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Introduction

Let {¢,(x)} be an orthogonal system on the interval (a, b) We consnder the
. orthogonal series : :

() , g'c 0.(x) with ch < oo,

1t is well known that the series (1) converges in L2 to a square-integrable function
S(x). Let us denote the partial sums and the (C, «)-means of the serles 1) by 5. (%)
and o3 (x), respectively. :

In [2] we proved that if

2 : i’cﬁn27<m and 0 <7y <1,
n=1

then
f (x) o1(x) = 0,(n77)

~almost everywhere in (a, b).
G. SUNOUCHI [4] generalized this result provmg that lf (2) is sat:sﬁed tlzen

1/k
3 . { = ZA:‘tlf(x) s(x)|*} = 0,(n™)

) n'"+a'
B . n )
This result was generalized in [3] in such a way that we replaced the partial

sums in (3) by (C, 6)-means, where & can also be negative. (See Theorem I of [3].)

holds almost everywhere in (q, b) Sfor any a>0 and O<k<y~1, where Aﬁ:(

In [3] (Theorem 2) we also proved that if Z c2n**< oo with any positive -y, then

. .. 1/k
@ | {; > —‘f(X)I*} = o,(n™)

holds almost. everywhere in (a, b) for-any 0<k=2.
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The aim of the preseﬁt paper is to generalize further these results.
We consider a regular summation method 7, determined by a triangular matrix

ot ARll [ o, =0 and A4,= Z’ank] ie. if 5, tends to s, then
. ] n
T, = — 2 0usSy — 5.
An kg(') Kk
Theorem 1. Suppose that 0‘<y<1 and 0<k<y~?,
5) | 5 cnt < o,
. . n=1
Jurthermore that there exists a number p=1 such that
. P _
) » -1 — k=2
and with this p for any 0<8<1 and 2"<p=2"*1
m {mir; (2'*'1, n)

1/p n 1
™ AP a}.’»(vurl)”“_&)'l'} = K[ 2 a,.v] o
1=0 | v=2/-1 ve=0

Then for arbitrary

. . ) p . 1
@ PR
we have .

1/k

® { b el 10— ol 1(x)1k} = 0,(n77)

almost everywhere in (a, b).

It is easy to verify that in the special case a,,=A42~) (x>0) condition (7) is
satisfied, thus with S=1 Theorem I contains the result of SUNoucHL. It can be shown
that Theorem I includes our result in connection with (C, 3)-means of negative -
order, too. Furthermore we have some corollaries:

Corollary 1. Suppose that O0<y=<l1, 0<k<y‘1, and that (5) is satisfied. Then
we have

1 2n 1/k
{; z lf(x)—o{?"‘(X)l"} = 0,(n”")
for anj) B=1—min (1/2, 1/k) almost everywhere in (a, b).
Corollary 2. Under the hypothesis of Theorem I we have

IIV—

Nk
{ 2' Oy | (X) — 057 ({11i}5 x)l"} = 0x(n77)

1) K, Ky, K., ... will denote positive constants not necessarily- the same at each occurrence.

7
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almost everywhere in (a, b) for any B> 1 —(p—1)/pk and for any increasing sequence
~{w}; where

) X) = — 3 Az, (3).

nv—

From. Cordllary 2 in the special case =1 we obtain 1mmediately .

Cérollary 3. Under the conditions of Theorem 1 we have

’ . 1/k
(10 - el .0 = 0,071

nv—

almost everywhere in (a, b) for any increasing sequence {u.}.

In the special case «,,=A4%"1 (°F>0) Corollary 3 reduces to Theorem 3 of [3].
Under the restrictions 0<k=2 and f=1, but for arbitrary positive y, Corol-~
lary 1 can be generalized to very strong approximation. In fact we have

Theorem II. Suppose thavt 0<k=2 and y=0; and that (5).holds. Then

. 1 2n - . 1/k .
an - {‘; pATRE) —f(x)l,"} = 0,(n)
- almost everywhere in (a, b) for any increasing sequence {u.}.

It is clear that (11) is a generalized form of (4).-
_Finally we show that under certain restrictions on y, and {c,} an estimate similar
to (10) can be given with any not necessarily monotonic sequence {/,} of distinct.
non-negative integers. Namely we have

Theorem II1. Suppose that 0<y<1/2, 0<k=2 and

(12) . S’ cin®(loglog n)* < oo,

. n=4 .
Surthermore that

,, (2-k)/2 n . 2)

(13) {2 (anv)w-“} = K[ Zanv] nHe,

. : v=0 v=0
Then we have o

' 1 n ' 1/k

(14 . {'— 2 Apy Isly(x) '_f(x)lk} = 0,(n77)

almost everywhere in (a b) for any (not necessarily monotonic). sequence {i.} of distinct
non-negative integers. :
Theorem IIT glves immediately

n
) If k=2 then (13) means that max a,, = K[ 3 a,,v)n“
O=vsn =0
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Corollary 4. If 0<y<1/2, O0<k=2 and cx>k/2 furthermore (12) is satis-
fied, then

Cm - 1/k
e VZ A5, OS] = 0s0)

almost everywhere in (a, b) for any (not necessarily monotonic) sequence {l,} of distinct
non-negative integers.

§ 1. Lemmas

We require the following lemmas.

Lemma 1 (1}, p. 359). Let r=l=>1, >0, a=y—1 and B=&+I1"'—r~1. Then
w r . 7
{Z(n+l)'y 1IT,.(x)l} §K{Z’(n+l)”_1|fﬁ(X)|'} ,

n=0 n=0 . .

where 1%(x) =>ac(a‘;,‘1(x)— 0%(x)).
Lemma 2 ([4], Lemmal). If

(WL

An¥ <o with 0<y <1,

]
-

n

then
b

f{f(n+1)27~1|aﬁfl(x);a:(x)|2} de = K 5 cin
n=0 . - n=1

a

Jor any a=1/2. ,
Lemma 3 ([3], Theorem 4). If 0<y=1/2, 0<k=2, ky<1 and

i’ cﬁnzy(log log n)? < oo,
n=4 - '

then
(1.1) {— Z' 181, (x) —f (x)l"} = 0x(n7))
almost everywhere in (a, b) for any ( not necessarily monotonic ) sequence {1} of distinct
non-negative integers. »
Lemma 4. Under the conditions of Theorem I we have the inequality

) : 1/k)2
a2 {sup ;,—Zamlaﬂ 2(x) — aﬂ(x)\k] } <1<2c2 o,

O=p<oo
Proof of Lemma 4. Set g=p/(p—1), then V
1

(1.3) 4 gk =2 and ﬁ;l»—ﬁ.
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Applying Holder’s inequality, by (7) and O<yk<1 we obtain that
. Cn . ’ - ' /p
2 Uy () = {Z af,(v+ 1)‘*””"”‘"} X
v=0 v=0 .
T " /g .
(4 ><{ S+ lykq-llre(x)\qk} =
A v - o - .

' n n 1/q
= & Zon) o[ B oo vymerntcomd
v=0 v=0
By (1.3) we can choose a* such that

A 1o ., 1
(s . /3—5+E€‘>°‘ =5
By (1.5), 0<y<1 and qk>2 the conditions of Lemma | are fulfilled with r= qk
=2, %=y, 0= oc and B=4. Using Lemmal we get
172

g
(1.6) {Z'(VH)”‘“ llf”(x)l“"} = K, {2(v+1)2v 1\T"*(JC)F}

v=0

‘Thus by (1.4), (1.5),.(1.6) and Lemma 2 we have

b

b vk 1K) 2 - S ' ‘
/ [ sup [’; %, Ir"(x)l‘] }dx =K [ { _220~(v+1)2v-1|r;*(x>t2}dx =

1=p<oo n v—-

= K; Z’ 2n¥ < oo,

. L n=1
which gives statement (1.2).
§ 2. Proof of the theorems and corollaries

Proof of Theorem I. First we.show that (7) implies

Q.10 - S S, (v+1)"% = Kd,n°
. =0 '
for any 0<d<1. Indeed, '
. n m mn(2“’1 n)
Z IIV(V + 1)— 2 ) nv(v + 1)_6 =
v=0 1=o v=2l—1

m fmin 2+, n) . i/p .
= Z' _Z oz,‘,’v(v+l)“5p} -2”" = KA,n~?

By conditions (6) and (8) 8 >1/2 50 we have (see e.g. inequality (3) with k—l)
08 (x) ~f(x) = 0,(n™"). '
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Hence and from (2.1) it follows

ey 1 2 tmlot G~/ = 0.,

which implies

ey o Zalot - f(x)l"<—— S anlet109 -0l +o,677.

ll v=0 n
Now for any fixed positive ¢ we choose N such that

oo

(2.4) . > e2n® < g5

Let us define two new series

} . ‘ - Cp .for n E N:
2.5 ‘ . n;Z’ (Pn(x) with a, = 0 for n>N,
and |

. - h b= 0 for n=N,
(2.6) 2 bagn(x) wit “le, for n=N.

Denote af(a;x)-and af(b; x), respectively, the n-th Cesarosmeans of order f of
the series (2.5) and (2.6). :
It is clear that . ’
af(x) = of(a; x)+ 6b(b; x).
Applying Lemma 4 w1th the series (2. 5) and " satlsfymg the conditions y<7y <1
and ky’<1, we obtain that -
nV"

Q7). - 2 S |08 (a; M—of@ W}~ 0

almost everywhere in (a, b).
" On the other hand using Lemma 4 and (2.4) we obtain

Osp<co

b nky n . . . 1/ky2 '

f{ sup [—A— > ayylo8=1(b; x)—ab(b; x)]"] } dx = Ke®.

; ! v : N ¢
Hence '

, 1k
meas {xlhm sup[ Z'a,w a" 1(b x)— a"’(b x)["] > a} = Ke.

HV=

This and (2.7) imply-

| 7 - 3 o) - o“(x)l" ~0

almost everywhere in (a, ).
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Collecting our results we obtain statement (9).
Proof of Cofollary 1. 1t is easy to verify that if
0 for v=mn/2
=11 for v nf2,

then (7) holds for arbitrary p>1. Thus, if f>1—min (1/2, 1/k), (6) and (8) can be
satisfied with a suitably chosen p, and the statement of Corollary 1 follows from (9)
immediately. ’

Proof of Corollary 2. We define

) : b M2
' C,,:[ > c?]

i=py _y+1
and
ull
Gt 2 aelx) for C,#=0,
o=y
(Iln—#n-l)_llz . Z (P,'(x) fo Cn =0.
N i=p,_1+1

It is clear that the system {&,(x)} is also. an orthonormal one and

> Cip?t < oo
n=1
obviously. Since

$u0) = 3 Cu(x) = 5,, (%),

applying Theorem I to the series > C, ®,(x), we' obtain the statement of Corol-
lary 2. ' =t :

Proof of Theorem II. Applying inequality (4) to the series S’C,,d),,(x)
defined above, we get (11). n=t

‘Proof of Theorem IIL If k=2, then for any v (=n)

ayy _ K

A, n

whence, by (1.1), the estimate (13) follows obviously.
- If k<2, then we can choose p=2/k. Using Holder’s inequality with this p and
q=2/(2—k) we obtain that T

n - n g , 1/p
v;(; (Z,,VISIV(X) _f(x)lk = {vg(; <x?w} {v;; IS,V(X) _f(x)lkp} -
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Hence, by (13) and (1.1),

_ 1k | » ' 1/2
{A— Z’ %y 52, (X) —f (X)l"} =K {; ,_Z; s, (¥)—f (X)IZ} = 0,(n77)
which is the required estimate. '
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