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By L. HATVANI in Szeged 

Introduction 

Consider the ordinary differential equation 

(E) x = X(t, x), where / € /= [0 , and x belongs to the Euclidean «-space R". The function X(t, x): 

r = {(f, x):t£l, | | x | | < # } ( 0 = const.), 

is continuous together with its first partial derivatives with respect to every com-
ponent of x. 

The unique solution of (E) through the point (t0, x0) denoted by x(t)=x(t; t0, x0) 
is supposed to exist in /, provided that ||x0|| is sufficiently small. In addition, assume 
that X(t, 0) = 0 for t£l, i.e. x = 0 is a solution of (E), called the zero solution. 

Recall first the following classical stability concepts. The zero solution of (E) 
. is said to be 

(i) stable: if given any e > 0 and any i„£/ there exists a 3(e, ?0)>0 such that 
| |x0 | |«5(e, i0) implies ||x(i; t0, x0) | |<e for ts=t0. 

(ii) uniformly stable: if given any e=-0 there exists a <5(e)>0 such that t0£I, 
]|x0||<<5(e) imply ||x(i; t0, x0) | |<e for t^t0. 

(iii) asymptotically stable: if it is stable and if given any t0£J there exists a ' 
<t(/0)>0 such that ||x0|| -=cr(/0) implies ||x(i; ta, x0)|| — 0 as i — 

In this paper another type of stability, the so called strong stability will be 
investigated. 

D e f i n i t i o n 1. The zero solution of (E) is said to be strongly stable if given 
any e > 0 there exists a ¿ (e)>0 such that t0£l, ||x0|| <<5(e) imply t0, x0)|| -=--E 
for t a . 

The concept of the strong stability was introduced by G. ASCOLI [1] for linear 
systems. Def. 1 is taken from W. A. COPPEL'S monograph [2]. Obviously strong 
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stability implies uniform stability, which, in turn, implies ordinary stability. Further-
more, the strong stability and the asymptotic stability are always incompatible. 

At present some criteria for this type of stability are known for linear systems 
and for nonlinear systems of the form x=A(t)x+R(t, x), where R(t,x) is small 
in a sense (see [2, p. 66]). 

In general, the investigation of a given stability property by Lyapunov's direct 
method is based on principal theorems of the following type: the existence of a 
function V(t, x): r—J? with certain properties implies the desired stability property. 
In Sec. 1 we establish such a principal theorem for the strong stability, and we 
prove also the converse of this theorem. In Sec. 2 we give a sufficient condition 
for the strong stability by means of differential inequalities. This condition in several 
important cases may be easier to apply then the previous theorem. This , can be 
seen in Sec. 3, where it is applied to the study of perturbed nonlinear differential 
equations and rheonomic mechanical systems under the action of potential forces 

1. Lyapunov functions and the strong stability 

According to the notations of W. H A H N ' S monograph [3], we shall say that 
a function a(r):[0, H)—R belongs to class K (a(r)^K) if it is continuous, strictly 
increasing on [0 , / / ) and a (0)=0 . • 

D e f i n i t i o n 1.1. A function V(t, x):T-*R having continuous first partial 
derivates in T, is said to be a Lyapunov function if V(t, 0 ) s 0 for and V(t, x) 
is positive definite i.e. there exists a function a(r)£K such that V(t, x)^a(\\x\\) 
holds for / € / and for all x belonging to a certain ball Sk= {x: ||x||<A} (A>0). 

For every Lyapunov function V(t, x) define the function 

which is said to be the total derivative of V(t, x) by virtue of equation (E). It is easy 
to see that for every solution x{t) of (£) 

( u ) ^-v{t,x{t)) = v{t.,x{t)) (ta). 

T h e o r e m 1.1. The zero solution of (E) is strongly stable if and only if there 
exists a Lyapunov function V(t, x) having the following properties: 

(1) V(t, x) — 0 as x — 0 uniformly on I; 

(2) F ( i , x ) = 0 ( (? ,x)er ) . 
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P r o o f . Sufficiency. By the assumptions there are functions a{r), b(r)£K 
such that 
(1.2) a ( M ) S V(t, x) s ¿(11x11) 

for i t / a n d ||x|| ^ /. < // , where X is an appropriate positive constant. Given e(0<e<A), 
let ¿ (e )>0 be chosen so that a(e)>6(<5(e)). Let x(t; t0, x0) be a solution of (E) with 
||x0|| <<>(e). Then, from (1.1), (1.2) and property (2), we get t0, x 0 ) | | ) s 
^V(t,x(t; t0,x0))=V(t0,x0)ssb(\\x0\\)sb(d(£))<a(e). Hence ||x(i; i0, x0) | |<e for 
?£/, i.e. the zero solution is strongly stable. 

Necessity. Suppose that the zero solution is strongly stable. Then we shall 
prove that V(t, x) = ||x(0; t, x)|| is a Lyapunov function with properties (1), (2). 

The continuity of the partial derivatives of V(t, x) follows from the smoothness 
of the right hand side of (E). Furthermore, to prove that the function V(t, x) is 
positive definite it is sufficient to show that for every 

my = inf {V{t,x):ta, | | x | | sy}>0. 

Indeed, my^d(y)>0 where <5(y) corresponds to y in the sense of Def. 1. Assuming 
the contrary, we have (f, x)€-T (||x|| Sy) such that ||x(0; i, x)|| = F(i, x)<(5(y). Then, 
according to Def. 1, we have the estimation ||x(i; i, x) | |<y for t£I, which contra-
dicts the inequality ||x(i; f, x)|| = 11*11 —V- Consequently, V(t,x) is a Lyapunov 
function. 

Given £ > 0 choose ¿(e) in the sense of Def. 1. If and ||x||<<>(e), then 
||x(i; i, x) | |<e for t£l. Consequently, the inequality ||x||<(5(e) implies ||x(0; I, x)|| = 
= V(t, x)<£ for t£ / , which proves (1). 

By (1.1) and the uniqueness of the solutions we have 

V(t, x) = dx 
V(x, X(T ; t, x)) 

dx II*(0; t, x) = 0 

for all (t, x). Thus V(t, x) has the property (2). 
The theorem is proved. 
This theorem is analogous to — but evidently independent of — K. P. 

P E R S I D S K I I ' S well know theorem regarding the uniform stability (see [8]). 

5' 
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2. Differential inequalities and the strong stability 

We begin by recalling two lemmas from the theory of differential inequalities 
(cf- [4]). 

L e m m a 2.1. Suppose that the functions (o1{t,u):[tf) — T, f0]Xi2 — R, co2(t,v): 
[t0, t0 + T]XQ-~R are continuous, where Q is an open interval in R; t0 and T are posi-
tive constants. Let u*(t), v*(t) be the maximal solutions of the initial value problems 

{ti = Ct>! u) 

P (to-T* t < t0; 
«Co) = c 

{
i> = co2(t, v) 

in [t0 — T, i0], [t0, to + T] respectively. 
If the continuously differentiate function w(t):[t0 — T, t0 + T]-~R satisfies the 

inequalities w (i0) s £; 
vv (t) s co1 (t, w (0) (t0 ~ T S t =2 to), 

w(t) S to2{t, w(0) (t0 ^ t S to+T), 

then w(t)^u*(t) for t£[t0-T, /0] and w(t)^v*(t) for t£[t0, to + T]. 

L e m m a 2.2. Suppose that the function co(t, w1, u2): [/0 — T, t0 4- T] X Qx X Q2 r 
is continuous and nondecreasing in ut, where and Q2 are open intervals in R; t0 

and T are positive constants. Let u*(t) be the maximal solution of the initial value 
problem 

fu = co(t,u,u) (to-Ts t s t0+T), 

1 u(tQ) = Z,u(t0) = ri (£€ Qlt t]g Q2) 
in [t0-T, to + T]. 

If the twice continuously differentiable function w(t):[t0—T, t0+T] — R satisfies 
the conditions w(t„) = r]; 

w(t) s co(t, w(t), w(t)) (t0-Tr£ t ^ t0 + T), 

then w(t)^u*(t) for t£[t0-T, to + T], 

To formulate the main theorem of this section we have need of the following 
stability concept: 

D e f i n i t i o n . 2 .1 . The zero solution of (E) is said to be uniformly stable at 
the right (at the left) if for every e=>0 there exists a <5(g)>0 such that t0£l and ||x0|| <= 

imply ||x(i; t0, x 0 ) | |<e for all t^t0 (for all f6[0, r0]). 
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The concept of the uniform stability at the right corresponds to the concept 
of the uniform stability introduced by K. P . PERSIDSKII ([see [8]). Here we give a 
necessary and sufficient condition for the uniform stability at the left. 

L e m m a 2.3. The zero solution of (E) is uniformly stable at the left if and 
only if for every e > 0 the inequality 

(2.1) y'(e) = inf {||x(i; t0, x0)|| :?„€/, t^t0, ||x0|| = e} > 0 
holds. 

P r o o f . Necessity. Suppose that the zero solution is uniformly stable at the 
left. We shall prove that for every" e > 0 the inequality y (£)^<5(e)>0 holds, where 
3(E) corresponds to e in the sense of Def. 2.1. Assuming the contrary, we have £ 0 > 0 
such that y(£0)cd(s0). Then, according to (2.1), there are t0, i, x0 such that i0£7, 
i s / 0 , | |x0 | |=£0and | x(i; i0, x0)|| <(5(E0). Hence, by virtue of Def. 2.1, we obtain e 0 = 
= ll*oll = ll*('o> XQ> h> *o))ll < e o which is a contradiction. 

Sufficiency. Let y (s) > 0 for every e > 0 . We shall prove that the zero solution 
is uniformly stable at the left, namely given £ > 0 the inequality ||x0||-<y(e) implies 
11*0; l 0 l * J < t for all t0V, i€[0, ?0]. 

Suppose that this is not true. Then there exist £0, t0, i, x0 (Eo>0, 0 ^ r < i 0 , 
ll*oll<r(£o)) such that | |x(i; t0, x0)|| =e0. By (2.1) we get poll = | |x( i 0 ; t, x(I; 10, x0))|| S 
Sy(£0) in contradiction with the assumption ||5c0||<y(e0). 

The lemma is proved. 

R e m a r k 2.1. Lemma 2.3 shows that uniform stability at the left and asymp-
totic stability are always incompatible. 

Comparing Def. 1 with Def. 2.1, we can easily obtain the following 

L e m m a 2.4. The zero solution of (E) is strongly stable if and only if it is 
uniformly stable at the right and at the left, simultaneously. 

R e m a r k 2.2. Let us now consider the linear system 

(2.2) x = A(t)x, 

where A(t) is a square matrix whose elements are continuous functions for t£ I . 
Denote by <P(t) the fundamental matrix of (2.2) with <P ( 0 )=E, where E is the unit 
matrix. It is easy to see that in this case (2.1) becomes 

y(s) = i n f{e l l t f f t , ) * - 1 «! ! - 1 : /0 ^ 0, t S t0} > 0. 

Consequently, the zero solution of (2.2) is uniformly stable at the left if and only 
if the function | | i>(/)$_ 1(5)| | is bounded on the set 

Moreover, it is well known [2] that the zero solution of (2.2) is uniformly stable 
at the right if and only if the function || (P(i) <P_1(s)|| is bounded on the set 0 ̂  s = t < °°. 
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Thus, the zero solution of (2.2) is strongly stable if and only if the functions ||<£(f)ll> 
| |$ - 1(OII are bounded for / £ / (cf. [2]), i.e. if and only if the zero solution of (2.2) 
is stable together with the zero solution of the adjoint system. (This latter property 
served originally as the definition of the strong stability for the linear system (see [1]): 

E x a m p l e 2.1. Let us consider the equation 

(2.3) u = m g ( u ) 0), 

where the functions f(t):I^R and # (« ) : / -» / are continuous; g (0)=0 , g(w)>0 
i 

for « > 0 and f (g(u))~1du = °° (0</?=const.). Let G(u; M0):(0, °O)-(0, be 
u u 

the inverse of the function J ( g ( s ) ) _ 1 d j (w0>0). Then nontrivial solutions of 
uo 

(2.3) are given by the expression 
t 

(2.4) u(t; t0, u0) = G[f f(s)ds; w0). 
<0 

Using (2.4), by Lemmas 2.3 and 2.4 it is easy to prove the following statement: 
The zero solution of (2.3) is strongly stable if and only if 

t 
lim sup I f f(s) ifa < oo. 

o 

Having these concepts and preliminary results, we state the following 

T h e o r e m 2.1. Assume that there exists a Lyapunov function V(t, x) statisfying 
the following conditions on T: 

(1) V(t, x)—0 as x—0 uniformly on /; 
(2) coj(t, V(t, x))^V(t, x)Sco2(t, V(t, x)), where the functions m^t, u), co2(t, v): 

IXl-*R are continuous and m1 (t, 0) = co2(t, 0) = 0 for t£f; 
(3) the zero solution u=0 (v = 0) of the equation u=a>1(t,u) (i> — co2(t,v)) is 

uniformly stable at the left (at the right). 
Then the zero solution of (E) is strongly stable. 

P r o o f . By the assumptions there exist functions a(r), b(r)£K such that 

(2.5) a ( M ) S V(t, x) ^ ¿(||*||) 

for all t£I, | | x | | < / l w h e r e is an appropriate constant. Let £(0<e-<A) be 
given. According to assumption (3), there exists a 3<(e)>0 such that 0^/?<j<(e) 
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implies 
0 S u*(t; t0, t])^a(s) (i0Ç/, 0 s t s t 0 ) , 

(2-6) 

0 S v*(f, t0, ri)^a(e) (toa, t07£t^oo), 

where u*(t; t0, r\) (v*(t; t0, rj)) is the maximal solution of the equation ù^co^t, u) 
(v=co2{t, u)), passing through the point ( t 0 , t j ) . 

Let now <5(e)>0 be chosen in such a way that b(5(e))< >c(e). Further let x(t) 
be a solution of (E) satisfying ||x(/0)|| <<5(e) for some i 0 £/ . Then, in view of (2.5), 
V(t0,x(t0))<x(e). Applying Lemma 2.1, from (2.6) and assumption (2) we have 

V(t, x(tj) S u* (t; t0, V(t0, x(i0)))<a(e) ( 0 S t S t 0 ) , 

V(t, x(t)) =£ u*(i; t0, V(t0, x(i0)))<a(e) (t0St^oo), 

i.e. V(t, x ( i ) )<a(e ) for tel, from which, by (2.5) it follows that | |x(i)l l<e for tel. 
This means that the zero solution is strongly stable, q.e.d. 

Suppose now that X(t, x) has a continuous derivative with respect also to t, 
too. Then, analogously V{t, x), we define to V(t, x) the function 

provided that V(t, x) has continuous second partial derivatives. 

T h e o r e m 2.2. Assume that there exists a Lyapunov function V(t, x) satisfying 
the following conditions on T: 

-1) V(t, x)—0 and V(t, x)—0 as x—0 uniformly on I; 
2) V(t, x)S(o{t, V(t, x), V(t, x)), where the function <x>(t, u1, U2):IXIXR-R 

is continuous and nondecreasing in ult and co(t, 0, 0) = 0 for tel', 
3) the zero solution of the equation u =œ(t,u,ù) is strongly u-stable i.e. if 

given any e > 0 there exists a <5(e)>0 such that Osu0<ô(e), |w0|<<5(fi) imply 
0Su(t; t0, u0, ù0)<e for tÇ.1. 

Then the zero solution of (E) is strongly stable. 

The proof of this theorem, based on Lemma 2.2, is similar to that of Theorem 
2.1, and therefore it is omitted. 

3. Applications 

I. Let us consider the systems 

(£) x = X(t, x) 

(3.1) y = X{t, y)+R(t, y) (R(t, 0) = 0, / € / ) . 
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Applying Theorem 2.1 we get conditions which guarantee that the strong stability 
of the zero solution of (E) is preserved under the perturbation R(t,y). 

We begin by recalling some notations and preliminary results. It is known [2] 
that the solution x(t;t0, x0) of (E) is a differentiate function of t, t0, x0 on IxS 
and the nXn matrix 

dx,(t; t0, Xo) 
<P(t; t0, Xo) 

dx0j 

is the fundamental matrix with <P(t0; t0, x0)=E of the variational systems 

(3.2) z = Xx(t; x(t; t0, x0))z, 

where the nXn matrix Xx is defined by 

'dX.i Xx(t, x) = 

For any real square matrix A, A* denotes the transpose of A and X(A) denotes the 
smallest eigenvalue of the symmetric matrix 1/2(A+A*). We use also the notation 
a(0=inf{A(X,( / ,x)) : |W|</ /} . 

Applying WAZEWSKI'S inequality [5] to the system (3.2), we obtain 
t 

(3.3) ||<P{t; to, x0)|| « Lexp(f <x(s)ds) (0 ^ t ^ t0; L = const.). 

T h e o r e m 3.1. Let the solution x=0 of (E) be strongly stable. Then there 
are continuous functions }>(/):/—R (y(t)>0) and g(r)£K such that the inequality 

(3.4) ||i?(i, >011 ̂  y(0^(ll^ll) i(t,y)er) 

implies the strong stability of the solution y = 0 of (3.1). 

P r o o f . Let the solution x = 0 of (E) be strongly stable. Let us consider the 
function V(t,y) = \\x(0-,t,y)\\i. In the proof of Theorem 1.1 it was verified that 
[V(i, j)]1/2 is a Lyapunov function with the property [V(t, j)]1/2—0 as y-^0 uniformly 
on I. Consequently, there are functions a(r), b(r)£K such that 

(3-5) a(\\y\\)^VXt,y)^b(m)-

Choose continuous functions y ( i )>0 and g(r)£K such that 

(3.6) / » ( , ) e x p [ - / « ( S H < > < < ~ ; 

(0</j=const.), where by a~x(r) the inverse of the function a(r) is denoted. We 
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have to prove that assumption (3.4) with these functions y(i), g(r) implies the 
strong stability of the solution y=0 of (3.1). 

Using (z1; z2) to denote the scalar product of vectors z1,z2eR", for the total 
derivative V'(t,y) of V(t, y) by virtue of (3.1) we have 

V'(t, y) = V(t, y) + J d V £ y ) Rj(t, y) = 

(3.7) = 2 J x{0; t, y), x(0;t, y)j Rj(t, y) = 

= 2($(0; t,y)R(t,y),x(0; t,y)). 

Applying the Cauchy inequality, from (3.3)—(3.5) and (3.7) we obtain the estimation 

(3.8) \V'(t, y)\ - 2Ly{i) exp [ - / «(*) ds] g( |b | | ) ||*(0; t, y)\\ ^ 
o 

^ 2Ly(t) exp [ - / a(i) ds] g{a-\V{t, y)))[V(t, y)f'\ 
0 

Now (3.5), (3.6), (3.8) and Example 2.1 show that we can apply Theorem 2.1 to-
equation (3.1). This concludes the proof. x 

It can be seen from (3.6) that the functions y{t),g(r) depend, in general, on 
the unperturbed system (E). The following corollary shows that if (E) is linear then. 
y(t), g(r) are independent of (E). 

C o r o l l a r y 3.1. Suppose that the functions y ( i ) > 0 and g{r)£K have the properties: 

(3.9) f y(t) dt < J = co (0 < q = const.), 
o o g y ) 

and let R(t, y) satisfy assumption (3.4). 

Then the strong stability of the solution x=0 of the system 

(3.10) x = A(t)x 

implies the strong stability of the solution y~Q of the perturbed system 

(3.11) y = A{t)y + R{t,y). 

P r o o f . In Remark 2.2 it was proved that the solution x = 0 of (3.10) is strongly 
stable if and only if the fundamental matrix <t>{t) of (3.10) and its inverse are bounded 
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in the matrix norm for t£l. Therefore we may suppose that in (3.5)a(r) = c1r2 and 
-b(r) = c2r2 with appropriate positive constants c1 ; c2. Furthermore, 4>{0\t,y) = 
= 4>~1(t), consequently the estimation (3.8) has the form 

\V'{t,y)\ S c3y(t)g ±V(t,y) 
LC1 

1 / 2 

[V(t, y)]112 (c. - const), 

showing that in this case just the assumption (3.9) guarantees the applicability of 
Theorem 2.1. 

The corollary is proved. 
Corollary 3 .1 contains one of W . A . COPPEL'S theorems [2, Theorem 7, p. 67] 

.as a special case. 

H. Let 1 

(3.12) fil = -%L ( / = 1 , 2 . . . . , « ) 

be the equations of a mechanical system in canonical form. Assume that q=0 is 
an equilibrium position. 

Let us first suppose that (3.12) describes a conservative and scleronomic system. 
Then the Hamiltonian function H(q,p) is the sum of the kinetic energy T(q,p) 
and the potential energy W(q)\ T(q,p) is positive definite with respect to p, and 
W /(0)=0. A well known theorem of J. L. LAGRANGE assures that the equilibrium 
position <7=0 is stable if W has an isolated minimum there [7]. Theorem 1.1 shows 
that under the same condition the equilibrium position is not only stable but also 
;strongly stable. 

Consider now a rheonomic system under the action of potential forces, having 
Hamiltonian function of the form 

•(3 .13) H{t, q,p) — z atjOPiPj + Wiq) (W(0) = 0), 
I, 7 = 1 

where the scalar functions au(t) are continuously differentiate and bounded for 
ta. 

T h e o r e m 3.2. If the Hamiltonian function (3.13) is positive definite and 

(3.14) / max j : Uj = 1 , 2 , . . . , «J di 

.then the equilibrium position is strongly stable. 
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Proo f . Since H is positive definite, there exist a number a > 0 and a function 

b(r)£K such that H(t, q, p)^a 2 Pi + 6(Ml)- Furthermore, 
/=1 

H=H(t>q,P) = dJÍ^ = J ^ a i Á t ) P i ^ 

hence we obtain the estimation 

2 L i,j = l 

d 

(pHp*) ^ - ^ m a x J | - ^ - a l V ( / ) : i,j = 1 , 2 , . . , , « j / / ( i , q,p). 

Moreover, the boundedriess of the functions a u (t) guarantees that H(t, q, p) —0 
as 0 and p— 0 uniformly on /. 

These properties of H, assumption (3.14), and Example 2.1 show that Theorem 
2.1 can be applied to equations (3.12), and this concludes the proof. 

The author is very grateful to V. V. Rumyantsev and L. Pintér for many useful 
discussions. 
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