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On differentiation

LEON W. COHEN
Homage to the memory of F. Riesz

The ideas developed by F. RiEsz in his proof [1] that a monotonic function is
almost everywhere differentiable are used here to prove:

Theorem 1. If f and ¢ increase on an open interval (a, b) then df]de is finite
except on a subset of (a, b) of p,-measure zero.

Theorem 2. If the increasing function f is absolutely continuous relative to the
increasing function ¢ on (a, b) then

fo=)—fad) = [ dfdpdu,. )

(a,b)

This closes a gap left by the Radon—Nikodym theorem, The obvious definition

. f()—f(x)
1 dflde|, = lim ————=<
0 fidol: = Jm P(»)—o(x)
can not be used for Theorem 1 as the following example shows. Let f(x) be —1 for
x<0, 0 for x=0, 1 for x>0, and let @(x) be —1 for x<0 and 1 for x=0.
Then df]doly, by (1), does not exist and p,,({0})=2. However

f)—f©) _
ok =) ~

This suggests that df]do be defined as the common value, if it exists, of the upper and

lower derivates of f relative to ¢.
For any real function f on (a, b) and all I=(u, v)C(q, b) let f(I)=f(v)—f ().

Received September 19, 1975,

1) These theorems seem to by be a part of the oral mathematical tradition but diligent inquiry
by the author did not disclose any written record of their proofs.

The author is indebted to the referee for refinements and improvements of his manuscript,
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Definition. Let fand ¢ be real functions on (a, b), x€(a, b) and assume that
¢ (I)#0 for sufliciently small I containing x. Set

D, f(x) =sup inf f(DjeI), D°f(x)=inf sup f(De()).
x€J x¢lcJ xeJ x¢lct

If D, f(x) =d(x)=D°/(x) let df|do],=d(x).
In the manner of Riesz, we consider the Dini derivates of frelative to ¢.

Definition. If fand ¢ are functions on (a, b) and x€(g, b) let

_ o S —f(x) . () —=fx)
DL = o a<1?£x p(y)—o )’ DEf ) _;il£ 33'3 p(y)—o(x)’

_ .o S =f(x) i S(»)—f(x)
Drfe) = 3213 xf;ip o(»)—ox)’ DR7 ) ;E,t; xily"é’p o(y)—ox)’

provided that the denominators do not vanish. If the four derivates have a common
value let if be d,, f(x). The following two statements are immediate consequences of
the definitions.

Proposition 1. df/dp|,=d(x) if and only if for all sequences of open intervals
(> Vi) containing x such that y—x,—~0

o S =, ) _
h"m ? () — (%) =46y

Corollary. (a) If f(x+), f(x=), ¢(x+), ¢(x—) are finite and ¢ (x+)7#¢p(x—)
then df|do|,, is finite. (b) If f and ¢ increase on (a,b) and ¢ is not continuous at
x€(a, b) then 0=df[dp|,< + .

Proposition 2. y-lv]vlc:pf(iyy)):_{p%

Proposition 3. If ¢ increases on (a, b) and d, f(x) is finite then df|dp|,=
=d,, f(x).

Proof. For any ¢>0 there is some =0 such that if x—6<)’'<x<y"<x+6
then

M dpf(x)—e& <

=d(x) if and only if d,, f(x)=d(x).

SOV fO) =)
p0N)—0(x)’ () —0x)
Consider the points P’(¢ (), f(»")s P(¢(x), (%)), P"(¢ ("), f(¥") in the (¢,f)-
plane and the slopes S’, S, S” of P’P, P’P”, PP” respectively. Since ¢ increases on
(a, b) it follows from (1) that the strict inequalities ¢ (3") <@ (x)<¢(»”) hold. Hence

<d,f(x)+e.

min {S’, $”} = S = max {S’, $"}.



On differentiation 241

Consequently
d, f(x)—¢& = D, f(x) = D*f(x) = d, f(x)+& for all &= 0.
The conclusion follows from. the definition of df/doy|,.

It is convenient to fix some notation. We use f'and ¢ for increasing functions on
aclosed interval [a, b]. For x€(a, b)

P (x) = sup @ (), @°(x) =yi§£ ?(»), E(p) = {xlo*(x) < p°(x)}.

y<x

Then on (a, b), ¢* and ¢® increase, p*=@=0¢°, *=0¢* E®=¢° and, if (x, y)#0,
(x, y)—E(¢p) is uncountable since E(¢) is the countable set of discontinuities of ¢.

The exceptional set E(f, ¢)

The sets
EPR(f9) = {x€(a, b)IDP*f2(x) < DF"fe(x)},

ESL(f?) = {x€(a, D)IDE* f*(x) < DE*f*(0)};
Efl(f9) = {x€(a, DIDF f*(x) =+ =},

modeled on the similar sets in [1], are called the Riesz sets.
The set C(¢), next to be defined, is determined by the intervals on which ¢ is
constant, Let

CG={le() =¢®)} and A =infC,, o.=supC, for x€(a,b).

The sets C, are disjoint and contain x. The set of non-empty (4,, ¢,) is countable.
Let these open intervals be (4, g,) and let [4,, g,] be their closures, and set

C(p) = U4, N (a, b).

Proposition 4. If x€(a, b)—C(9) and a<x'<x<x"<b, p(¥)<o(x)<@*").

Proof. Otherwise x’€C, or x"€C,. Ineither case (,, 0,) %0 and x€[4,, ¢,]C
c C(¢), contrary to hypothesis.

The exceptional set for £ and ¢ on [a, b] is
E(f, ¢) = E(f/)UE(p)UC(@)UELR(fOUELL(fHUEE.(fO).

Proposition 5. If x€(a, b)—(E(f; ¢)—E(¢)), then 0=df[dp|,< + .
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Proof, Consider x€(a, b)—E(f, ¢) and a<x"<x<x"<b. Since x¢E(/HU
U E(p) U C(p) we infer from Proposition 4
SR S () = 0(x) SFAH3) = () =2 (x) = A7) =f (") =),
P*(x) = o (x) = 02(x) < ¢*(x) = ¢ (x) = ¢2(x) < P*(x") = o (x") = P (x”);
and hence,
= SO~ x) _ fR-fE) SR )
= PR - oD 0@ = - )
0= L0 —f1x) _ f&)~f&) _ o) ~/'()
FEO-FE = 90— = PE) P
0 = Df*fe(x) = Dff(x) = DLf(x) = DEf*(x) =+,
0 = DPf*(x) = D? f(x) = D§ f(x) = DEf(x) =+ .
Since the Riesz sets exclude x it follows from their defining inequalities and (1) that
0 = DPf() = DES() = DEA(X) = DR f(x) = DFF() < +oo.
By Proposition 3,

-|-oo

< oo

Therefore,

¢y

) 0 = dfldgl, <+ for xé(a, b)—E(f, ¢).
By the Corollary to Proposition 1
3) 0= dfdol, = DLW | ror xeE@)

9°(x) —9*(x)
The conclusion follows from (2), (3).

Toward p,(E(f, ¢) —E(9))=0

We summarize the properties of measure which play a role in what follows.
For an increasing function ¢ defined on an open interval I of R and any A/, let

Ho(4) = inf{"Z eINAc UL, I, = (a,, b)c[a,, blcT).

Proposition 6. For A, [a,b,], (x,y), (x, ], [x, ], {x} and A, subsets of I
we have:
(a) ”(p(A) = mf{"Z' (P(In)lAC L"J Ina In = (am bn)’ s b,,QEE((P)}-

(0) #,((x: »)) = G*(1)—0°(x),  po((%, ¥]) = 92 (¥) —0 (),
to (%, YD = @2(p)—@*(x).

© n,({x)) = 0°(x) —*(x).

(d) If p,(4,) =0 for neN, p,(U 4,)=0.
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Proposition 7. If ¢, § increase on I then p,(A)=p,(A) for all ACI if and
only if
1)) E(p)=E@W) and ¢@(x)—y(x) is constant on I—E(9p).

Proof. Assume (1). Then, by Proposition 6(a), u,(4)=p, (4) for Ac I, Conver-
sely, the latter equality implies E(¢)=E () by Proposition 6(c) and then, choosing

a€l—E(p), o(x)—@@=p,(a, x)=py(la, XD=¢ (x)—y (a) for x€I—E(p), x>a,
and a similar argument applies if x€I—E(p), x<a, by Proposition 6(b).

Corollary. For all ACI, py.(A)=p,(A)=pye(A).

Proposition 8, p,((E(S)U C(p))—E(¢))=0.

Proof., By the definition of C(¢),

(ENUC(@)—E@)< (E(N)—E@)U (U (s 0)U ({4, 04ln€ N} —E(9))).
The first and last sets are countable and ¢ is continuous at each of their points.
Since for each n, ¢ is constant on (4,, 0,), ¥*(L)=0¢*(e,) for all n. The result now
follows from Proposition 6(d).

The ‘rising sun’ theorem [1] is used as a lemma to show that the three Riesz
sets are of p,-measure zero.

Lemma. If g is a real functionon [a, b], g(@)=g(a+), g0)=g(b-), and g(x) =
=max {g(x+), g(x—)} for a<x<b, then there are sequences (ay,b,), (c,,d,) of
disjoint subintervals of (a, b) such that

{x€(a, b)lg(y) = g(x) for some y€(a, x)} = U (a4, by,
{x€(a, b)lg(y) = g(x) for some y€(x, b)} = EJ (Cn> dy)s

g(an) = g(bn _): g(C,, +) = g(d,,) for all n.

Proposition 9. If f, ¢ increase on [a, b], fla)=f@a+), f=/% o®)=¢(®-),
0 =0% t=0, and g=f—t¢ then g satisfies the hypotheses of the Lemma.

Proof. Since p*=¢p=0¢% f*=f=f° on (a, b), we have for x€(a, b)
g(x+) = f(x) —t9?(x) = f(x) —to (x) = g(x),

g(x—) = f4(x) —to*(x) = f(x) —to(x) = g(x).

A similar argument applies for x=a and x=b.
In applying the Lemma to the Riesz sets we use Proposition 9 and the fact that
f®=f¢, p**=¢* The next proposition may be called the Riesz covering theoremy
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Proposition 10. If f=f¢, p=¢* on J=(a, B)=(x, B) and
E = {x€J|Dff(x) < u<v<Dff(x)}

then there are NCJ and a countable set S of disjoint subintervals of J such that
u
Bp(N) =0, S covers E~N, 1‘2(/)(1) = —@()).
s v

Proof. If x¢E there is some y€(a, x) such that (f(x)—/(»))/ (¢ ) —¢ () <u.
Hence
8&(») =) —up(y) = f(x) —up(x) = g,(x).

Since g,=f-—u¢ satisfies the hypothesis of Proposition 9, it follows from the Lemma
that there are disjoint I,=(a,, b,)CJ, n€N, such that, since p=¢* and f(b,—)=
=f*(bw),

M Ec UL, g(an)=f(a)—up (@)= f*b)—up ) = g,0bu-)

Hence "

) FHb)~f (@) = u(py)—9 (@) = up(L), neN.

For each n there is a sequence b, ,€I,—E(¢@) such that b, ,}b,. Let b, g=a,, I,

=(by,p-15 by, p)>» N'={b,, ,|n, pEN}. Then
3) wu,(N)=0,1,,, npcN, aredisjoint, E~N'c )1, ,cULcJ.
n,p n

n,p W

Since fincreases and b, =a, for all n

S, ) = ;’ (f By, ) =S (b, p-1)) = Tim (b, ;) —f (@) = f*(By) —f(@)-

By (2), (3), since ¢ increases,

@ S,y = 2 (F*(b)—f(ay) = u o(L) = up(J).

n,p n

For each n,p if x€¢ ENI,, there is some y€(x, b, ,) such that (f(»)—f(x))/
[(¢(»)— @ (x))>v. Now
&) =F(3)—vp(y) = f(x)—v9(x) = g,().

Since g,=f—v¢ satisfies the hypothesis of Proposition 9 it follows from the Lemma
that there is a sequence of disjoint I, ,, ,y=(Cu, p, m> %4, p,m) <1, SUch that, since f=f"

and (4 (Cﬂy p,m + ) = (pe (c") 1 '")’

En In,pc U In,p,m9 f(cn, p,m)_v(Pe(cn,p,m) éf(dn,p,m)—v(p(dn,p,m)'
Hence

(5) v((P(dn,p,m)_(Pc(cu,p,m)) éf(lu,p,m)a n, p, me N.
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For all n, p, m there is a sequence c, ,, . ,€1, p,u—E(@) such that c, , . €y p -

Let ¢,,p,m,0=%,p,m> In,p,m,a=(Cn,p,m,q> Cn,p,m,q-1) a0d
N" = {en, pm, alns P> M, gEN}.
Then
© te(N") =0, I, ,mq 7 p,m,qgeN, are disjoint,

_(N,UN”)C U Inp,m,qc U nmeUIn,p'

n,p,m,q By py n, p

Since ¢,,p,m,qtCu, p,m AN Cy p om0 =y, p,m
2 (p(In,p,m,q) = Z((p(c",p,m,tr'l)_go(c'hp,m,q))
a q

(7 i
=0 (dn,p,m) - ]1;11 (P(cn,p,m,q) =0 (dn,p,m) - (pc(cn,p,m)'

Since fincreases it follows from (4), (5), (6), (7) that
(8) v Z’ gD(I n,p, "l,q) - 2 f( n,p,m "ZI: f(Iﬂ,p) é ugo('])'

sy Py M, q n,p,m

Let N=N'UN" and S={L,, ,, .1, p, m, g¢N}. By (3), (6), (8), N and S satisfy
the required conditions.

Proposition 11. p,.(Efx(f9)=0.

Proof. E"’];”e (f9 is the union of the countable set of

E],= {xcJ = (a, b)|DF*fe(x) < u <v < DF'fe(x)}, u,v rational.

We note that f0=£?, p*=@** and show that for k€N there are N,CJ and a countable
set 8, of disjoint open subintervals of J such that

k
{k} por(N) =0, S, covers EJ,—N,, IEZS’ o) = [%] o(J).
k

By Proposition 10 with (&, f)=(a, b) there are Ny, S; satisfying {l1}. Assume that
N, and S, satisfy {k}. Let I,, p€N, be the intervals of S,. By Proposition 10 with
(a, p)=1, there are M,C 1, and a countable set T, of disjoint open subintervals of 7,
such that

p»(M,) =0, T, covers E; ,N1,—M,, IZT’ go(I)é%q;(Ip), PEN.
€ P

Let ]V}(+1:NkU(U Mp) and Sk+1=U Tp. Then uq);"(Nk-l-l):O’ Sk+1 COVers E;{,v“"‘
14 p
—Nj4q and

k+1
n=zyem =[] o

2 o= ,,2

168,41 IET

P

Thus Ny 41, Si4q satisfy {k+1}, and therefore, {k} is satisfied for all k€ N.



246 L. W. Cohen

Lot N= y N.. Then p,4(N)=0, S covers EJ ,—N for all k and, since limy (u/v)*
@ (J)=0, ppa(Ey] ,)=0 for all rational u, v. Hence uq,,x(E,"fg( f9)=0

Proposition 12. p,e(E?(f%)=0.

Proof. Let T(x)=-x for x€R. Let h(T(x))=—f(x), ¥(T(x))=—0¢(x).
"Then h, ¥ increase on (T'(0), T'()) h®=: —f*, Y*= —¢?, and for all 4Ac(T(), T(a)),
Moo (T1(A4))=pt,4(A). Since T(y)<T(x) if and only if x<y,

WTW)~HTE) _ f)=-f()
V(IO -Y(TH®)  e(x)—0 ()

if either difference quotient is finite. Hence
Eg5.(f%) = T(BY3 (h)).

By Proposition 11, py4(Efz (1)) =0. Hence p,q(E?;(f*)=0.

Proposition 13. p,.(EZ"..(f9)=0.

Proof. For each meN let

= {x€(a, DIDEf(x) = m}.
Then E,, ., CE,C(a, b) for all m. If x¢ E,, there is some y€ (x, b) such that
8u() =2 () =mp*(y) > f2 () ~m* (x) = g ().

By Proposition 9 and the Lemma there is a sequence of disjoint I,=(c,, d,)C(a, b)
such that, since f¢(c,+)=/*(c,),

E,cUI,, f%c,)—mo*(c,+) =f%(d,)—mo*(d,), pEN.
p

For each p there is a sequence ¢, ,€ I, —E(¢) such that c, ,ic,. Let c,, dp, Ly o=
=(Cp,q>Cp,q-1) and N—{cM|p,q€N} Then [,tq,a,(N) 0, E,—NC U <UILc
p,q p

C(a, b) for all m,

m 2o, )=mZ > (¢* 0= =0*(cp.d) =m 3 (0*(d,) —0*(c, ) =
=2 (f"( L) —f(cp)) =f((@, b)) <+
Hence, ,,(E,)=1*((a, b))/m for all m. Since E§..(f)C Q E,c(a, D),
0 = pipa(BRE. (/) = lim ppa(Ep) = 0.
Theorem 1. If fand ¢ increase an (a, b) there is some A1 such that

0 =dfldo|, <+ for x€A and ji,((a,b)—4)=0,
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Proof. By representing (@, b) as a union of countably many closed subintervals,
we may consider one of them and assume that f and ¢ increase on [a, b]. By the
definition of the exceptional set E(f, ¢)

E(f, ) —E@)=((E(HUC(p) —E(@)) U EL R (fOUELL(fH UER . (f).

Since E(¢) is the set of discontinuities of ¢, ¢?*, ¢ and p=¢*=¢® on (a, b)—E(p)
it follows from Proposition 7 that p,,, fi,4, /e ate identical measures.

Let A=(a, b)—(E( /s ®)—E(p)). The conclusion follows from Propositions
6,8,11,12, 13,

Toward Theorem 2

FuBINT's theorem [2] on the derivative of a function represented by a convergent
series of increasing functions is extended in the following proposition,

Proposition 14. Iff,, n€N, and ¢ increase on (a, b) and
2 [i(x) =f(x) is finite on (a, b)
n

then there is some AC (a, b) such that p,((a, b)—A4)=0 and
' 2 dfldol, = dfldel, for x€A.

The proof is so close to that of Fubini for the case where ¢ (x)=x that it is
omitted.

Similarly, Lebesgue’s density theorem may be generalized. It is convenient to say
that a sequence of open intervals (x,, y,) determines x if x€ (x;, y;,) for all k and
li’}'n (%—2)=0.

Definition. Let ¢ increase on an open interval /CR. The p,-density of a set
A at xel is A(A4, x) if for all sequences (x;, y;) which determine x

lim l’l(p(A n (xk’ yk]) — A (A, x).
N (CA)
Proposition 15. If Ac(a, b)Cla, bICI is a p,-measurable set then there is
some DC A such that

A(x, ) =1 for x€D and p,(A—D)=0.

Proof. There is by Proposition 6(d) an open set G, for n€N such that
AcG,c (a, b) and p,(G,)<p,(4)+1/2". Let

J&) = p,(AN(a, x]), ¥ (x) = 9?(x)—¢%(a), x€(a,b),
fi(®) = p,(G,N (@, x]) x€(a,b), neN.
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Then f, v, f,, increase on (a, b). Since
0 =/£,(0)—f(x) = 1, (G, — )N (@ x]) = pp (G, —A) < 1/2
.ft‘l(.y) ’“f(y)"‘(fl‘z(x) ....f(x)) R ﬂ(p((Gn_'A)n (x’ J’]) =0 for x< y

it follows from Theorem 1 and Proposition 14 that there is some Dc A4 such that
¢) 0= 3 dfy/dpl,—dfldp|) <-+e, x€D, and py(4-D)=0.

and

For x€ D and any sequence (xy, ) Which determines x, there is some &, , such that
(%%, ]G, for k=k, .. Then by Theorem 1, Proposition 1 and Proposition 6

.f;l (yk) _.f;l(xk) — hm qu (Gnm (xk, yk]) =1

" (ff./dlﬁlx:]l,{n VoG - R e Gy " x€D, neEN,
0= > (—-dfldy|,) <+ for xeD.

Hence "

@) dfjdy|, =1 for xeD.

Since E(¢)=E(p%)=E ) and ¢ (x) —y (x)=¢%(a) for x€(a, b)—E(p), it follows
from Proposition 7 that p,(4—D)=p, (4—D)=0. Hence by (2)

_ — 1 S —f(x) T Nqo(An(xksYIc]):
L= b = B =06 = (G rd) A4
for xeD, p,(A—D)=0.

Proposition 16. If ¢ increases on an open interval ICR, f is p,-integrable
on [a, bl I and

Fx)= [fdy, for x€(ab)

(a, x]
there is some AC (a, b) such that
dFldo|,=f(x) for x€A and p,((a,b)—A)=0.

Proof. It is assumed, without loss of generality, that fis positive. There is a
sequence of compact C,C(a, b) such that

C,cC,;, and fis continous on C,, for n€N,
lim g, ((a,5)~C;) = 0, lim [ fap,= [ fdu, <+
C, (a, b)
For neN let f,(x)=f(x) for x€C,, and f,(x)=0, for xc(a,b)—C,, and set
A;=JC,. Then
SAf on Ay, p((@ b)—As) = lim p,(4,—C;) = 0.
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Let
F,(9)= [ fuds, for neN, x€(a,b).

(a,x]

Since £, and f, ., —f; are positive on 4,, F, and F,,,—F, increase on (a, b). By the
monotonic convergence theorem

Fl(x)+2 (Fn+1(x) _Fn(x))
= f fldu.erZ( S Frvrding— f fudu,)

(a, %] (a, x]
= lim /f,,duq, = f lim f,,du(,, = F(x) <4<, x€(a,D).
. (a, x] {(a, x]

Hence by Theorem 1 and the generalized Fubini theorem, Proposition 14, there is

some A, 4, such that
0= an/d(plx, dF/d(Plx <+ oo,

0)) lim dF,[dyp|, = dFldp|, for x€d, and p,(4;—A4,) =0.

Consider x€A4,. There is a sequence (x;,y,) which determines x such that
Xy, V1.4 E (@) for all k. Then

n(yk) Fn(xk)
p—plmy O "N

Since ¢ is continuous at each x,, y,, by Proposition 6
G - to(Cees 7i]) = 0(7) —@ () for all k.

On the compact set C,([xy, y], f is continuous and f=f,. Hence there are x, ,
yn,kecnn[xk: yk]a SUCh that

@ dF,/dp|, = lim

“ S @) =f(2) =f(py,) for zeC,N[x, ), n, keN.
Since y,—x; >0

®) lim f(%,,,) = f(x) = im f(y,,) for x€C,.

By (3), 4)

fGx X ) “¢(Cp;m (xka yk]) (¢ (yk) qo(xk)) 1 j' f(lllq,

”(p ((xk s yk] [eMalEPA |

_ EO0-F() _ RN
= O —p Gy =IO TG S mkeN.

By the density theorem, Proposition 15, for each » there is some D,c C, such that

: Ko (Cn n (xlw yk])
6 Iim 22— =1 for x¢D, and C,—D,) =0
2 N (CEN) #e(Ca=D
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By (2), (%), (6)

@) dF,/do|, = f(x) for x€A,ND,, neN.
Since p,4(4,—C,)—0, there are n; such that u¢(A1~C,,)<l/2J for jeN. Let
D=U N D,
k Jj=k

Since D, ©C, 4y and py(Cyy— Dyy) =0 for all j,
AI_D = ﬂ U (Al_DuJ)C U (Al_'cnj)u U (CnJ "'"Dnj)’
k Jjek Jj=k JjEk

ty(r=D) 5 3 py(dy=C,) < 312! = /2%, keN.
Jjek j=k
Hence p,(A4;—D)=0. Let A=A,ND. If x€A then, for some k and all j=k,
x€A,ND,;. By (1), (7)
®) dFjdg|, = limdF, dg], = f(x) for xeA.

Since A=A,NDcC A, A,C(a, b)

0= 1y((@ B)—A) = pty((@, b~ As)+

9
o + iy (41— A2)+ sy (A, — A) = py (4, —D) = 0.

By (8), (9), A4 satisfies the required conditions.

Theorem 2. Let f, ¢ increase on an open interval ICR and let f be absolutely
continuous with respect to @, i.e., p(A)=0 for all ACI such that p,(4)=0. Then

F(b=)—flad) = f dfjdo|.dy, for all (a, b)CL
(a,b)

Proof. Consider the measures p,, p1,. By the theorem SAxs (f3], p. 33) calls
the Lebesgue decomposition theorem there are, for any (a, b)c I, some HcC(a, b)
such that p,(H)=0 and a positive function g, u,-integrable on (g, b), such that

pr((a, x]) = f gdu,+ps(HN (a,x]) for all x€(a,b).
(a,x]
Since fis absolutely continuous with respect to ¢ and p, (H)=0, p(HN(a, x])=0
for all x¢€ (a, b). Hence
V) =p((axl) = [ gdu, for x€(a,b).
(a,x]

By Proposition 16 there is some 4, (a, b) such that

dylde|, = g(x) for x€A, and p,((a,b)—A4,) =0.
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Since fincreases on [ there is, by Theorem 1, some A,C (a, b) such that
0 = dfldp|, <+ for x€d, and p,((a, b)—A4,) = 0.

Let A=A,NA,. For x€A there is a sequence (X, ¥,)C (a, b), determining x and!
such that x;, y,€(a, b)—(E(p) U E(f)). By Proposition 6

SO —fCa) = uy ((xka J’k]) =y (y)—v(x) for all k.
By Proposition 1

S =S (x) = lim 'ﬁ(J’k) - (x)
o()—00) Tk o()—o(x)

0 = p,((a, b)—A) = po((a, b)—4,)+p,((a, b)—4,) = 0.

py((a, x]) = f dfldo|.du, for x¢€(a,Db).

(a,x]

dfldel. = lim = dyfdp|, = g(x), x€A,

and

Hence

There are sequences ay, b,€(a, b)— E(f) such that a;<b, and a,ja, b,tb. Now
fO)—f@) = ps((@-bd) = [ dfidol.dp, forall k.

(ay, by
Hence
fo-)—fap) =lim [ dfjdel.du, = [ dfldel.du,.
(3 byl (a,b)
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