. Since (px=(p^(pe,fx^f—fe on (a, b), we have for x£(a, b) 

£(*+) =fe(x)-tcpe(x) = f(x)—Up (x) = g(x), 

Six-) =fx(x)-t(px(x) rSf(x)-t(p(x) = g(x). 

A similar argument applies for x—a and x=b. 
In applying the Lemma to the Riesz sets we use Proposition 9 and the fact that 

fQQ—fQ, (p'-'-—(p>-. The next proposition may be called the Riesz covering theorem> 
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P r o p o s i t i o n 10. I f f = f ° , (p=(px on / = ( a , /?)<=(«, ft) and 

E = {xdJ\D?f{x) < w < t; < Dlf(x)} 

then there are Nc.J and a countable set S of disjoint subintervals of J such that 

ju„ (N) = 0, S covers E—N, >>(/) S™ <p (J). 
ITs v 

Proof . If xÇ.E there is some y€(u, x) such that ( f ( x ) —f(y))/((p(x)—<p(y))<u. 
Hence 

g,,(y) =f(y)-u<p(y) >f(x)-u<p(x) = g„(x). 

Since g„=f—u(p satisfies the hypothesis of Proposition 9, it follows from the Lemma 
that there are disjoint I„—(a„, b„)czj, N, such that, since (p=cpx and f(b„—) — 
=f\b„), 
(1) Ec. U /„, g „(a,,) = f(an)-u(p{a„) ^ p{b„)-u(p(b„) = gu{b„-). 

» 
Hence 

(2) f*(bj-f(aj S u((p(b„)-(p(aj) = «<p(/„), «6N. 

For each n there is a sequence b„tP£l„—E((p) such that blhp\b„. Let b„i0=a„, I„tP= 
= KP-i, b,J, N'={b„Jn,p<iN}. Then 

(3) fiyiN') = 0, I„iP, n,p£ N, are disjoint, E-N'c \J In>p(z \J Inc: J. 
it, p n 

Since /increases and b„t0=a„ for all n 

2/(h,p) = 2(f(K,P)-f(b„,P-ù) = Jimf(bnJ-f(an) =f*(bn) -/(a,,). p p p 

By (2), (3), since cp increases, 

(4) 2f(h,P) = 2 (fx(bn)-/(«„)) ^ u 2 <P(Q S u<p(j). 
II, p n II 

For each n,p if x£Ef)I„tP there is some y£(x,b„!P) such that ( f { y ) — f ( x ) ) l 
/(<p(y)-<p(x))>v. Now 

gviy) =f(y)-v<p(y) >f(x)-vq>(x) = gv(x). 

Since gv=f—v<p satisfies the hypothesis of Proposition 9 it follows from the Lemma 
that there is a sequence of disjoint I„tP,m=(c„>p>m, d„^m)clnp such that, since f = f e 

and (p{c„,p,m+)=(pe{cn<p, J , 

£ n / „ , p c u f(Cn,P,m)-V<Pe(Cn,p,m) =f(d,,,P,m)-V<p(d„lPtJ. 
m 

Hence 

(5) v(<P(dn,p,J-<Pe(cH,p,J) ^ f(In,p,m)> n, P, me N. 
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For all n,p, m there is a sequence cniP>m>q£In,p,m-E((p) such that c„>Ptm>^c„>Pim. 
L e t C„,p (m ,0 dn,p,m> In,p,m,q (cn,p,m,q> cn,p,m,q-l) ^ u d 

N" = {cn,p>m>i\n, p, m,q£N}. 
Then 

H<P(N") = 0, I„,p>m,t, n,p,m,q£N, are disjoint, 
(6) 

», P, M, q ii, p, m n, p 

Since c„tPimiiic„iPilll and cn p m0= cln p m 

2 (p(I„,p,m,q) = 2((p(.C„,p,m>q-i)-(p(c„tp>m>q)) 
(7) 

= <p(d»,P,J~ I™ (p(c„>Pimiq) = (p(d„,ptj-(pe(cn>p<m). 

Since /increases it follows from (4), (5), (6), (7) that 
(8) » 2 <p(In,P 2 f(Iu,p,m)^2f(In,p)^ticp(J). 

it, p, m, q n, p, m n, p 

Let N=N' U N" and S= {I„,p,m,q\n, p, m, ^ N } . By (3), (6), (8), N and S satisfy 
the required conditions. 

P ropos i t ion 11. A v № / e ) ) = 0 . 

Proof. E f R { f ° ) is the union of the countable set of 

Kv = (a, b)\Df p(x) < u < v < Df p(x)}, u, v rational. 
We note that FE=FEE, (P*=Q>U and show that for/c^N there a r e N K C J and a countable 
set SK of disjoint open subintervals of J such that 

{k} (NK) = 0, SK covers EJ
UIV-NK, 2 <P(I) ^ - \ < P ( J ) -

By Proposition 10 with (A, P)=(A,B) there are NLT S1 satisfying {1}. Assume that 
NH and SK satisfy {A:}. Let IP,P£N, be the intervals of SK. By Proposition 10 with 
(a, FI)=IP there are MPCZLP and a countable set TP of disjoint open subintervals of IP 

such that 

/ V ( M P ) = 0, TP covers EL„C\I —MP, 2 (/„), P6N. 
16 Tp V 

Let NT+1=NKU([JMP) and SK+1=LJTP. Then N^(NK+1)=0, SK+1 covers E?LV-p p 

-NK+1 and 
A k + 1 

2 <p(i) = 2 2 H i ) = 2~(P(iP) = - <P(J). 
16 sk + 1 p IiTp p V " 

Thus JVJH-I, SK+1 satisfy 1}, and therefore, {K} is satisfied for all K£N. 
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Lijt N~ y Nk. Then ^ ( J V J ^ O , Sk covers E^„—N for all k and, since litnk(u/v)k 

<p(J)=0, 0 for all rational u, v. Hence 

P r o p o s i t i o n 12. 0. 

P roo f . Let for Let h(T(x))^ ~f(x), = -(pipe). 
Then h, •// increase on (7X6), r(a)) Ae= <//= -<-/, and for all Aa(T(b), T(a)), 

• M ^ O O H M ^ s i n c e roo^nx) i f a n d o n ly i f 

h(T(y))-h(T(xj) _ / ( x ) - / Q Q 
<l<{T(y))-HT(x)) cp(x)-<p(y) 

if either difference quotient is finite. Hence 

= T-\Et;R(h')). 

By Proposition 11, / v № ^ ) ) = 0 - Hence A v № / A ) ) = 0. 

P r o p o s i t i o n 13. f i ^ ( E ^ ( f e ) ) = 0 . 

P r o o f . For each let 

= {xe^/^l^r/'W^M-
Then Em+1czEnic:(a, b) for all m. If there is some (x, 6) such that 

g,»(y) =fe(y)-mq>\y) >f<>{x)-m(p^x) = g,„(x). 

By Proposition 9 and the Lemma there is a sequence of disjoint Ip=(cp, dp)c:(a, b) 
such that, since fe(cp+)=fe(cp), 

Em<z UIP, fe(cp)-m^(cp+) ^ fe(dp) —mcpx(dp), pdN. p 

For each p there is a sequence Cpit£lp—E(<p) such that cp>q\cp. Let cpi0=dp, Ip>q = 
= 1) a n d N={cp,<,\p> ^ N } - Then p ^ ( N ) = 0 , £ „ - ^ U / M c U / f c 

p.® p 
<= (a, b) for all m, 

m 2 <Px(Ip,q) = ™22 (^(cp,q-i)-^(cp,q)) = m2 {<Px(dp) -cp*(cp +)) 
P,Q P Q P 

^ 2 (fe(dP)~fe(cp)) —fe((a> b)) < + p 

Hence, iiip(Em)^f*((a, b))lm for all m. Since ^ ( / ' O c i l £„,<=(«, b), 
m 

0 f i A ^ t M 6 ) ) ^ Km H.AEJ = 0. 

T h e o r e m 1. If f and q> increase an (a, b) there is some Acl such that 

0 ^ df/d(p\x < for x<=A and fi,p((a, b)-A) = 0, 
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Proof. By representing (a, b) as a union of countably many closed subinteryals, 
we may consider one of them and assume that / and (p increase on [a, b]. By the 
definition of the exceptional set E ( f , (p) 

E ( f , cp) -E(cp)c((E(f) U C(cp)) -E(<p))UE{%(/«)UE?X(/*) U ( / « ) . 

Since E(cp) is the set of discontinuities of cp, cpx, cp" and cp=cp'-=cpe on (a, b)—E(cp) 
it follows from Proposition 7 that f i ^ , //((1„ are identical measures. 

Let A=(a,b)—{E(f cp)—E(cp)). The conclusion follows from Propositions 
6, 8,11,12, 13. 

Toward Theorem 2 

FUBINI'S theorem [2] on the derivative of a function represented by a convergent 
series of increasing functions is extended in the following proposition. 

P r o p o s i t i o n 14. I f f „ , «£N, and cp increase on (a, b) and 

2 /«(*) = fix) is finite on (a, b) 
n 

then there is some Ac (a, b) such that /^((a, b)—A)=0 and 

'2dfjdcp\x = df/dcp\x for x£A. 
n 

The proof is so close to that of Fubini for the case where cp(x)=x that it is 
omitted. 

Similarly, Lebesgue's density theorem may be generalized. It is convenient to say 
that a sequence of open intervals (xk,yk) determines x if x£(xk, yk) for all k and 
lim (xk-yk)=0. 

Defin i t ion . Let cp increase on an open interval / c R . The n,p-density of a set 
A at xg / i s A (A, x) if for all sequences (xk, yk) which determine x 

U m ^ ? ( x k y k ] ) = 
k wxk,yk]) 

Propos i t i on 15. If Ac (a, b)c[a, b]cl is a [immeasurable set then there is 
some DcA such that 

A (x, A) = 1 for x£D and nv(A —D) = 0. 

Proof . There is by Proposition 6(d) an open set G„ for «€N such that 
AcG„c (a, b) and n9(G^n9(A) +1/2". Let 

fix) = M<p(A fl (a, x]), \Jj(x) = cp*(x)-cp*(a), x£ (a, b), 

fn 0 ) = H<p (G„ n (a, x]) x£ (a, b), n £ N. 
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Then / , lp, f„ increase on (a, b). Since 

0 ^ f „ ( x ) - f ( x ) - nv((Gn-A)C](a, x]) =§ ^(0,,-A) < 1/2» 
and 

Â(y)~m~(f,Xx)-f(x)) = HviiG.-A) D (*, y]) S O for x < y 

it follows from Theorem 1 and Proposition 14 that there is some DaA such that 

(1) 0 s ^ ( < / / B / # | , - # / # | . v ) < + °o, x£D, and ^(A-D)^ 0. 
« 

For x£D and any sequence (xk, yk) which determines x, there is some k„>x such that 
(xk,yk\czG„ for k ë k „ x . Then by Theorem 1, Proposition 1 and Proposition 6 

d f l , m x = lirn f]iyk)~f;jXi = lim = 1, xÇ.D, ne N. 

By (1), 
+ ~ for x£D. n 

Hence 

(2) # / # | x = l for xtD. 

Since E(cp)=E(<pe)=E(\l/) and (p(x)-il/(x)=(pe(a) for b)-E(<p), it follows 
from Proposition 7 that ne(A-D) = / i l / ( (A -D)=0 . Hence by (2) 

1 = d f m x = lim f { ; t f u k \ = = M*, ^ 
* 'AO* ) -> / ' ( * * ) k ^((xk,y,J) 

for x£D, pi^A — D) = 0. 

P r o p o s i t i o n 16. If (p increases on an open interval / c R , / is nç-integrable 
on [a, b] cr I and 

F(x)= f fdjXy for x£(a,b) 
(a, x] 

there is some A c (a, b) such that 

dF\d(p\x = f ( x ) for xÇA and ^((a, b)—A) = 0. 

P r o o f . It is assumed, without loss of generality, that / i s positive. There is a 
sequence of compact C„c(a, b) such that 

C„cC„ + 1 and / is continous on C„, for n£N, 

lim nv((a, b) - C„) = 0, lim f f d p , = f fdnv < + ». 
" " C„ (a,b) 

For m£N let f„(x)=f(x) for xÇC,,, and f„(x)=0, for x£(a, b)—C„, and set 
A1=\JC„. Then 

/„ f / on Ax, /*„((«, b)-A^ = lim = 0. 
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Let 
F„(x) = f f„dfi,p for wgN, x£ (a, b). 

Since/„ and fn+1—fn are positive on Alt F„ and Fn+1—Fn increase on (a, b), By the 
monotonia convergence theorem 

n 

= J fidn<p + 2 { f/„+id/**- f f„d(iv) 
(a, x] " (a, x] (a, x] 

= lim f f„d'nv = f lim fnd^ = F(x) < + «>, x£(a, b). 
' (a,x] (a,x] " 

Hence by Theorem 1 and the generalized Fubini theorem, Proposition 14, there is 
some A2cAx such that 

0 ss dFJdcp\x, dF\dcp\x < + - , 

(1) lim dFJ dcp\x = dF/d(p\x for x£A2 and ui>(A1—A2) = 0. 
N ' 

Consider x<zA2. There is a sequence (xk, yk) which determines x such that 
xk, yk$E(cp) for all k. Then 

(2) dFJdcp= Jim ~F"(-Xkf for nCN. 

Since cp is continuous at each xk,yk, by Proposition 6 

(3) • ^p((xk,yk]) = <p{yk)~<p(xk) for all k. 

On the compact set C„C\[xk,yk], f is continuous and / = f „ . Hence there are x„ik, 
y„,k^CnC][xk,yk], such that 

(4) f(xnik)^f(z)^f(y„>k) for zeC„f][xktyk], n,kdN. 

Since yk —xk -*• 0 

(5) lim/(>,,,t) = / ( * ) = h m / ( j „ ( t ) for x£C„. 
By (3), (4) 

Cnn(xk,yk] 

= Fv(yk)-F (xk)^ ^(C mxk yk]) 
(p(yk)-(p(xk) Jy"'kJ Hv((xk,yk]) 

By the density theorem, Proposition 15, for each n there is some DHczC„ such that 
( 6 ) f o r a n d 
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By (2), (5), (6) 

(7) dFJdq>\x=f(x) for xdA2(\Dn, «6 N. 

Since HyiAi—C„)— 0, there are n¡ such that i i< f ,{A1~Cn^\j2 i for Let 

D = U f l D»j-k jmk 
Since D„jczCl,j(zA1 and ^(CnJ-DnJ)^0 for ally, 

Ai-D = D U (At-B )c U (A!-C„ )U U (Cm -D ), 
k jmk jsk jmk 3 

f i ^ A i - V ) ^ 2 H , M i - C „ ) < 2 1/27 = 1/2*"1, *<= N. jmk jmk 
Hence HyiA!—D)=0. Let ^2f |I>. If then, for some k and all jmk, 
x£A2C)Dnj. By (1), (7) 

(8) dF\d(P\x = lim dFnJd(p\x =f(x) for x£A. 

Since A=A2W>cA2cA1c:(a, b) 

0 sS n,p((a, b)—A) /iv((a, b)-A^ + 

+H<p(Ai-A^+fiip(A2-A) si ^(Ai-D) = 0. 

By (8), (9), A satisfies the required conditions. 

T h e o r e m 2. Let f , <p increase on an open interval 7 c R and let f be absolutely 
continuous with respect to (p, i.e., [if(A)—0 for all Ac I such that jitp(A)=0. Then 

f(b-)-f(a+)= J' df¡d(p\xd\it¡> for all (a, /;)<=/. 
(a.b) 

P roo f . Consider the measures n f , n v . By the theorem SAKS ([3], p. 33) calls 
the Lebesgue decomposition theorem there are, for any (a, b)c7, some IIa (a, b) 
such that fiv(H)=0 and a positive function g, ^-integrable on (a, b), such that 

¡if ((a, x]) = J' gd¡itp -\-fij-(lin (a, x]) for all x € (a, b). 
(«, x] 

Since / is absolutely continuous with respect to q> and fi<fl(II)=0, nf(HC\(a, x])=0 
for all x£(a, b). Hence 

iKx) = l¿f{(a,x]) = f g d/i,p for x£(a,b). 
(a,x] 

By Proposition 16 there is some AiC(a, b) such that 

dtjj/d<p\x = for xdAt and pip({a,b)—A^ = 0. 
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Since /increases on / there is, by Theorem 1, some A2c(a, b) such that 

0 S dfldcp\x < + oo for xÇA2 and ^((a, b)—A2) = 0. 

Let A=A1DA2. For xÇA there is a sequence (xk, yk)c(a, b), determining x and! 
such that xk, ykÇ_(a, b)~(E(cp)U £( / ) ) . By Proposition 6 

/O ' t ) ~f(xk) = ¡if ((xk, yk]) = l¡/ (yk) -1]f (xk) for all k. 

By Proposition 1 

df/dcp\x = lim = l i m i ^ d U M = w/dcp\x = g(x), x£A, 

and 
0 S nr((a, b)—Ai) S ^((a, b)-A2) = 0. 

Hence 
¡jf((a,x]) = J df/d(p\xdnv for x£(a, b). 

There are sequences ak> bk£(a, b)—E(f) such that a ^ / j j and ak\a, bk\b. Now 

f(bk)-f(ak) = nf({ak, bk]) = f df/d(p\xdn,p for all k. 
("k,bk] 

Hence 
f(b-)-f(a+) = lim f dfIdcp\xdnv= f df/dcp^d^. («,., bk] (a,b) 
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