Remark on the Jordan model for contractions of class $C_{\text {. }}$

By BERRIEN MOORE, III and ERIC A. NORDGREN in Durham (New Hampshire, U.S.A.)

In [5] Sz.-NAGY and C. FoIAş introduce a relation of complete injective-similarity, which is weaker than quasi-similarity [6; p. 70], and they use it to study operators of finite defect in class $C_{.0}$. In particular, they show that if Θ and Φ are quasi-equivalent $n \times m$ inner matrices over H^{∞}, then $S(\Theta)$ and $S(\Phi)$, the compressions of the unilateral shift of multiplicity m to the coinvariant subspaces determined by Θ and Φ, respectively, are completely injection-similar. This result partially extends, in a natural way, the theorem [1] which established, in the case $n=m<\infty$, that Θ and Φ are quasi-equivalent if and only if $S(\Theta)$ and $S(\Phi)$ are quasi-similar.

The authors gratefully acknowledge partial support from the National Science Foundation during the course of this investigation.

Our object in this note is to show that in certain important cases the new relation of injection by a complete family can be replaced by the older and stronger relation of quasi-affine transform (see Theorem 2 and its Corollaries 1). One such case occurs when Φ is the normal form Θ^{\prime} associated with Θ by the relation of quasi-equivalence; then on one side the result remains that there is a complete family of injections $\left\{X_{1}, X_{2}\right\}$ such that $S(\Theta) X_{j}=X_{j} S\left(\Theta^{\prime}\right)$, for $j=1,2$; whereas, on the other side, our result will give the existence of a quasi-affinity X such that $X S(\Theta)=S\left(\Theta^{\prime}\right) X$.

Preliminaries

Let Θ and Φ be $n \times m$ matrices over the Hardy space H^{∞} of bounded measurable functions on the unit circle \boldsymbol{T} with vanishing Fourier coefficients of negative index. Such a matrix is called inner if $\Theta^{*}\left(e^{i t}\right) \Theta\left(e^{i t}\right)=I_{m}$ a.e. on \boldsymbol{T}, where I_{m} is the $m \times m$ identity matrix. In this case it necessarily follows that $n \geqq m$. We will assume throughout that n is finite.

Associated with each inner Θ is a Hilbert space $\mathfrak{G}(\Theta)$ and an operator $S(\Theta)$ defined by

$$
\mathfrak{H}(\Theta)=H_{n}^{2} \ominus \Theta H_{m}^{2} \quad \text { and } \quad S(\Theta) u=P_{\theta}(\chi u) \quad \text { for } \quad u \in \mathfrak{H}(\Theta)
$$

where H_{n}^{2} is the Hardy space of n dimensional (column) vector valued functions on T, P_{θ} is the orthogonal projection of H_{n}^{2} onto $\mathfrak{H}(\Theta)$, and $\chi(z)=z$ for $z \in T$. Operators of this type give canonical functional models for contractions in class $C_{.0}$ with finite defect. For a discussion of this operator class see [6].

A one-to-one operator X from a Hilbert space \mathfrak{H}_{1} into a Hilbert space \mathfrak{H}_{2} is called an injection; a family $\left\{X_{\alpha}\right\}$ of injections $X_{\alpha}: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ is called complete if the closed linear span of the ranges of the X_{α} 's is \mathfrak{F}_{2}. If a complete family of injections consists of but a single operator, then the operator is called a quasi-affinity.

Suppose T_{1} is an operator on \mathfrak{G}_{1} and T_{2} an operator on \mathfrak{S}_{2}. If there exists a complete injective family $\left\{X_{\alpha}\right\}$ such that $X_{\alpha}: \mathfrak{F}_{2} \rightarrow \mathfrak{H}_{1}$ and $T_{1} X_{\alpha}=X_{\alpha} T_{2}$, then T_{2} is said to be injected into T_{1} by $\left\{X_{\alpha}\right\}$, and we write $T_{1} \succ^{\mathrm{ci}} T_{2}$. If $\left\{X_{\alpha}\right\}$ is a singleton, then T_{2} is called a quasi-affine transform of T_{1}, and we write $T_{1} \succ T_{2}$. If $T_{1}{ }^{c i} \succ T_{2}$ and $T_{2}{ }^{c i} T_{1}$ then T_{1} and T_{2} are said to be completely injection-similar, and we denote this by $T_{1} \stackrel{c_{i}^{i}}{\sim} T_{2}$. This latter concept is an extension of quasi-similarity [6; p. 70], which can be viewed as the case when each family consists of a single quasi-affinity.

Finally we recall the definition of quasi-equivalence for $n \times m$ matrices over H^{∞}. Again let Θ and Φ be such matrices. Then Θ and Φ are said to be quasiequivalent if for every inner function ω in H^{∞} there exist an $n \times n$ matrix Δ and an $m \times m$ matrix Λ over H^{∞} such that $\Delta \Theta=\Phi \Lambda$, and $\operatorname{det} \Delta \cdot \operatorname{det} \Lambda$ and ω are relatively prime. See [2] and [7].

A criterion for $S(\Theta)<S(\Phi)$

As mentioned in the introduction, Sz.-Nagy and C. Foiaş have shown [5; Theorem 1] that if Θ and Φ are quasi-equivalent $n \times m$ inner matrices over H^{∞}, then $S(\Theta)$ are completely injection-similar. Further, the two families of injections can always be chosen so as to consist of two operators each, and an example is given to show that a single injection may not suffice.

Before stating our main result, we note that the converse of their theorem is also true. Suppose $S(\Theta)$ and $S(\Phi)$ are completely injection-similar. If Θ^{\prime} and Φ^{\prime} are the quasi-equivalent normal forms ${ }^{1)}$ [2] of Θ and Φ, respectively, then $S\left(\Theta^{\prime}\right) \stackrel{c i}{\sim}$ $S(\Theta) \stackrel{c i}{\sim} S(\Phi) \stackrel{c i}{\sim} S\left(\Phi^{\prime}\right)$. Further, it was shown in [5; Theorem 3] that $S(\Theta)$ is injection-

[^0]similar to a unique Jordan operator; therefore, $S\left(\Theta^{\prime}\right)=S\left(\Phi^{\prime}\right)$, and hence $\Theta^{\prime}=\Phi^{\prime}$. Thus Θ and Φ are quasi-equivalent.

The following theorem gives our criterion.
Theorem 1. Suppose θ and Φ are $n \times m$ matrices over H^{∞}. Necessary and sufficient conditions that $S(\theta) \prec S(\Phi)$ are that there exist square matrices Δ and Λ over H^{∞} which statisfy
(1) $\Delta \Theta=\Phi \Lambda$,
(2) $\operatorname{ker}[\Delta \Phi] \subseteq \Theta H_{m}^{2} \oplus H_{m}^{2}$,
(3) $[\Delta \Phi] H_{n+m}^{2}$ is dense in H_{n}^{2}.

Remark. By $[\triangle \Phi]$ we mean the $n \times(n+m)$ matrix over H^{∞} made up of the columns of Δ followed by those of Φ. By an abuse of notation (as in (2) above) we identify this matrix with the analytic Toeplitz operator from H_{n+m}^{2} to H_{n}^{2} that it induces. Similarly we will identify any matrix over H^{∞} with an analytic Toeplitz operator when convenient.

Proof. Suppose there exists a quasi-affinity X from $\mathfrak{G}(\Theta)$ to $\mathfrak{J}(\Phi)$ such that

$$
X S(\Theta)=S(\Phi) X
$$

By the lifting theorem (see [3] for the case of scalar $\Theta=\Phi$ and [6; p. 258] for the general case), there exists an $n \times n$ matrix Δ over H^{∞} such that

$$
X=P_{\Phi} \Delta \mid \mathfrak{H}(\Theta)
$$

and $\Delta \Theta H_{m}^{2} \subseteq \Phi \dot{H}_{n}^{2}$. The latter condition is equivalent to the existence of a Λ satisfying (1).

Property (2) is most easily established by noting its equivalence to
(2^{\prime}) if $f \in H_{n}^{2}$ and $\Delta f \in H_{m}^{2}$, then $f \in \Theta H_{m}^{2}$.
To establish (2') suppose $f \in H_{n}^{2}$ and $\Delta f \in \Phi H_{m}^{2}$. Write $f=u+\Theta h$, where $u \in \mathfrak{S}(\Theta)$ and $h \in H_{m}^{2}$, and apply (1) to obtain

$$
\Delta f=\Delta u+\Phi \Lambda h .
$$

Since $\Delta f \in \Phi H_{n}^{2}$, an application of P_{Φ} yields

$$
X u=P_{\Phi} \Delta u=0
$$

By the injectivity of $X, u=0$, and thus $f=\Theta h$, which establishes (2').
As for (3), the fact that X is a quasi-affinity implies $X \mathfrak{Y}(\Theta)+\Phi H_{m}^{2}$ is dense in H_{n}^{2}. Since $X f=P_{\Phi} \Delta f$, it follows that $X \mathfrak{H}(\Theta)+\Phi H_{m}^{2}$ is included in [$\left.\Delta \Phi\right] H_{n+m}^{2}$. Therefore (3) holds.

Conversely, if there exists an $n \times n$ matrix Δ satisfying (1), (2), and (3), then define X to be $P_{\Phi} \Delta \mid \mathfrak{G}(\Theta)$. The argument that X is a quasi-affinity and satisfies $X S(\Theta)=S(\Phi) X$, is straightforward.

The following two lemmas essentially form the key ingredients in the proof of the injectivity part of Theorem 1 in [5]. We include them here for easy reference.

Lemma 1. A sufficient condition for (2) to hold is the existence of Δ and Λ having determinants which are nonzero a.e. on T, satisfying (1), and such that if $g \in L_{m}^{2}$, $\Lambda g \in H_{m}^{2}$ and $\Theta g \in H_{n}^{2}$, then $g \in H_{m}^{2}$.

Proof. The question is: does $f \in H_{n}^{2}$ and $\Delta f \in \Phi H_{m}^{2}$ imply $f \in \Theta H_{m}^{2}$? Suppose h in H_{m}^{2} is such that $\Delta f=\Phi h$. Since the determinants of Δ and Λ are nonzero a.e., both Δ^{-1} and Λ^{-1} exist a.e. on T. Consequently, the following relations hold pointwise a.e. on T :

$$
\Delta f=\Phi \Lambda \Lambda^{-1} h=\Delta \Theta\left(\Lambda^{-1} h\right)
$$

Thus

$$
f=\Theta\left(\Lambda^{-1} h\right)
$$

which implies $\Lambda^{-1} h \in L_{m}^{2}$, since $f \in H_{m}^{2}$ and Θ is isometric a.e. If $g=\Lambda^{-1} h$, then g satisfies the hypothesis, and hence $g \in H_{m}^{2}$. But $f=\Theta g$, and hence the answer to our question is yes.

Lemma 2. A sufficient condition for (2) to hold is the existence of Δ and Λ satisfying (1) such that Δ has a determinant which is nonzero a.e. and Λ has a determinant relatively prime to the greatest common divisor of the $m \times m$ minors of Θ.

Proof. By Lemma 1 it suffices to show that if $g \in L_{m}^{2}, \Lambda g \in H_{m}^{2}$ and $\Theta g \in H_{n}^{2}$, then $g \in H_{m}^{2}$. If the classical adjoint of Λ is applied to Λg, then we see that $(\operatorname{det} \Lambda) g$ is in H_{m}^{2}. For any $m \times m$ submatrix Θ_{α} of Θ, we have $\Theta_{\alpha} g \in H_{m}^{2}$, and consequently $\left(\operatorname{det} \Theta_{\alpha}\right) g \in H_{m}^{2}$. Since $\operatorname{det} \Lambda$ and the collection of all $m \times m$ minors of Θ form a relatively prime set, the conclusion follows from a lemma of Sz.-NaGY [4; p. 74].

On the basis of Lemma 2 we can obtain from Theorem 1:
Theorem 2. Suppose Θ and Φ are quasi-equivalent $n \times m$ inner matrices over H^{∞}. If the rows of Φ span an m-dimensional subspace of H_{m}^{2}, then $S(\Theta) \prec S(\Phi)$.

Proof. Select Δ_{1} and Λ satisfying (1) such that each of their determinants is relatively prime to all the invariant factors of Θ and Φ.

By hypothesis, elementary row operations with complex scalars can be used to replace the last $n-m$ rows of Φ by rows of zeros, i.e. there exists an invertible $n \times n$ matrix A over C such that $A \Phi$ has the form $\left[\begin{array}{c}\Phi_{1} \\ 0\end{array}\right]$ where Φ_{1} is an $m \times m$ matrix over H^{∞}, and 0 is the $(n-m) \times m$ zero matrix. Let Δ_{0} be the $(n-m) \times n$ matrix formed by the last $n-m$ rows of $A \Delta_{1}$. The closure \mathfrak{M} of $\Delta_{0} H_{n}^{2}$ is a full invariant subspace of the unilateral shift in H_{n-m}^{2}. (It is full since $\operatorname{det} \Delta_{1} \neq 0$ implies that at least one ($n-m$) $\times(n-m)$ minor of Δ_{0}, say δ, is nonzero. Hence \mathfrak{M} includes δH_{n-m}^{2}.) Thus there exists an inner $(n-m) \times(n-m)$ matrix Ψ such that $\mathfrak{M}=\Psi H_{n-m}^{2}$. Set

$$
\Delta=A^{-1}\left(I_{m} \oplus \Psi^{*}\right) A \Delta_{1}
$$

Then Δ is analytic since $\Psi^{*} \Delta_{0}$ is analytic, and from $\left(I_{m} \oplus \Psi^{*}\right) A \Phi=A \Phi$ we obtain

$$
\Delta \Theta=A^{-1}\left(I_{m} \oplus \Psi^{*}\right) A \Delta_{1} \Theta=A^{-1}\left(I_{m} \oplus \Psi^{*}\right) A \Phi \Lambda=A^{-1} A \Phi \Lambda=\Phi \Lambda
$$

Thus Δ and Λ satisfy (1). From the definition of Ψ and Λ, we see that det Δ divides $\operatorname{det} \Delta_{1}$, and thus det Δ is relatively prime to the invariant factors of Θ and Φ.

Condition (2) now follows from Lemma 2. We shall show that [$\Delta \Phi$] satisfies (3) by showing that if $\mathfrak{M}=[A \Delta A \Phi] H_{n+m}^{2}$, then \mathfrak{N} is dense in H_{n}^{2}; this is equivalent because of the invertibility of A. It is convenient to regard H_{n}^{2} as the direct sum $H_{m}^{2} \oplus H_{n-m}^{2}$. Note that $A \Delta H_{n}^{2}$ includes $(\operatorname{det} 4) H_{n}^{2}$, which in turn includes $(\operatorname{det} \Delta) H_{m}^{2} \oplus\{0\}$, and also $A \Phi H_{m}^{2}$ includes $\left(\operatorname{det} \Phi_{1}\right) H_{m}^{2} \oplus\{0\}$. Hence \mathfrak{N} includes the sum of the two manifolds $(\operatorname{det} \Delta) H_{m}^{2} \oplus\{0\}$ and $\left(\operatorname{det} \Phi_{1}\right) H_{m}^{2} \oplus\{0\}$. But $\operatorname{det} \Delta$ and $\operatorname{det} \Phi_{1}$ are relatively prime, and thus Beurling's theorem implies that $\overline{\mathfrak{N}}$ includes $H_{m}^{2} \oplus\{0\}$. From the fact that \mathfrak{N} includes $A \Delta H_{n}^{2}$, it now follows that $\overline{\mathfrak{J}}$ also includes $\{0\} \oplus \Psi^{*} \Delta_{0} H_{n}^{2}$, and hence $\overline{\mathfrak{N}} \supset\{0\} \oplus \Psi^{*} \mathfrak{M}=\{0\} \oplus H_{n-m}^{2}$. Thus $\overline{\mathbb{M}}=H_{n}^{2}$.

Corollary 1. If Θ is $n \times m$ inner and Θ^{\prime} is its normal form, then $S(\Theta)<S\left(\Theta^{\prime}\right) .{ }^{2)}$
Proof. Immediate from Theorem 2.
Finally, for any operator T on a Hilbert space \mathfrak{G} the multiplicity μ_{T} is defined to be the minimal cardinality of a set \mathfrak{M} in $\mathfrak{5}$ such that

$$
\mathfrak{Y}=\bigvee_{j=0}^{\infty} T^{j} \mathfrak{M}
$$

In [5; Proposition 3] it is shown, in particular, that if Θ^{\prime} is the normal form of Θ, then

$$
\mu_{S(\theta)} \leqq 2 \mu_{S\left(\theta^{\prime}\right)}
$$

[^1]This follows from a general observation that if $T_{1} \succ^{c i} T_{2}$ and if $X=\left\{X_{\alpha}\right\}$ is a corresponding complete system of injections, then $\mu_{T_{1}} \leqq(\operatorname{card}(X)) \cdot \mu_{T_{2}}$.

By Corollary 1 we can add the following to Proposition 3 of [5].
Corollary 2. If Θ is $n \times m$ inner over H^{∞} and Θ^{\prime} is its quasi-equivalent normal form, then

$$
\mu_{S\left(\theta^{\prime}\right)} \leqq \mu_{S(\theta)} \leqq 2 \mu_{S\left(\theta^{\prime}\right)} .
$$

Proof. Proposition 3 of [5] and Corollary 1.

References

[1] B. Moore, III and E. A. Nordgren, On quasi-equivalence and quasi-similarity, Acta Sci. Math., 34 (1973), 311-316.
[2] E. A. Nordgren, On quasi-equivalence of matrices over H^{∞}, Acta Sci. Math. 34 (1973), 301-310.
[3] D. Sarason, Generalized interpolation on H^{∞}, Trans. Amer. Math. Soc., 127 (1967), 179-203.
[4] B. Sz.-Nagy, Hilbertraum-Operatoren der Klasse C_{0}, Abstract spaces and approximation, Proc. M. R. I. Oberwolfach, Birkhäuser (Basel, 1968), 72-81.
[5] B. Sz.-NAGY and C. FoIaş, Jordan model for contractions of class C. . $_{0}$, Acta Sci. Math., 36 (1974), 305-322.
[6] B. Sz.-NAGY and C. Foraş, Harmonic analysis of operators on Hilbert space, North Holland, Akadémiai Kiadó (Amsterdam, Budapest, 1970).
[7] J. Szücs, Diagonalization theorems for matrices over certain domains, Acta Sci. Math., 36 (1974), 193-201.
(Received October 26, 1974, revised January 8, 1975)

[^0]: ${ }^{1)}$ The normal matrix corresponding to an $n \times m$ matrix Θ over H^{∞} is the $n \times m$ matrix that has the $j^{\text {th }}$ invariant factor θ_{J} of $\boldsymbol{\theta}$ in position $j j$ for $1 \leqq j \leqq m$ and zeros elsewhere. The invariant factor θ_{j} is the quotient $\delta_{j} / \delta_{j-1}$ if $\delta_{j-1} \neq 0$, and 0 if $\delta_{j-1}=0$, where, $\delta_{0}=1$ and δ_{j} is the greatest common inner divisor of the $j^{\text {th }}$ order minors of Θ.

[^1]: ${ }^{2)}$ In the special case that Θ is also *-outer (and hence $S(\Theta) \in C_{10}$) this result is contained in [5], Corollary 2.

