
The convex structure of the set of positive 
approximants for a given operator 

By RICHARD BOULDIN in Athens (Georgia, U.S.A.) 

§ 1. Introduction 

In [6], P. R. HALMOS showed that any (bounded linear) operator T has a positive 
approximant, denoted by P0. This means that P0 is a nonnegative operator and the 
norm || T—PqII is the same as the distance from T to the set of nonnegative operators. 
Other basic facts were collected in [6] and in [2]. Halmos asked for the extreme points 
of the convex set of positive approximants, denoted by 8P(T), and for a characteriza-
tion of those T f o r which 0>(T) is a singleton set. This paper characterizes a normal 
operator T f o r which 3P(T) is ^-dimensional and constructs some extreme points of 
that set. (For dimension of a convex set see pp. 7—9 of [8].) 

In [3] we studied the set of positive near-approximants of T, denoted SP'{T), 
where a positive near-approximant is a best approximation for T using the new norm 

|| |r | | |2 = ||B2 + C2|| 
with T=B+iC, B=B*, C=C*. The distance from T to the nonnegative operators 
is the same whether it is computed with the new norm or with the operator norm. 
This distance is denoted by S(T) and is referred to as the modulus of positivity. 
Recall from [3] that the new norm is between the operator norm and the numerical 
radius. We use [5] as a source for many terms and facts that we shall not explain. 

§ 2. Preliminaries 

Frequently in the study of a convex set the dimension of the convex set is appar-
ent. Then generally the investigation turns to the subtler question of determinig the 
extreme points of the convex set. Moreover, if the nonempty convex set is a compact 
subset of some locally convex topological vector space then the Krein—Milman 
theorem implies that the closed convex hull of the extreme points of the convex 
set is the convex set. In the case that the dimension of either 3f(T) or S?'(T) is finite 
then the following theorem should inspire some interest in the extreme points. 

1 A 
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2.1. T h e o r e m . Both of the convex sets £?(T) and 0>'{T) are the closed convex 
hull of their extreme points. 

P r o o f . Clearly the set of bounded operators on H is a locally convex topo-
logical vector space with the weak operator topology and so it suffices to show 
that each of the two sets is compact in the weak operator topology. Since any ball 
of bounded operators is compact in the weak operator topology (see problem 6 p. 
512 [4]) and since both sets 0*(T) and 0>'(T) are obviously contained in such balls, 
it would suffice to show that both sets are closed in the weak operator topology. 
We define two functions cp and ij/ on the bounded operators of H by the formulas 

cp(S)=\\T-S\\, i/,(S) = \\\T-S\\\. 

Let @ = {S:(p(S)>5(T)} and <f= {S:ijj(S)>5(T)}. Since the nonnegative operators; 
are obviously closed in the weak operator topology it would suffice to prove that 
1% and Sf are open in that topology. In order to prove the last assertion it would 
suffice to show that (p and \]/ are lower semicontinuous and it is clear that <p can be 
written as the supremum of functions which are obviously continuous with respect 
to the weak operator topology. It follows that 0>{T) is compact in the weak operator 
topology and the same conclusion will follow for 3P'(T) once we show that i/i is. 
lower semicontinuous. The last property can be deduced from the following formula 
from Theorem 3.1 of [3]: 

HIT||| = JW^T+TTY'2 = j [W(T*T+TT*)]1/2. 

Any consideration of the convex structure of either 0>{T) or 3?'{T) will require 
the following theorem from [6]. 

2.2. T h e o r e m . (HALMOS) If T=B+iC with B=B*, C=C* then 

inf { | | r - / ' | | : J P ^ 0 } = inf { r : 5 + ( r 2 - C ! ) 1 / 2 ^ 0 } . 

If the above quantity is denoted by 5 then Pu = B + (32— C2)1/2 is a positive approximant 
for T. 

§ 3. The main theorem 

The main theorem of this paper will be proved with a sequence of lemmas in 
the next section. In this section we state the result. 

3.1. T h e o r e m . Let 2P' (T) denote the convex set of positive near-approximants 
for the normal operator T and let 

H0 = (P0H)-f){(d*-C*)H)-
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If p is the dimension of H0 then 

dim 3P'{T) = p2. 

Here all infinite cardinal numbers are identified. 

After this theorem is proved the techniques will be extended to obtain the same 
result for 3f(T). Then by restricting the generality we shall construct extreme points 
for both sets. However, we .should note that a positive near-approximant is not 
necessarily a positive approximant. For example, the positive part of the real part 

of is a positive near-approximant although the Halmos positive approximant 

P0 is the unique positive approximant. 
In the sequel we shall repeatedly need the following result from [3]. 

3.2. L e m m a . If Ru ..., R„ are commuting nonnegative operators on H then 
there is a nonnegative operator R such that 

(i) RRj = RjR for every j, 
(ii) R^Rj for every j, 

(iii) (RH)~ = r\{(RJH)-:j= 1, ...,«}. 

§ 4. Proof of the main theorem 

N o t a t i o n s . By A0 we shall denote the positive operator constructed from 
P0 and 2(<52—C2)1/2 by appeal to Lemma 3.2 with T normal. Thus A0 is dominated 
by P0 and 2(S2 — C2)1/2; A0 commutes with both operators and ( A 0 H ) ~ is H0. 

4.1. L e m m a . If A is a positive operator such that 

O^AtbA0 

and A commutes with (¿2 — C2)1/2 then P0 — A is a positive near-approximant for T. 

P r o o f . In view of the given inequality we have 

0 SA^P0 and A^2(52-C2)112. 

Thus we have the following inequality 

—(<52 —C2)1/2 S ^ —(<52 —C2)1/2 (<52-C2)1/2 

and consequently we have 
( ¿ 2 _ C 2 ) l / 2 ± ^ _ ( ( 5 2 _ C 2 ) l / 2 ) g Q 

Since A commutes with (<52 — C2)1/2 the above two inequalities imply that 

(,52-C2)-(A-(d2-C2y'2)2 ^ 0, 

'•e- <52 ^ (A—(52 — Cz)1/2)2 + C2. 

i* 
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It now follows that 

52 ^ ||(/4 — (<52 — C2)1/2)2 + C2|| = | |M-(<52-C2)1 / 2+/C| | |2 = 

and so P0 —A is a positive near-approximant for T. 

4.2. Lemma. Let E( •) be the spectral measure for a self adjoint operator A. 
If E([a, ¿0)^0 then either (i) or (ii) below holds: 

(i) E{[a, c))?i0 and E([c, b))?i0 for some c f j a , b) 
(ii) a(A\E{[a, b))H) = {e} for some e£[a, b). 

P r o o f . Take two strictly monotone sequences, say {ak: k = 0, 1, ...} and 

{¿>/.7 = 0,1, . . .} , such that a0 = {a + b)l2 = b0, ak-*a, bj-»b and \ak-ak+1\^ — , 
1 

\bj-bJ+j|<y for j,k = 0, 1, . . . . Since 

(*) [«, b) = { f l } U U K + i , u [bj,bj+1), k=0 j=0 

at least one of the sets on the right of (* ) has nonzero measure. If only {a} has 
nonzero measure then E((a, 6)) = 0 and so 

o(A\E{{a, b))H) = a(A\E({a})H)a {a} 

which proves (ii) above since no bounded operator can have empty spectrum. If 
two sets on the right of (*) have nonzero measure then clearly (i) follows from an 
appropriate choice of c. Thus we may assume that exactly one interval on the right 
of (* ) has nonzero measure; denote that interval by [cl5 d j . Partition this interval 

1 
in a manner analogous to (*) except that every subinterval has length less than —. 

As reasoned above, either the lemma is proved at this step or else there is exactly 
one subinterval, say [c2, d„), with nonzero measure. Either this process terminates 
and the lemma is proved or else it continues indefinitely. Assume the latter and let 
the intervals constructed be {[a b), [cx, d j , [c2, d2), ...}. Thus the sequence {E([a, b)) 
-E([ci> E([c„ ¿4)), ...} consists of only one nonzero constant. By the Monotone 
Convergence Theorem (applied weakly) that constant is the measure of 

S = n [cj,djY 
7=l 

By the construction of the subintervals S consists of only one point, say {e}. 
T h u S <r(/i|£([a, b))H) = o{A\E{{e})H)<z {e} 

and equality follows since the bounded operator cannot have empty spectrum. 
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4.3. L e m m a . Let {Q1, Q2, ...} be a countably infinite set of mutually ortho-
gonal nonzero projections onto subspaces of A0H which reduce A0. Then the set 
e€ = {A0Qk: k = 1 , 2 , . . . } is linearly independent over the real numbers. 

m 
Proo f . Assume that c1,...,cm are constants such that 2 c j A o Q n u ) = 0 

or equivalently 

0 = A0 2CJQ„(J). 
j=i 

Since Q„U)H<z A0H and A0 is one-to-one on A0H, we see that A0Q„(j)5*0. Further-
more, since the projections are mutually orthogonal, for each j we can choose a 
vector / such that 0. Thus every Cj is zero and this proves the linear inde-
pendence of 

4.4. L e m m a . If A0H is infinite dimensional and the spectrum of A0 is not 
a finite set then the convex set of all positive near-approximants of T is infinite dimen-
sional. 

P r o o f . Let 1% consist of all collections of disjoint intervals, for example ¡ f = 
= {/y: ycr}, where Iy = [ay, by) and E(Iy)^0 for all and £ ( • ) is the spectral 
measure of A0. Then ^ is partially ordered by inclusion and Zorn's lemma easily 
shows the existence of a maximal element S^. For the sake of obtaining a contra-
diction assume that S^ is finite, say . . . , Im} with Ik — [ak, bk) for k = 1, ...,m. 
If we could find ck£(ak, bk) for some k such that 

E([ak,ck))^ 0 and E([ck,bk))^ 0 

then we would contradict the maximality of ¿f0. Thus we may appeal to Lemma 4.2 
and conclude that there exists ekÇ_Ik for k=l, ...,m such that 

a{A0\E(J)H)<Z{e1,...,em} 
m 

where J = |J Ik. Since 

cr(A0) = a{A0\E(J)H)[Ja{A0\E(J')H) 

with J' — [0, 2 M o | | ) \ J and since the spectrum of A0 is not a finite set, it follows 
that <j(A0\E(J')H) is nonempty and E(J') is nonzero. From the form of the intervals 
lk and the definitions of J and of J' it is clear that we can find an interval [a, /?) 
contained in J' with the property that £([a, / 0 ) ^ 0 . This contradicts the maximality 
of Sf0 and consequently £fa must be infinite. Let be a countably infinite collection 
of intervals belonging to with the property that zero does not belong to any 
interval, say i ^ = { / 1 , / 2 , ...}. 

Let {A0E(I„): n = 1,2, ...}. Because (<52—C2)^2 commutes with A0 it com-
mutes with E(I„) for « = 1 , 2 , . . . and consequently Lemma ,4.1 shows that each 
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element of {P0 — C: C f / t f } is a positive near-approximant. Since zero does not belong 
to /„ we have E{I„)H<zA0H and Lemma 4.3 shows that if is linearly independent 
over the reals. If 2^+ S is any translate of a vector space J f such that 
then 0 belongs to 3 P + S - P 0 . Thus S - P 0 belongs to tf thus J i ? + S - P 0 is actually 

and so consequently 
dim J f ^ dim if. 

Hence 0>'{T) is an infinite dimensional convex set. 

4.5. Le mm a. Let 3P'(T) denote the set of positive near-approximants of T= 
=B+iC with B=B*, C=C*. If the dimension of H0 is a finite positive integer p then 

the dimension of the convex set 3P'(T) is not greater than p2. 

P r o o f . An operator on H0 is self adjoint if its matrix (with respect to any 
basis) is conjugate symmetric; this fact can be used to give a basis for the self adjoint 
operators on H0 considered as a real vector space. The number of elements in that 
basis is p2, and consequently by the argument in the last two sentences of the proof 
of Lemma 4.4 it would suffice to prove that 

(P0-P)HaH(> 

for every P£0>'(T). According to Corollary 3.2 of [3] we know that P„^P0-P^O 
and so ker P0cz ker (P0-P), consequently ( ( P 0 - P ) H ) ~ c {PaH)~ for every P£0>'{T) 
Clearly it would suffice to prove that ( ( P 0 — P ) H ) ~ is contained in ((<52-C2)1 / 2 if)~. 
Because 

62 = |||r-/'|||2 = \\{B-P)2 + C2\\ 

thus 82 — C2^(B—P)2, and so we have 

(§2_C2y/2 s \B-P\ ^ B-P, 
consequently 

2(52-C2)1/2 ^ P0-P. 

By the above argument the lemma is proved. 
4.6. L e m m a . The convex set 0>'(T) is infinite dimensional over the reals if 

and only if H0 is an infinite dimensional subspace. 

P r o o f . Recall that the operator A0 constructed by appeal to Lemma 3.2 has 
the property that 
(*) (A0H)-=H0 

and so the hypothesis implies that A0H is infinite dimensional. The case that the 
spectrum of A0 is not a finite set is handled by Lemma 4.4 and consequently we 
may assume that 

o(A0)= {X, ,...,!„}. 
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Since Aq is self adjoint it is easily seen that each l j is an eigenvalue and 

A0H = (A0H)~ = E{{X[, ...,A'e))H 

where {?•.[, . , . , ?/e} is the set of nonzero eigenvalues of A0 and £ ( • ) is the spectral 
measure of A0. Thus one of the nonzero eigenvalues, say A-, has infinite multiplicity. 

Because Pg and (<52 — C2)1/2 commute with A0 they commute with 
E{{k[})H, which we shall denote by Hi, reduces P0 and (<52-C2)1/2. In view of (* ) 
we may assume that (<52 — C£)ll2H1 is infinite dimensional. Thus if the spectrum of 
(<52 -C2)1,2\H1 is finite then it has a nonzero eigenvalue with infinite multiplicity. 
Clearly we can find a countably infinite collection of mutually orthogonal projec-
tions onto subspaces of Hl which reduce (S2 — C2)1/2\H1; say Q ls Q2, . . . . Since QkH 
reduces A0 and is contained in A 0 f f 1 for k = l, 2, . . . , we see by Lemma 4.3 that 
<g={A0Qk: k = 1, 2, ...} is a linearly independent set over the reals. Because Qk 

commutes with (<52 — C2)1/2 we conclude from Lemma 4.1 each element of {P0—C: 
is a positive near-approximant. Thus in the case that (52 — C2)1,z\H1 has finite 

spectrum # is an infinite set of linearly independent positive operators. 
If (52 — C2)ll2\H1 does not have finite spectrum then we can exploit Lemma 4.2 

as was done in the first paragraph of the proof of Lemma 4.4 to obtain a countably 
infinite set of mutually orthogonal projections onto subspaces of H1 which reduce 
(<52 — C2)1'2. As in the paragraph above we deduce the existence of an infinite set 
of positive operators which is linearly independent over the reals. By the argument 
in the last two sentences of the proof of Lemma 4.4, we have shown !P'(T) to be an 
infinite dimensional convex set provided that H0 is an infinite dimensional subspace. 

If H0 were a nontrivial finite dimensional subspacs then we could conclude 
from Lemma 4.5 that ¿P'(T) is a finite dimensional convex set. If H0 were trivial 
then Theorem 4.2 in [3] implies that <?'(T) = {PQ}. Hence this lemma is proved. 

4.7. L e m m a . The subspace H0 is finite dimensional then it reduces the operator 

(¿2 —C2)1/2|2 + C2; if in addition S denotes the restriction of that operator to 

H0 then ||S|| <c>2. 

P r o o f . Since (A0H)~=H0 and H0 is finite dimensional, we have A0H=H0. 
Because A0 commutes with C2 we see that H0 is invariant under C2 and (<S2 — C2)1/2; 

thus HQ reduces /¡0-(£2-C2)1/2J2 + C2. . 

1 
Note that Lemma 4.1 implies that P0 A0 is a positive near-approximant 

for T and consequently we know that 

IISII = T - P 0 + J A 0 Ho 
2 

S Ô2. 
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If equality holds in the above inequality then 52 is an eigenvalue of S. In order to 
obtain a contradiction we assume this. Let H i — Ilqt(S—¿2) and take O ^ h ^ H i . 
By the commutativity of A0 and C2 we have 

(-J- A2 + A0(S2- C2)1'2 + (<53 - C2)J h = ( y A - (<52 - C2)1/2J h = (S2 — C2)h 

or | ^ 0 - ( 5 a - C 2 ) 1 / 2 J y 4 o A = 0 . Since (52 - C2)1'2 is obviously invertible, it 

must be that /?£ker A0. On //„ the operator A0 is one-to-one and so h=0. This 
contradiction proves the lemma. 

4.8. L e m m a . If the dimension of H0 is the finite positive integer p then 

dim 9'iX) = p2. 

P r o o f . It was established in Lemma 4.5 that p2 is an upper bound for the 
dimension of @'(T). Recall that A0 commutes with both P0 and (d2-C2)112; also 
we have (A0H)~ =H0. By the finite dimensionality we have A^H—and conse-
quently H0 is invariant under P0 and (<52-C2)1/2; thus H0 reduces A0 and (<52-C2)1/2 

and we can simultaneously diagonalize A0\N0 and (S2—C2)1/2\ff0. Let {ex, ..., ep} 
be an orthonormal basis which simultaneously diagonalizes the two restrictions above 
and let Qk be the orthogonal projection onto ek for k = \, p. Note that each 
Qk\H0 commutes with both A0\H0 and ( 5 2 - C 2 ) 1 / 2 \ H 0 and QkH<zA0H. By Lemma 4.1 
{Pq—A0QK: k = 1, . . . , p } consists of positive near-approximants and the argument 
used to prove Lemma 4.3 shows that {A0Q k: k = \, ...,p) is a linearly independ-
ent set. 

Since H0 reduces (<52—C2)1/2 it clearly reduces C 2 and we may apply Lemma 4.7. 
Assume that A0 restricted to H0 is diag {2al5 . . . , 2aJ with a1^a2^...Map and note 
that ap is positive since H0=A0H. For any positive y not greater than ap define Ay 

on H0 by 

Ay = diag {ai-y, ..., ap-y} + ( - , ek)yej + {-, ej)yek 

for any pair o f j , k=l, ..., p and k>j. Since Ay is obviously self adjoint and converges 

to in operator norm, the upper semicontinuity of the spectrum of y ^ o shows 

that Ay is nonnegative for all y sufficiently small. Because the norm of 

<•, ek)ej + ( - , ej)ek 

is one, it is easy to see that — A0—Ay is nonnegative. The continuity of the expression 

(x-(52-C2)1/2)2 + C2 



The convex structure of positive approximants 185 

in X with respect to the operator norm and Lemma 4.7 show that 

| | ( y 4 . /_( 52_C2 ) l /2)2 + C 2 | | g ¿2 

for all y sufficiently small. It now follows that for all y sufficiently small we have 

0 j A ^ P a 

I l i r - C P o - ^ g r = | | K - ( < 5 2 - C 2 ) 1 / 2 ) 2 + C2 | | ^ <52 

where AY has been extended to all- of H by making it zero on the orthogonal com-
plement of H0. Thus P0—AY is a positive near-approximant of T. An analogous 
argument shows that P0 — A' is a positive near-approximant when A'Y is zero on 
(Hq)1- and its restriction to H0 is 

diag {fli — y, ..., ap — y] + (-,ek) iyej - < •, ej)iyek 

and y is sufficiently small. The linear independence over the reals of the following 
set is apparent: 

{A0Qh Ay, A'y\ i = 1, ...,p and k >/}. 

There are p2 operators in this set and the argument in the last two sentences of the 
proof of Lemma 4.4 shows that the dimension of 3P' (T ) as a convex set is at least 
p". Equality then follows from Lemma 4.5. 

P r o o f of T h e o r e m 3.1. This theorem follows from Lemma 4.6 if p is 
infinite; it follows from Lemma 4.8 if p is a finite positive integer; it follows from 
Theorem 4.2 of [3] if p equals zero. 

§ 5. Consequences of § 4 for positive approximants 

The method used in the preceding section to construct positive near-approximants 
was initiated as a method for constructing positive approximants in Theorem 4.3 
of [2]. The object of this section is to show that the construction of near-approxi-
mants in the preceding section can be refined so that approximants result. First we 
must prove a result analogous to Lemma 4.7 which can be applied to the operator 
norm just as Lemma 4.7 was applied to the new norm. 

5.1. L e m m a . If A0 commutes with C and H0 is finite dimensional then H0 

reduces — (<52 — C2)1/2 + /C and if S denotes the restriction of that operator to 

H0 then we have ||S||<<5. 
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P r o o f . Since (A0H)~=H0 and H0 is finite dimensional, we have A0H=H0. 

Because A0 commutes with C we know that H0 reduces C, (<52 — C2)1/2 and — A0 — 

—(<52—C2)1/2 + iC. Moreover, the last operator is normal and consequently S is 
normal. Because the numerical radius of S equals ||5||, Theorem 3.1 of [3] implies 
that ||[SHI equals ||S||. The desired conclusion now follows from Lemma 4.7. 

Now we give our basic theorem for positive approximants. 

5.2. T h e o r e m . Let T be a normal operator and let p be the dimension of the 
subspace H0. If 3? (T) denotes the convex set of positive approximants of T then its 
real dimension is p2. Here all infinite cardinal numbers are identified. 

P r o o f . By Lemma 4.5 it is immediate that the dimension of is not greater 
than p2; recall that 3?{T) is contained in The equality will be established 
when we show that each positive near-approximant previously constructed is in 
fact a positive approximant. Note that each positive near-approximant constructed 
in the proofs of Lemma 4.4, Lemma 4.6 and the first part of the proof of Lemma 
4.8 has form P0—A0Q where Q is an orthogonal projection commuting with A0 

and (<52 — C2)1/2. Because 7" is normal, B and C commute. Furthermore, it is straight-
forward to see that Lemma 3.2 implies that there is a positive operator Ax dominated 
byj/2(<S-C)1/2, ^2(3+ C)1'2 and P¡'2; clearly Al commutes with C and with P0. 
If we set A0 = (A1)2 then it is routine to see that this A0 has all the properties of the 
previous A0 and also it commutes with C and B. It follows that {A0, B, C, PQ} 
is a set of commuting operators and consequently each commutes with all spectral 
projections of the others. If we take Q to be a spectral projection for one of the 
above operators then 

\\T~(P0-A0Q)\\2 = ||-(<52-C2)1/2 + /C + AeH2 = 

— Ill-(<52 —C2)1/2 + iC+/4oQ|||2 = <52 

since both norms agree on normal operators. (Recall Theorem 3.1 of [3].) An exami-
nation of those previous constructions shows that Q can be taken to be such a 
spectral projection of either A0 or (<52 — C2)1/2 except possibly when (S2 — C2)1/2 

restricted to an infinite dimensional eigenspace of A0 has an infinite dimensional 
eigenvalue. In the latter case restrict P0 to the infinite dimensional eigenspace of 
{¿2—C2)1/2 and use either the spectral projections or else projections onto arbitrary 
eigenvectors of P0. Thus if H0 is infinite dimensional it is established that SP{T) 
is infinite dimensional. Of course, if H0 is {0} then (T ) is just {P0} by Theorem 4.2 
of [3] and necessarily 0'(T) = {Po} which proves this theorem in that case. 

The only remaining case requires that p be a finite positive integer. The first 
positive near-approximants constructed in Lemma 4.8 have the form Pn — A0Q and 
we may use the argument above to guarantee that each P0 — A0Q is actually a positive 
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approximant. It would suffice to show that each P0—A y and P0—A'y constructed 
in the proof of Lemma 4.8 is a positive approximant. The arguments given in that 
earlier proof show that 

and 0 =s A'y == A0 3= P0 

for all positive y sufficiently small. The continuity of the expression 

X-(S 2 - C 2 ) 1 / 2 + /C 

in Z w i t h respect to the operator norm and Lemma 5.1 show that for y sufficiently 
small 

IMy-(<5 a-C2)1 / 2 + /C|| S <5 and \\A'y-(52-C2)^2 + iC\\ ^ 5. 

Thus each P0—Ay and each P0 — A'y is a positive approximant. The real linear inde-
pendence of the set 

{A0Qi, Ay,A'y: i = 1, ... ,p and k >y} 
proves the theorem. 

It is immediate from the preceding theorem and Theorem 3.1 that and 
&"'{T) have the same dimension when T is normal. Although it is apparent that 

is contained in !?'(T), we are unable to determine when the two sets must 
coincide in general. From Theorem 5.2 of [3] the two convex sets coincide if T has 
a unique positive approximant or if T has a unique positive near-approximant. 
In the sixth section of this paper we shall show that the two convex sets coincide if 
either is one dimensional. The difficulty of handling the general case centers around 
the positive near-approximants which do not commute with A0. 

§ 6. Extreme Points of 0>(T) 

Before we give our main result on extreme points we state the following lemma 
which is a consequence of well-known results. 

6.1. L e m m a . Let {e1, e„) be an orthonormal basis which simultaneously 
diagonalizes the commuting positive operators Rlt R2, R3 on the Hilbert space H0. 
Then the lower bound operator for Rl, R2, R3 constructed by Lemma 3.2 is 

diag {n!, . . . , n n } 

relative to {el, ..., e„} where ¡ij is min {(/?,• e^-Cy): /'=1, 2, 3} for j= 1, . . . , / j . 

6.2. T h e o r e m . Assume that T is normal and that H0 is finite dimensional. 
If {<?!, ..., ep} is an orthonormal basis which diagonalizes the restrictions of A0, P0 

and C to H0 and if Q is the orthogonal projection onto ek then P0 — A0Q is an extreme 
point of each of the sets 0>{T) and 0>'(T). 
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P r o o f . It was indicated in the first paragraph of the proof of Theorem 5.2 
that P0—A0Q is a positive near-approximant of T because Q commutes with A0 

and 2(52 — C2)1/2. As was shown in that proof the commutativity of Q and C implies 
that P0-A0Q is a positive approximant of T. Let % denote the convex set {P0—P: 

Clearly it suffices to show that A0Q is an extreme point of c€. 
Take Pe0>'(T) and note that 

<52 = \\T-P\\2 = | |(5—P)2+C2 | [ 

and so S2^(B— P)2 + C2. Since taking square roots is a monotone operator function 
we have 

(<52-C2)1/2 a ( { B - P f f 2 =\B-P\ 

and it is easily seen that \B-P\^B-P and \B-P\^P-B. Thus 
(¿2_C2)i/2 s p_B; pQ = j g + ( ^ 2 _ C 2 ) l / 2 a p a 0 

and 
(<52 —C2)1/2 ^ B-P, 2(<52—C2)1/a S P0-P S 0. 

Thus P0—P, which we shall denote by A, is dominated by both Pg and 2(<52 — C2)1/2. 
It follows that: 

ker A ^ s p a n {ker P0, ker ( d 2 - C 2 ) 1 / 2 } 
or 

(AH)~ c (P0H)~ n(((52 — C2)1/2H)~ = //„. 

Apply Lemma 6.1 to the derivation of Ax in the first paragraph of the proof 
of Theorem 5.2. It follows that every eigenvalue of A1 is an eigenvalue of one of 
the operators / 2 (<5 — C)1/2, )/2(<5 + C) l / 2 and P ^ 2 with common eigenvectors and 
so each eigenvalue of A0 is an eigenvalue of one of the two operators P0 and 
2(<52—C2)112 with the same eigenvectors. From the preceding paragraph we know 
that P£0>'(T) implies that 
(I) AHcz(AH)~ = ( ( P o - P ) / / ) - ^ 

and OmA^P0, A^2(d2-C2)112. 
Now assume that A0Q = /.A2 + (l — ?.)A3 with A€(0, 1) and A2, A 3 B y the 

preceding paragraph we have 

(II) (A2 ek, ek> si (Ao ek, ek) = (A0 Qek, ek), (A3 ek, ek) == <A0 Qek, ek). 
For e j ^ e k we have 

0 s A(A2ej, ej) + ( 1 -A)(A3ej, ej) = ((AA2 + (1 -X)At)eJt e,) = (A0Qej,ej) = 0 

and so (A2ej, ej) = 0 = (A3ej, ej) for ej^ek. 

From this and (I) it follows that 

Aj — (•, ek)nJkek for j = 2, 3. 
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From (II) we conclude that 

(III) n]k s (A(lQek, ek) for j =2,3 

and if either inequality were strict it would certainly follow that 

AA2 + (1-A)A^A0Q. 

Hence equality holds in each inequality of (III); it follows that A2 = A0Q — A-,,. 
Apparently, A0Q is an extreme point of # and the theorem is proved. 

As we noted earlier the preceding theorem gives a characterization of those 
normal operators T for which the dimension of 0"(T) is one. In that circumstance 
it also gives a very explicit description of both SP(T) and 2P' (T). 

6.3. C o r o l l a r y . Assume that T is normal and that H0 is a one dimensional 
subspace. Let /0 be a unit vector in H0 and let A0 and A1 be defined by the equations 

A0 = min {(P0f0,f0), (2(52-CW0,/„>}, 
= ( • > / o ) ^-o/o • 

Then (¡P(T) and 2?'(T) conicide with the convex hull of P0 and P^ — A^, consequently 
we have = ^ = ^ ^ ;, 6[0> 1]} 

Proo f . In the second paragraph of the proof of the preceding theorem it 
was shown that P0 is an absolutely maximal element of 0>'(J) — that is P£i?'(T) 

. implies P^P0- Obviously P0 has the same property for 2?(T) and it easily follows 
that P0 is an extreme point of both sets. In view of the integral third paragraph 
given in the proof of Theorem 6.2 we see that A1 above is actually the operator 
A0 in Theorem 6.2. By that theorem it follows that P0 — A1 is an extreme point of 
both of the sets !?'(T) and 2?(T). In view of Theorem 3.1 and Theorem 5.2 the real 
dimension of each of the convex sets &'(T) and ^(T) is one and geometrically it 
is clear that both sets must be the convex hull of P0 and P0—A1. For completeness 
sake we prove this last assertion. The set {P0 — P: P£iP'(T)} is one dimensional 
and contains the zero operation; thus it is spanned by any nonzero operator in the 
set, for example Ax. So zAc real}. However, AQtf implies that 

0 si A S P0, As 2(<52 —C2)1/2 

by the argument given in the second paragraph of the proof of Theorem 6.2. It 
follows that . . r n , „ 

{cAx : c€[0, 1]} 

by the construction of Ax. Hence 2P'(T) is contained in the set 

{(1-A)PO + A(P 0 - ^ i ) = Po-IA^. A€[0, 1]}. 
Since SP'(T) is convex and both P0 and P0—A1 are positive approximants, it must 
be that both &'(T) and 3?(T) coincide with the above set. 
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§ 7. Open questions 

For T a normal operator and H0 a finite dimensional subspace, where H„ 
was defined in section three, we constructed a real basis for the convex set 
and each element of that basis is a positive approximant. This tends to suggest 
that 0>{T) and 0>'{T) might coincide. We now show that 0>'{T) can properly 
contain 3P{T). Let T be the four dimensional operator defined by the diagonal 
matrix diag {/', - / , 2 / , -2 /} . In this instance T=iC and P 0 =diag {j/3", / J , 0, 0}. 

Let A be the 4X4 matrix (ay) with «n — = = «22 = /3 /2 and all other 
entries equal to zero. Then P0—A is a positive near-approximant for T but it is not 
a positive approximant. Thus S?{T) is properly contained in SP'{T) and this gives 
rise to our first question. 

Q u e s t i o n 1. What characterizes those normal operators T for wich T)~ 
=0>'(T)1 

The procedure for obtaining basis elements of 0>'{T) which do not necessarily 
commute with A0 is less explicit than the construction of basis elements which do 
commute with A„. That observation and the remarks of the preceding paragraph 
suggest several questions. 

Q u e s t i o n 2. Assuming that N0 is finite dimensional, what conditions on T 
suffice for 3P(T) to have only a finite number of extreme points? What suffices for 
g?'(T) to have only a finite number of extreme points? 

Our last question would be considerably more interesting if the preceding ques-
tion had been answered. 

Q u e s t i o n 3. What is an extreme point of 8P'(T) which fails to commute 
with A0? 
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