
Varieties of idempotent medial quasigroups 

By B. CSÁKÁNY and L. MEGYESI in Szeged 

Quasigroups are algebras with three binary operations • , /, and \ , called 
multiplication, right, and left division, respectively, which are connected by the 
identities 

(1) xy/y = y\yx = (x/y)y = >'(.F\.X) = X. 

A quasigroup Q is idempotent if its multiplication is idempotent . Q is called medial if, 
for the multiplication, the identity 

(2) (xy)(uv) = (xu)(yv) 

holds. These two conditions — separately as well as jointly — were studied by several 
a u t h o r s ; s ee , e . g . , STEIN [11] a n d BELOUSOV [2], [3]. 

In what follows we apply the results of the preceding paper [7] to characterize 
varieties of idempotent medial quasigroups, especially the variety of all such quasi-
groups and equationally complete varieties of them as well. The considerations we 
made are closely related with the recent investigations of MITSCHKE and WERNER [10]; 
as a matter of fact, the groupoids involved in [10] are equivalent to special idempotent 
medial quasigroups. 

We will use the conventions of [7] without fur ther references. We write abc 
instead of (ab)c ; more generally, the absence of parentheses in any product indicates 
that multiplication must be performed f r o m left to right even in the case when ex-
ponents occur; e.g., a(bc2)d denotes (a((bc)cj)d. Let P denote the ring of all rational 

/ ( * ) ' 
functions of f o r m — -, where f(x)£Z[x] and k, I are non-negative integers. 

T h e o r e m 1. The variety 0> of all idempotent medial quasigroups is equivalent 
to the variety of all affine modules over P . Any variety M of idempotent medial quasi-
groups is equivalent to the variety of all affine modules over some homomorphic image 
of P. 

2 A 
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P r o o f . To prove that 0 is equivalent to .s/(R) for some commutat ive ring R, 
it is enough to show that 0 is regular, idempotent, Abelian and Hamil tonian. Indeed, 
in this case 0 satisfies the conditions of Theorem 2 in [7]. 

Any variety of quasigroups is regular [6]. As Stein observed [11], in any quasi-
group the idempotency of multiplication implies the idempotency of both divisions; 
hence 0 is idempotent. Again by [11], f rom mediality of multiplication follows the 
mediality of divisions, and so each fundamental operation in 0 . commutes with itself; 
in order to prove that 0 is Abelian it remains to show that they commute with each 
other. Using (1) and (2) we obtain 

x/yuju = (x/yu/v)(yv)/yv = xu/yv, . 

and similarly we get the other two desired identities. 
Let Q £ 0 and consider an arbitrary subquasigroup A of Q. Then the distinct 

sets of fo rm Aq = {aq\a£A}, where q is a fixed element of Q, furnish a parti t ion of Q. 
Indeed, suppose AbDAc^ 0 (b, c£Q). We have to prove AbQAc. There exist ax, a2 

A such that axb = a2c. Take an a3 f rom A; then 

a3b = (a3/at)b = ((aja.jb) ( ( a j a ^ i ^ b ^ c ) = ((ajajia^a^c; 

i.e., AbQAc. Now the mediality implies that this partition is compatible with the 
quasigroup operations, showing that A is a congruence class in Q. Thus, the Ha-
miltonian property of 0 is established. 

Thus, 0 is equivalent to si(R) for some R. We have to prove that R is a homo-
morphic image of P . The set R equipped with the ring addition and right multiplica-
tions is a free R-module with the free generator 1. By Lemma 2 in [7], the associated 
affine module R* is free in (R) with the free generating set {0, 1}. Let F 2 denote 
the free idempotent medial quasigroup with the same free generating set. Then there 
exists a weak isomorphism cp: F 2 — R* such that Q(p = 0, ]cp=l. Denote by £ the 
one-to-one correspondence of the polynomials of F„ and R*. under this weak iso-
morphism. 

Take ( - ) i = (x, x ' ) . Then 1 = 1 • 1 = ( x , x ' ) ( l , \) = x+x', whence x'=l—x. If 
(J)£ = (u,u') then 1=(1/0)0=(1M + 0 M ' ) X + 0 ( 1 - X ) = MX, and, by idempotency of the 
right division, w ' = l — u. If (\)(,= (y, v'), then we get u(l— x ) = l , v'=\ —v analo-
gously. Observe that for any / ( x ) £ Z[x], and non-negative integers k, I, the ring R 
contains the product f(x)ukv'. On the other hand, using the commutativity of R 
and the equations ux = t;(l — x) = l , an induction (on the number of fundamenta l 
operations occuring in the expression of elements of F 2 over {0, 1}) shows that 
every element.of (F 2 (p=)R may be written in the fo rm f(x)ukv'. Hence there exists 

f ( x ) 
a homomorphism of P onto R (namely, — — — f(x)ukvl), proving the second v JC (1 — x) 
part of the theorem. v ' 
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Now we can assume that is equivalent to si (R0) for some homomorphic 
image R0 of P . It is clear from the proof of Theorem 3 in [7] that si (R0) is equivalent 
to some subvariety of si (P). But si (P) itself is equivalent to some variety of idem-
potent medial quasigroups. Indeed, the polynomials 

considered as multiplication and divisions, satisfy (1); further, an induction (on the 
arity) shows that all polynomials of any affine module over P may be expressed as 
polynomials over (3). Thus, P is also a homomorphic image of R0 , whence, using 
the fact that P is Noetherian, it follows R 0 s P , qu.e.d. 

C o r o l l a r y 1. There exist countably many varieties of idempotent medial quasi-
groups. 

T h e o r e m 2. The equationally complete varieties of idempotent medial quasi-
groups coincide up to equivalence with the varieties of affine modules over finite fields 
except GF(2). 

P r o o f . In virtue of the remark at the end of [7], the varieties of quasigroups 
in question are equivalent to varieties of affine modules over simple quotient rings 
of P. Such quotient rings are fields; we prove that they are finite. Observe that P 
is a homomorphic image of the polynomial ring Z[x l 5 x2, x3], because the last one 
is free with the free generating set {x,, x2, x3) in the variety of commutative rings 
with unit element. It is known, that any maximal ideal in Z[x 1 ; x2, x3] has a finite 
index there (see [4], p. 68.). Hence the same holds for P. Thus, the quotient fields 
of P are finite, indeed. 

On the other hand, any finite field K consisting of at least three elements, is a 
homomorphic image of P, because the correspondence 0—0, 1—1, x —a (where 
a is a multiplicative generator of K) may be extended to a homomorphism of P onto 
K. The trivial fact that no polynomials of affine modules over GF(2) may be essen-
tially binary, completes the proof. 

C o r o l l a r y 2. There exist countably many equationally complete varieties of 
idempotent medial quasigroups. 

Theorem 2 enables us to axiomatize equationally complete varieties of idem-
potent medial quasigroups. Let K be an arbitrary finite field consisting of ?/( > 2 ) 
elements. Take a generating element a of the multiplicative group of K. Let k be 
the unique integer between 0 and for which a* = (l— a ) - 1 holds; let, further-
more, for i=\,...,q — 2 the integer ia (0<io<q— 1) defined by the equation 
a"7 = a ' + 1 —a + 1 . This definition fails for i~ ~(k+l) ( m o d ( ^ - l ) ) if 2\q and for 

/ = — (mod (<7—1)) if 2 f q , and so the mapping a has a domain con-

(3) 
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taining q —3 numbers; it is one-to-one and its range does not include q — \—k, 
but (q— 1 — k)a exists always unless the domain of a is empty. 

T h e o r e m 3. The variety -if of idempotent medial quasigroups determined by 
the further identities 

(6) x/y = xy 
(7) >>Vc = xyk, 

(8) xy'x = xyia if 1 s i S q — 2 and ia is defined, 

(9) xy'x — y if 1 s / # —2 and ia is undefined, 

is equationally complete and equivalent to si (K). 

P r o o f . Any affine module A over K considered as a quasigroup with multi-
plication and divisions 

(10) • (a, 1 — a), («-1, I - « " 1 ) , _ ( ( l - a ) " \ l - ( l - a ) - 1 ) 

belongs to J f . Indeed, a routine computation shows that A is idempotent, medial, 
and the identities (6)—(9) are satisfied in it; furthermore, the familiar induction 
used in this paper, gives that all polynomials of A may be expressed as poly-
nomials over (10). It remains to prove that ,5f is equationally complete. 

Observe first that (6) and (7) implies the identities 

(6') xy"-1 = x, 

(T) yxyk = x. 

Only {! ' ) needs a verification. Using several times the identity 

(11) . {yx)y = y{xy) 

(a consequence of the idempotency and mediality) we get yxyk=y (xyk) =y{y\x)=x. 
We establish the equational completeness of X by proving that any algebra 

A„ in J f , with a minimal generating set of n elements, is determined uniquely up to 
isomorphism. Ax consists of a single element. Let A2 be generated by the set {x, y}. 
We show that A2 consists exactly of the elements 

(12) y,x,xy, 

For this aim we show that the product of any two elements f rom (12) occurs in (12) 
(since, in virtue of (6)—(7), divisions in A2 can be expressed by multiplication). This 
requires some computations which may be surveyed on the following table: 

J • y xy'z 

y * (13) (15) 

X * * (16) 

xy'1 * • * (17) 
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Here asterisk means that product of the leading members indicating the con-
sidered row and column obviously occurs in (12); the. numbers in brackets refer to 
the computations what follow: 

(13) yx P yxy"-1 = yxykyq-1~k iOjcj/i-i-V 

Hence also 

(14) x/xs = .xy*-1-k 

follows in the case when ta is undefined. 

(15) v ( x / ) = yx/ = yxyky"^-k+' = x ^ " 1 " ^ ' . 

(16) x(xy') = x(xy')xtx"-1-k (=} 

xy'xq' 
xyt*xq-i-k-i b y (-g-) f p r tG defined, 
y by (9) for ta undefined and k = q — 2, 

xyq~1~kx9~1~k~z by (14) in the remainder case. 

We can iterate; if it is necessary, the last step of (16) until finally we get an expression 
of form y or xyl'. The computation of f x / 1 ) ( x / 2 ) will be divided into three parts 
according to the cases t±>t2, t1 = t2(—t) and t^t^. 

(2). , _ t , by (8) for (t1 — t2)0 defined, 
y by (9) for (t1 — t2)(T undefined. 

(17J . ( x / i ) ( x / 0 = x / i ~ ' = x / * = | 

(172) (xy'Kxy') = xy>. . 

m „«I (xy1 '*- 'i ) , + 'i or 
(17.) ( x / i ) ( x / 2 ) = x ( x / 2 - ' i ) / i j ^ _ 

I yy1 — y-

Furthermore, the elements (12) arepairwise distinct. Indeed ,y = xy' (0<t<q—l) 
implies y=yyq~1~'=xyq~1 = x by (6'), in contrary to the assumption. From the 
regularity of JT, no other pairs of elements in (12) may equal. Thus we showed that 
A2 consists of the q distinct elements (12) and its multiplication table is uniquely 
defined. • 

Suppose, by induction, that A„ («&2) is unique, and let the minimal generating 
set of A„+ 1 be { X'o, Xt, ..., x„ }. Then [x0, Xj] and [x,, . . . , x„] are isomorphic to A2 

and A„, respectively. Clearly, [x0, xx] LJ[x1, . . . , x„] generates A,1+1. On the other 
hand, [x0, x,] H[x j , . . . , x„] = x1, since if x€[x 0 , x j 0 [ x x , . . . , x„] holds for x # x 1 ; then 
[x, x J s A 2 S i [ x 0 , x j , whence [x, x1] = [x0, x j , i.e., [x0, x j c [ A l , . . . , x„], denying the 
minimality of {x0, x 1 ; . . . , x„}. Hence we can apply Lemma 1 f rom [7]: A„+ 1 = 
= {x0, x j j x f x j , . . . , x „ ] = A 2 x A „ , and so A„ + 1 is unique up to isomorphism. 
Thus, is equationally complete, ending the proof of the Theorem. 
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C o r o l l a r y 3. Equationally complete varieties of idempotent medial quasigroups 
are equivalent to varieties of'groupoids. 

R e m a r k s 1. The varieties n ,k ) of groupoids, discussed in [10], are also, 
in fact, equivalent to varieties of idempotent medial quasigroups. Indeed, as it is shown 
there, <g(n,k) is equivalent to s/(R(n, k)), where R(n, k) = Z[x]/(x"-1, x * + x - 1). 
Now, for any natural numbers k<n, R(n, k) is a homomorphic image of P under 

fix) 
the homomorphism ——— •/(/•)/•<"-i>"+<«-t>», where r = x + ( x n - 1, xk+x-1) 

x"(l — x)v 

in R(«, k). Hence k) is equivalent to a subvariety of i.e., it is equivalent to 
some variety k of idempotent medial quasigroups. Note that 3?nk may be axi-
omatized by the identities x/y=xyn~1, y\x—xy"~k. 

2. The solution of Plonka's problem (Corollary 7 in [10]) can be derived from 
the above considerations as' well. Let 'S be the variety of groupoids satisfying the 
identities x2 = x, x(yx)=y and xyz=zyx. The last identity implies the mediality; 
defining x/j> by yx and y\x by xy, $ becomes a variety of quasigroups, which is 
clearly equivalent to eS. By Theorem I, 5? is equivalent to >s/(R) for some ring R, 
generated by an element a, such that the operation (a, 1 —a) of R) corresponds 
to the multiplication of Then Plonka's second and third identities, rewritten with 
the aid of a, give a 2 = l — a and a(l— a ) = l , and this implies that RssG/X^) ; i.e., & 
is equivalent to s/(GF(4)). 

3. The characterization of medial Steiner triple systems (Corollary 8 in [10]) 
as affine modules over GF(3) is even the special case K = GF(3) of Theorem 3. For 
related results, see [1] and [9]. 

4. Algebras with one ternary operation T which commutes with itself and satisfies 
the identity 
(18) T(X, x, y) = r(x, y, x) = T (y , X, x) = y 

were discussed by ALIEV [1], who called them S*-algebras. Aliev's results jointly 
with Givant's characterization of varieties in which all members are free [8] imply 
that the variety Sf* of all S*-algebras is equivalent to si{GF(2j). This fact can be 
deduced also from our considerations as follows. Obviously, SP* is idempotent and 
Abelian; further the defining identities involve that the S*-algebras are essentially 
flocks with commutative covering groups ([5], p. 40), whence y * is regular and 
Hamiltonian. Then Theorem 2 in [7] shows that y * is equivalent to sd(R) for some 
commutative ring R. Now the routine discussion of the identities (18) furnishes 
that R is generated by its unit element, and 1 = — 1 in R. Hence R s GF(2). 
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