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Modification sets and transforms of discrete measures 
ROBERT E. DRESSLER and LOUIS PIGNO 

In this paper T is the circle group and Z the ring of integers. Let M(T) denote 
the usual Banach convolution algebra of bounded Borel measures on T; Ma(T) 
those T) which are absolutely continuous with respect to Lebesgue measure 
on T; MS(T) the set of ¡i£M(T) which are concentrated on sets of Lebesgue measure 
zero and Md(T) those n£Ms (T) which are discrete. 

The Fourier—Stieltjes coefficients fi(n) of the measure n£M(T) are defined by 

ft(n) = f e-Mdfi(0) («€Z). 
— n 

A subset E of Z is called a modification set if 

( 1 ) Ma(TY|£c c M S ( T ) " | £ C . 

If S"c Z, then let # (S , n) be the number of members of S which do not exceed 
# (S, n) 

n in modulus. If hm exists then we call this limit the natural density of S 
n-*oo 2« 

and denote it by d(S). 
W. R U D I N in [5] proved the existence of sets £ c Z satisfying (1) with arbitrarily 

small natural density. In [6] R U D I N showed the existence of modification sets with 
natural density zero. 

Using a result of Pigno and Saeki (stated below) we show the existence of arith-
metically interesting sets £ c Z with arbitrarily small natural density satisfying 

(2) Ma(jy\EcczMd(T)~\Ec. 

Futhermore, in contrast to Rudin's result we prove that there are no sets E of natural 
density zero that satisfy (2). 

Let Z denote the Bohr compactification of Z and let E" denote the set of accu-
mulation points of E which are in Z (the topology is with respect to Z). 
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T H E O R E M 1. ( P I G N O and SAEKI [ 4 ] ) The set AcZ satisfies 

(3) Ma(T)'U c Md{jy\A 

if and only if AT) A = 0 and there exists a n£M( T) such that [i{A)= 1 and fi(A")=0. 

T h e o r e m 2. Given e > 0 there is a set £ c Z such that E has natural density less 
than s and Ec satisfies (2). This result is best possible. 

To prove the first part of Theorem 2, we will need two lemmas. 

L e m m a 1. Let £ c Z + be such that for infinitely many positive integers n, there 
exists a positive integer ln, and a finite set E„ such that 

( 4 ) n-l„ - -

and 

(5) £ c £ , U U {{jnjn + /„]0[(;' + 1 )n-l„,(j+ 1)«]) for each n. 
j=o 

Then E has no limit point in Z with the relative Bohr topology. 

P r o o f . The proof follows the lines of the proof of Proposition 5 of [3]. For 
0, the cited proof shows that a is not a limit point of E. For a^O, we can find 

an n with — and the proof continues in the same way. 

L e m m a 2. Let b^2 be a fixed positive integer. Let {ns}™=1 be any increasing 
sequence of positive integers and let {/^JJLj be any sequence of positive integers with 
ns >ks for all s, and ns — ks->- Let E be the set of positive integers t with the property: 

If t=drdr-1...d0 is the representation of t in the base b and ns^r<.nst+1, 
then for each s^st at least one of the digits dns_1, d„s_2, ..., dns_ks is non-zero 
and at least one of these digits is not b — 1. 

Then E has no limit point in Z with the relative Bohr topology. 

P r o o f . Given ns and any t£E, there is some j^O with tc[jb">, (j+ \)b">]. 
For this j we have 

jb"s + b"*-ks si t s (j+ \)b"!.-b"s-ks. 

We may now apply Lemma 1 with the b"*'s playing the role of the n's and with 
¿>"»(1 —b~ks) playing the role of /„. 

P r o o f of T h e o r e m 2. For the first part, we will, given e>0 , find a subset E 
of Z + such that d(E)>( 1 — e)/2 and E has no limit point in Z with the relative Bohr 
topology. To do this, fix any base ¿ ^ 2 and apply Lemma 2 with a sufficiently 
rapidly increasing sequence and also rapidly increasing with ns>ks and 
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n s — F o r example, if we take 

S (1 —2/bk')/(l + 2/bks) > 1 - e/2 
s=1 

and then choose the sequence {«d^lx to be sufficiently rapidly increasing in terms of 
our already chosen sequence { f c j ^ , then E will have the desired properties. The set 
EU —E satisfies the conclusion of the first part of the present theorem. 

For the second part, we begin by observing that any set S for which * = 1 

must contain arbitrarily long blocks of consecutive integers. To conclude our proof 
we establish the following lemma. 

L e m m a 3. Any subset S of Z which contains arbitrarily long blocks of consecutive 
integers is dense in Z. In fact, Sa = Z. 

P r o o f . First, if U is any neighborhood of 0 in Z, then finitely many integer 
translates of U cover Z. If these translates are x1 + U, x2+U, ...,x„ + U, then set 
x=max( |x 1 | , |x2|, . . . , |x„|). It is now clear that any block of 2x+1 consecutive 
integers contains a member of U and we are done. 

No te . The sequences of Theorem 2 have a nice arithmetical structure. If one is 
only interested in density properties, then the derivation of Theorem 2 can be simpli-
fied as follows : 

Since arithmetic progressions are open sets in Z with the relative Bohr topology 
we begin by choosing a thin arithmetic progression containing 0 and, except for 0, 
delete all members of this arithmetic progression from Z. We now go to the first 
negative member of this new set and place it in a thin arithmetic progression and 
again delete all other members of this arithmetic progression from the set just con-
structed. We next go to the first positive member of the set we now have and continue. 
If all arithmetic progressions are chosen sufficiently thin, then after the nth step all 
deleted members of the arithmetic progressions chosen will have absolute value greater 
than n and it is immediate that our set is well defined. In addition, the sufficient 
thinness of the arithmetic progressions guarantees that our constructed set has the 
desired density property. Finally, its lack of a limit point is clear from the con-
struction. 

We conclude with the following two results : 

T h e o r e m 3. Let 3?={pk: p a prime, k£ Z+} be the set of prime powers. Then 
satisfies 

c Md(T)V 

P r o o f . We show that ^ " c {-1,1}. If n ^ 0 , ± 1, consider the arithmetic progres-
sion {2n2k+n: k£Z). Since (n, 2nk + \) = \, it follows that n{2nk + l)=2n2k+n£0> 
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is impossible unless |2«fc+l| = l. But if \2nk + \\ = \, we have k=0 and 2 n 2 k + n - n . 
Thus, the arithmetic progression {2n2k+n: k£Z) separates n from i?\{n}. 

Finally, 0 is separated from SP by the arithmetic progression {6k:k£Z}. This 
shows {—1,1}. Thus and our result now follows from Theorem 1. 

Let r£Z+ with Set £={rk: k£Z+) and put &=2S= n, m£Z+}. 
Recall that $ is an 70 set; see for example [1, p.85]. 

T h e o r e m 4. The set 2F satisfies 

M a ( T f U c M d (T) ' 
P r o o f . We show that ^"<z{0}. f o r definiteness we shall take <?={2": k£Z+}. 

•Consider the one point compactification of £ which we realize in the following 
manner: Put 

D = {e2niml2":m^Z and n£Z+} 
and consider D as a discrete subgroup of T. We then identify $ with its image in the 
•compact group D (dual to D) in the usual way; see [2, p. 107] and [2, p. 403]. The 
•closure of (fin D is simply <?ll {0}. The set of limit points of ^ in D is {0}U S. Since 
D is a factor group of Z and D is dense in T it follows that 2Fac {OJU^. 

Fix any 2k and look at the arithmetic progression {3^2k+1 + 2k: Z}. Suppose we 
.have 3s2k+1+2k=2m+2" (m^n). 

Case 1. If m=-n, then 2k\\3s2k+1+2k and 2"||2m+2" and so k=nand3s2k+1 = 2m, 
which is impossible. 

Case 2. If m=n, then 3s2k+1+2k=2m+1 and since 2k\\3s2k+1+2k we see that 
Jc=m +1 . Thus, 5 = 0 whence 3j2 , I + 1+2' t=2m + 2''=2 , t. 

It now follows from cases 1 and 2 that {3s2k+1 + 2k: s£ Z} separates 2k from 
.&r\{2k}. Thus J5"" 1^-^=0 and our result again follows from Theorem 1. 
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