On the topological characterization of transitive
Lie group actions

By 1. SZENTHE in Szeged

The problem to characterize among the transitive actions of locally compact
groups those which are effected by Lie groups has been solved by D. MONTGOMERY
and L. Z1pPIN [6], pp. 236—244. According to their result if a o-compact group G
is an effective and transitive topological {ransformation group of a locally compact
space X such that G/G, is compact where G, is the identity component and X is
finite dimensional, then G is a Lie group provided that X is locally connected.
Actually what this result yields is a characterization of the transitive Lie group
actions among those of the finite dimensional locally compact ones, since the assump-
tion that X is finite dimensional implies that G is finite dimensional as well. Ac-
cordingly the attempt at a general solution seems to be justified and with this respect
the following theorem is proved below: Let a o-compact group G with G|G, compact
be an effective and transitive topological transformation group of a locally compact
space X. Then G is a Lie group if X is locally contractible. In spite of the fact that in
general local contractibility is a much more restrictive assumption then local con-
nectedness this theorem is not materially weaker then the above mentioned result of
Montgomery and Zippin since in case of finite dimensional coset spaces of locally
compact groups these two assumptions are equivalent.

One prerequisite for the proof of the above theorem is a practicable descrip-
tion of the local structure of coset spaces of locally compact groups. Since all known
{reatments of this subject assume the finite dimensionality of the coset space a
completely reshuffled approach has to be applied here. By a well-known result of
H. YAaMmABE [9] a locally compact group always contains an open subgroup which
can be approximated by Lie groups; thus local questions generally reduce to the
case of such groups. Accordingly first a detailed study of the local structure ol
groups approximated by Lie groups is carried out below. Then on account of the
results of this study the required description of the local structure of coset spaces of
locally compact groups is obtained. Using this description the characterization of
{ransitive Lie group actions is given at last.
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1. The local structure of groups which can be approximated by Lic groups

According to the standard definition a topological group G is said o be approxi-
mated by Lie groups il a well-ordered index set 4 having a first element 1 and to any
a€d a compacl invariant subgroup A4, of G is given so that

G, = G/d, is a Lie group
Ay > Ay for o, fe4 with o < f8
{e} =N{A,|a€4} where e€G is the identity.

This terminology is based on the [ollowing well-known fact: Let w,: G—G, be the
canonical epimorphism and #f: G;—~G, the epimorphism defined by m,=7fom, for
o, BEA with a<p, then {G,, nf} is an inverse system ol Lie groups and its projective
limit G, =lim {G,|e€ 4} is isomorphic to G under the isomorphism w: GG, which
is given by w(g)={n,(g)|ec4d} for g€G.

Some subsequent arguments lake advantage of the fact that an inverse system
of Lie groups approximating a topological group can be adjusted in a certain sense.
The precise description of this adjustment is given by the following

Lemma 1. Let a system {A4,|0€4} of compact invariant subgroups define an
approximating inverse system of Lie groups for the topological group G and consider
an index ¢ with L <c¢€4. Then there is a natural number k=1 and to the well-ordered
index set E={l, ..., k}U{ala=>e, acd} a system {A}|loc€E} of compact invariant
subgroups defining an approximating inverse system of Lie groups for G and such that

1. Af=A,, Af=A, and A*=A, for 6 € E with 6>k,

2. AY|A3 is finite, AT|A}, | fori=2, ...,k—2 is a 1-dimensional torus and A}_.[A}
is a 1-dimensional torus or a compact connected semisimple Lie group.

Proof. Consider the identity component (4%), of the compact Liec group
At=A,/A, then A2=n;"((42),) is a compact invariant subgroup of G. Moreover
A?[A, is a compact connected Lie group, 4,/A? is finite and G/A?% is a Lie group on
account of the isomorphisms

Az/Al: = (A%)O:’
Ay AP ~ (A1) 4,)[(4%/4;) ~ A3/(A3)o, and
G/4? =~ (G/A)[(4*|4,).

According to a basic theorem concerning the structure of connected compact Lie
groups ([2], pp. 144—145) there is an isomorphism

l:(Tlx XTk_3><S)/D - A2/Aa

where T;, i=1, ..., k—3 are 1-dimensional toroidal and S a semisimple or 1-dimen-~
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sional toroidal invariant subgroup of 42/4,, and D is a discrete central subgroup
of Ty X ++» X T, g XS such that both (73X -+ X T;,_g)N.D and SN D are trivial. Con-
sider now the following decreasing sequence of invariant subgroups of 4%/4,:

{e} X X{EYX Ty X - X Tie5 XS
D,

4

]Vk—2 = S: Nk—l = {el}p

Ni:;{'[ for l':].,..-,k—‘3,

where ¢’ is the identity element and
Dy = ({e} X X{e} X T, X+ X Ty XS)ND.

Put now A'™=nr"*(N) for i=1, ..., k—1. Then a decreasing sequence of compact
invariant subgroups of G is obtained such that 4,/42 is finite, 47/4*** is a 1-dimen-
sional torus for i=2,...,k—2, and A*~'/4* is a compact connected semisimple
Lie group or a 1-dimensional torus as the following isomorphisms show:

A A o (AT A) [(APH2A,) = NNy 4.
Moreover G/A*** is a Lie group for i=1, ..., k—1 on account of the isomorphism
G/AFY ~ (G/AB)/(A"“/AE).
Therefore if A* for € E={1, ..., k}U {¢|a=>¢, a €4} is defined by
Af =4, AF=4" for i=2,..,k, At =A4, for o=z,

then the assertions of the lemma obviously hold for this system.

In order to have a short term for the above construction it will be said that
the system {A4*|a€E} is obtained by adjusting the system {A,|n€ A} up to the index
g€A. It is to be noted that {4,lacA4} and ¢€4 do not define the adjusted system
uniquely, the choice and order of the toroidal subgroups being arbitrary to some
extenl in the construction. In fact this circumstance will be of use yet in later
developments.

Another fact which has an important technical role in subsequent arguments is
expressed by the following

Lemma 2. Let G be a Lie group Ac G a compact invariant subgroup such
that G/A is connected and HC G a closed subgroup such that with B=ANH the group
HJB is connected as well. Let C be the centralizer of A in G and D that of B in H.
If ¢,h, d are the Lie algebras of C, H, D then d=cN).

Proof. Let aut g:G—G be the inner automorphism defined by g€G and
aut, g: A - A its restriction to 4. Then by an extension of a theorem of K. IWASAWA
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(I5] and [10]) there is an @€ A such that aul, ¢==aut, g holds. Let C'be the centralizer
of 4 in G then CN4 is the center of 4 and a conlinuous isomorphism

0:GIC —+~ 4/CNA4

is oblained by setting ¢ (gC)=a(CNA) for g€G and a€A il and only il aut, g=
=aul, ¢ holds, If g, a, ¢ are respectively the Lic algebras of G, 4, C then ¢Na is
the Lie algebra of CNA; moreover ¢ is the centralizer of a in g by basic properties
ol the adjoint representation (see [2], pp. 100-—101) and thus ¢Na is the cehter
of a. The dilferential dg of ¢ yields the Lie algebra isomorphism

do:gflc - afcNa.

Let ad X: g—g be the adjoint map defined by X and ad, X: a-»a its restriction to a.
Then by basic properties of the adjoint representation ad, X’=ad 4” for X'€X-c¢
and A’€ A4-(cNa) if and only if do(X+¢)=A4+(¢Na) holds. This implies that any
cosel X+-c€g/c contains an element of a and consequently for X the validity of
X¢Ea can be assumed without loss of generality. But then do(X+¢)=X+(cNa)=
=(X-+¢)Na hold, and this means that dg can be considered as forming the inter-
section with a. Let now D be the centralizer of B in H and b, d the Lie algebras
of B, D respectively. Then an argument analogous to the preceding one yields the

isomorphisms
o:H/D ~ B/DNB and do:hfdo -~ b/dHND

with properties analogous to those established above. Consider now the Lie algebra
monomorphisms
&:hlenh ~g/c and n:aNh/cNanh - a/cNa

which are defined by the inclusion relation of cosets. Then

dgo&:(h/eNh) = n@Nh/eNaNnh)

holds in consequence of the fact that do can be obtained as intersecting with a.
These imply now that

n~lodgo&:hlcNDh -~ aNh/icNaNh

is an isomorphism. In order to show that d \b=cNaNDb holds observe first that a
as a compact Lie algebra is isomorphic to the direct sum s@(¢MNa) where bCa
is a semisimple ideal since ¢Na is the center of a. Therefore if Z;€b and Z,=X;+Y;
with X;€s, Y;€cNa where i=1,2 then [Z,, Z,|=[X;, X,]. Consequently if Z, is
fixed then [Z;, Z,]=0 for every Z,€b if and only if X;=0, which is equivalent to
Z,€¢Na. Thus the isomorphisms

do:hfo - bfcNanh and ntodgol:hlcNh - DlfcNanh
together with the obvious ¢NHcd yield that ¢cNh=> is valid.
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The following theorem serves to yield a survey of the local structure of groups

approximated by Lie groups. Actually this theorem is a complemented version of

a well-known result of Iwasawa [5]. The proof given here is based on ideas due

to V.M. Gruskov [10] and works with a concrete approximating inverse system of

Lie groups. This way a rather lengthy but perfectly constructive presentation is
oblained, a feature essential for the later developments.

Theorem 1. Let G be a topological group which can be approximated by Lie
groups and HC G a closed subgroup. Then to any neighborhood U of the identity
there is a compact invariant subgroup AC U of G and a Lie subgroup LC G such that

1. M=LNH is a Lie subgroup,

2. there is a neighborhood V< U of the identity in L such that the direct products
VXA, (VNH)X(ANH) exist and form neighborhoods of the identity in G and H
respectively.

Proof. Let a system {4,Ja€A4} of compact invariant subgroups define an in-
verse system of Lie groups approximating G. If C; is the identity component of
G, then G'=nr;*(Cy) is an open and closed invariant subgroup of G. If C is the
centralizer of 4, in G then G=CA, by an extension of a theorem of Iwasawa ([5],
and [10]). As itis compatible with the above definition of C; put C,=m,(C) for «€4
and let y,, y¥ be the restrictions of ,, nf to C, C; respectively. Thus an inverse
system {C,, y#} of Lie groups is obtained which approximates C since C is iso-
morphic to the projective limit C_ =lim {C,|«€ 4} under the restriction of w: GG,
to C. The kernel C/ of y? is central in C, because if

?ﬂ:C/A/jﬂC = C,}
is the isomorphism induced by y, then the inverse image of C/ under §, is given by
F51(CH = (4,NC)/(4;NC)

which is obviously central in C/4,NC.

Analogously let D, be the identity component of H,=m,(H) then H’=H
Nn;4(Dy) is an open and closed invariant subgroup of H with H'cG”’. Let D be:
the centralizer of By=A;NH in H’ then H'=DB;. Pul D,=x,(D) for acAd and
let §,, 6% be the restrictions of =, nl to D, D, respectively. Then an inverse system
{D,, 5*} of Lie groups approximating D is obtained, in fact D is isomorphic to
the projective limit D_=[im {D,|l¢€4} under the restriction of w to D.

Set now G,=m,(G"), Aj=n,(4y), H,==n,(H"), Bf=m,(B;) and let C, be the
centralizer of 4% in G;, analogously D, the centralizer of B¥ in H, for a€4. Then
C,C C; and D,C D; obviously hold. Let y,?, 6,” be the restrictions of nf to C7, Dj.
respectively then {C., y.f} are inverse systems of Lie groups and consider their
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projective limits C, =]im {C,|a€4} and D, =lim {D,|a€4}. By thc above stipula-
tions C,c C., and D_c D!, cvidently hold, but beyond this cven C=C., and
D_ =D, are valid. In facl @ maps C onto C’, and D onto D, sincc C., is obviously
the centralizer of w(4,) in w(G’) and similarly D., is the cenlralizer of w(B;) in
().

Consider now the Lic algcbras c,, ¢, b,, d, which correspond in duc order to
the Lic groups C,, C;, D,, D,. Then d,cc¢, is valid for a€4. In fact for a=1 (his is
a consequence of D, C;, on the other hand for ¢= [ will be verified by the [ollow-
ing argument: The isomorphisms

Gl AY = G'[d, ~ C, and H/BY ~ H'|B, ~ D,

imply that both G,/A} and H,/B} arc connected. Moreover By =A*NH, is valid
since (A, NH")=n,(4,)xn,(H’) holds. Thus Lemma 2 applies and yields that
b, ¢, is true for a€4. Assume now that b, & ¢, for some o€ 4. Then there exists an
X°eb, with X°€¢, —¢,. But in this case C. =C_, implies that there is a T>0 such
that no such X*€c¢, exists for which X°=dnr® X" is true. On the other hand X°¢€bd,
and the fact that % is an epimorphism imply the existence of an X*¢b, with X°=
=dn X*. Since b,Cd, Cc¢;, a contradiction is obtained.

Fix now a base (X3, ..., Xp, Xhiys oor X3) of the Lie algebra ¢, such that
(X3 PRTRIERIN X,,l) is a base of b, and let c;'J with h, i, j=1, ..., n be the structural con-
stants of ¢; with respect to this base. It will be shown now that a system (X7, ..., X¥
of elements of ¢, can be chosen simultancously for every a€4 so as to satisfy the

following conditions:
Xlan+1’ LS ] A’,‘;‘Eba,

X =dnfXf for i=1,..,n and o,fed with o<},

In fact a choice of such systems can be carried out by the following transfinite con-
struction: Let o€ 4 be fixed and assume that such systems have been already selected
for each &<« so that both the above requirements are fulfilled. The two possibilities
that « has or has not an immediate predecessor in 4 have to be considered now
apart. In the first case when a—1¢€4 the immediate predecessor of o does exist
the required choice of (X7, ..., X¥) is obviously possible since d,c¢, holds and
Y4 _y, 04_, are surjective. In the second case the fact is helpful that

AgfA,cA,J4,CGl4, for n<E¢<a

“This yields the existence of such a {<a that 4,/4, reduces to the identity element
of G, for {=¢<a and consequently nf: G,~G is an isomorphism for every such
index &. Thus X,‘f:dngX;" for i=1, ..., n defines the system (X7, ..., X7) so as to
meet both the above requirements.
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Define now Yj;€¢, for i,j=1, ..., n and a€c4 by

= [X;, Xj] - ZC X

h=1

Then Yf,=dn) Y/ obviously holds for a<p. Moreover all the brackets [X}, Yil,

3
[Y7, Y2 vanish because dniYj;=Y}=0 implies that Y7 is an element of the Lle

i1
algébla of C# and C{ as the kernel of y{ is central in C, by a former observation.

In what next follows an adjustment of the system {A4,|la€4} will be carried
out in order to provide favourable settings for subsequent steps in the argument,
If for a fixed pair (7, /) with 1=7, j=n there is an «€4 with Y50 then there is a
first one a,,>1 among such indices. On the other hand if Y}=0 for every ac4
then put ¢ ;=2. Consider now e=max {o;[i, /=1, ..., n}. Since Cj 4] holds the
identity component (C%), of Cj is a subgroup of (43), and it iseven central in (43),
on account of former stipulations. Moreover the Y, are elements of the Lie algebra
of (C%),. Adopting the notations of Lemma 1 consider 4%/ A4, and let Ty, ..., T} _3
be 1-dimensional toroidal subgroups and .S the semisimple or 1-dimensional toroidal
subgroup defined there. Put T,_,=.S is eventually S is a 1-dimensional torus. Let
At A2[A,—~(A%), be the canonical isomorphism. Now it is evidently possible to carry
out an adjustment of the system {4,|la€A4} up to the index & so as to satisfy even
the following two additional requirements:

1. the tangent vectors of ATy, ..., AT} at the identity form a maximal linearly
independent subset of {Y3|i,j=1, ..., n} for some 0=/=k—2,

2. the tangent vectors of AT}, ..., AT;_5, and of AS=AT)_, if S is a torus,
at the identity are not elements of the Lle algebra generated by {Y|i,j=1, ..., n}.
Let now {4,|c ¢ E} be the system obtained by this adjustment and consider { , 7L}
the corresponding approximating inverse system of Lie groups. Then C,, D,, X7,
Y 7 are obviously unlquely defined for this new system by postulating that &,=C,,
D =D,, Zr=X¢, ¥= Y hold for 0=1 and for every o€E with o>Fk. Since no
possibility of confusion will be caused by this, the tildas will be dropped in denoting
quantities corresponding to the adjusted system subsequently.

Consider now the unique Lie algebra ¢ which has a base formed by the elements
Xy, where h=1, ..., n and Y, where 7,j=1, ..., n but i<j such that the following
relations are satisfied:

[X;, X)] = Zc Xu+Y, for i,j=1,..,n wih i<j

n=1

(X, V] =Y, Yel =0 for hijst=1,..,n with i<j,s<1

lJ’

Here the elements X, Y;; with A, 7, j=m+1, ..., n obviously form the basis of a
subalgebra dc¢. Consider the simply connected Lie group P which has ¢ as Lie

7 A
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algebra and its connccted subgroup @ which corresponds to d. There is a unique
Lic group homomorphism ¢,: P—C, for every oCL such that X7 =dp,X, and
Yi=do,Y; for I, i,j=1, ..., n. Conscquenily a continuous homomorphism

¢o:P-~C,

is defined by sctling @ (p)={p,(p)le€ L} lor p€P. Lel K be the kernel of ¢ and
7. P-P’=P[K the corrcsponding canonical epimorphism. Then P’ and Q'=n(Q)
are Lic groups. Therefo1e il

o P~ C,

is the monomorphism dcfined by p=¢ ox then L,=¢’(P’) and M_=¢’(Q’) are
Lic subgroups of G, with M_,cL_ and M_ cH,.

The monomorphism ¢ can be obviously given in the form ¢’(p")={p,(p")|oc€ £}
for p’ € P’ where the ¢ : P’--C, are Lie group homomorphisms such that ¢, =mn% o ¢
for o, € E with o<v. This implies that the kernel of ¢ is a subgroup of the kernel
of ¢, conscquently there is a first index € E such that the kernel of ¢ is discrete
for o4, Fix now a left invariant Riemannian metric on P’, then there is a unique
left invariant Riemannian metric on the Lie group L,=¢. (P’) for ¢=¢ such that
@, is a local isometry. Consequently the standard procedure based on the ““méthode
de rayonnement” due to E. CARTAN ([1], pp. 181—186) yields a unique set F°'c P’
for cvery o€ E with =4 such that

1. F%is an open neighborhood of the identity in P/,

2. If F, is the closure of F? in P’ then there is a set F, such that F'c F,cF,
and the restriction of ¢, to F, is a continuous bijection onto L.

3. F)cF if é=o=n.

The set F? is called the fundamental domain of the local isometry ¢. Thus F,_ = ¢’(Fj)
is a neighborhood of the identity in L_, if L_, is taken with that topology which
makes ¢”: P’ - L_, an isomorphism. By the preceding stipulations F,_ and A_ =w(A4;)
have a single element in common which is the identity of G_,. Moreover elements
of F, and A_ commute on account of the construction. Consider now a compact
neighborhood V’C Fj of the identity in P’ and V,_=¢’(V’). Then the map

VX Aw > Vet Aes

defined by the group multiplication in G, is a continuous bijection. But V_X4_,
being compact, this bijection is a homeomorphism. Thus the set V. -A_ which
contains the identity in G, is isomorphic with the direct product V_XA_,.

It has to be shown now that ¥_A_ is a neighborhood of the identity in G_,,
or what amounts to the same thing, that ¥4 with V=w0"Y(V_), A=w~1(4.) is a
neighborhood of the identity in G. Evidently it suffices to prove that V;=¢3(V’)
is a neighborhood of the identity in Gj since then by VA=r;"(V;) the assertion
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follows. In order to carry this out the value of the index J will be elicited in what
follows. Consider first the case when every Y does vanish with respect to the original
approximating inverse system defined by {4,/«€4}. Then every Y} vanishes with
respect to the adjusted system as well, and consequently =1 holds. But then V;
is evidently a neighborhood of the identity in Gy. If there is a ¥};#0 with respect
to the original system then Y} 70 obviously holds with respect to the adjusted one.
This implies that /=1 and it will be shown now that §=1/+1 holds. Observe first
that the kernel of ¢, is discrete by the definition of ¢ and in consequence of 4, =4,.
Thus the kernel of ¢y is discrete as well. Assume now that the kernel of ¢, is
not discrete. Then there exists a non-zero Z’'€¢” with dg;,,(Z")=0 where ¢’ is the
Lie algebra of P’. Therefore do;, (Z")=dnf ,0dp,(Z')=0 and Z*=dp;(Z")#0
yield that Z* is an element of the Lie algebra of the kernel of zf,,. But then Z*
cannot be expressed as a linear combination of the vectors {Y[;,j=1, ..., n} on
account of the definition of /. On the other hand such an expression does exist since
Z' is a linear combination of the Y;;=dn(Y,), i,j=1, ..., n. This contradiction
shows that the kernel of ¢;,, must be discrete. Consider now that Y* which is
tangent vector at the identity of the 1-dimensional toroidal subgroup T, of 42/4,.
Then there is a non-zero Y,,€¢’ such that YE=dep;(Y) holds. But then dp;(¥;)=
=dn¥o dp,(Y,;)=0 shows that the kernel of ¢; cannot be discrete. Consequently
d=I+1 is valid. Now in order to verify that ¥;,, is a neighborhood of the identity
in Gy, it is obviously sufficient to note that by the construction of the adjusted system
the Lie algebra of the kernel of n;*! is spanned by the vectors {Y5'[i, j=1, ..., n}
and that ¥ is a neighborhood of the identity in Gy.

The set V_NM,, is a neighborhood of the identity in M_ since V' NQ is a
neighborhood of the identity in Q" and ¢’(V'NQ )=¢'(V)N¢'(Q)=V_ NM,,.
Moreover M_=L_NH,_ holds on account of the construction and thus ¥V, NM_=
=V_NH_ implies that the direct product

Ve NHoo) X (Aes N H )

as isomorphic to the set (V,_NH_)(A_.NH_). In order to prove that this sel is a
neighborhood of the identity in H_, or what ammounts to the same fact,
(VNH)(ANH) is a neighborhood of the identity in H, it is sufficient to show that
VANHC(VNH)(ANH) since the converse is obvious. Bul #€ VAN H implies that
ns(Mens(VANH)Crg(VA) N1y (H)=VsNHy=p5(V’NQ’) holds. Consequently
there exist v€ VN H and a€ A such that #=va. Thus a=v~1h yields that a€¢ H and
therefore ac AN H.

The subgroup A;, € E which has a cruical role in the above proof will yel
occure repeatedly at decisive steps of some subsequent arguments. In order to
provide a short term it will be called the locally factorizing element of the adjusted
system {A|o€E}.

T
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The (ollowing lemma is an casy consequence of a well-known theorem concern-
ing the structure of connccled compact groups ([8], pp. 88-—93). However a proof
is given here for convenience sinee some facts and objects occurring in the argument
will be yet of usc later on.

Lemma 3. Let G be a connected compact group then there is a connected
compact group G and a continuous epimorphism A: G -G such that to any connected
closed subgroup HCG there exists a connected closed subgroup Hc G with H=A(II),
which is invariant in and even a direct factor of G provided that I is invariant in G.

Proof. Let {G,, =} be an inversc system of Lic groups approximating G.
Then every G, is a connecled compact group and thus by the structural theorem of
such groups there arc connected closed invariant subgroups 7,,, S,C G, and a con-
tinuous epimorphism

ot Ty X Sy ~ G,
such that T, is central, S, is semisimple and the kernel of g, is discrete. Since T,=
=7 (T}y) and S,=n4(S,) are obviously valid for a< 8, the inverse system {T,, X S, #£}
can be [ormed where 7=, X’ and ,?, n;? are the restrictions of n% to T}, S,
respectively. Let S, be the universal covering group of S, and x,: S, S, the covering
epimorphism, then there is a unique lift o#: S;~S, of n/# such that

s
N ol _
Sy Sp

X“‘ %,}
s Sy

Consequently the inverse system {G,, 7} can be formed where G,=T,XS, and
7h=n/PXdl. Moreover the commutative diagrams

~ i ~

G, G,
Yy Vg
T,X S, < TyX S,
Hy ]
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are obtained where v, is the direct product of the identity epimorphism on 7, and
of %,. Put A,=u, o v, then the system {,|e€4} of epimorphisms obviously defines a
continuous epimorphism

Aot im {G Jec€ 4} — lim {G o€ 4}

of the projective limits on account of the commutativity of the preceding diagram.
Let now w: G~ lim {G,|e€4} be the canonical isomorphism defined by the approxi-
mation and put G=lim {G,J«€4} then

00k =1 GG

is a continuous epimorphism and G is obviously connected and compact.

Consider now a connected closed subgroup HcC G then H,=n,(H) is a con-
nected closed subgroup of G,. Therefore on account of facts already mentioned
in the proof of Lemma 2 there are connected closed invariant subgroups T, S H,
with THcT,, S¥c S, such that u, maps the subgroup 72X X ST of T,X .S, onto H,.
Let SI be the identity component of x;*(SL) then A, maps H,=T"XS” onto H,.
Consequently H=lim {H,|x€4} is a connected closed subgroup of G and H=A(H)
is valid.

Assume now that 4 is a connected closed invariant subgroup of G. Then the
preceding construction applied to 4 yields a connected closed subgroup 4 of G
with 4=A(A). It is easy to see that 4, is an invariant subgroup of G, and this implies
that A is invariant in G. Moreover the fact that A4, is invariant in G, and the con-
struction of G, implies that 4, is a direct factor of G, consequently there is a con-
nected closed invariant subgroup B,cG, with G,=A4,X B,. Since the epimorphisms
A, have discrete kernel and by the commutativity of the diagram above A,=7’(4,)
and B, =l (B,) are obviously valid, and thus the inverse systems {4,, 7.’} {B,, 7"}
can be formed where 7., 7.” are the corresponding restrictions of 7#. Consequently
G=AXB is valid where B=lim {B,|a€4}.

Corollary. Let G be a connected compact group, HC G a connected closed
subgroup, ACG a connected closed invariant subgroup and A, B, HCG the groups
which respectively correspond to them by the preceding constructions. Then H= A, X By,
holds where Ay, By are connected closed invariant subgroups of H with Ayc A,
B, CB.

Proof. Abiding by the settings of the above proof consider AY the identity
component of A;*(4,NH,). Then AY is a connected closed invariant subgroup of
H,, and consequently it is a direct factor of H,=7" XS since S! is simply con-
nected closed invariant subgroup BY of H, with H,=AZXBY and BY!cB,. Thus
H=A4,; X By, is valid with Ay=lim {A”|a€4}, B, =lim {BY|«c4}.
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2. ‘The structire of coset spaces of locally compact groups

Let G be a locally compact group, IIcG a closed subgroup and y: G- G/II
the canonical projection. Il AcG is a compacl invariant subgroup and n: G-~ G’'=
=G/A the canonical epimorphism then H'=n(H) is a closed subgroup of G’. Let
now y’:G’ - G'[II’ be the canonical projection then there is a unique map ¢: G/ -
—+G’[H’ such Lhat the diagram

G > G/
It I ¢
Gl - ag Gl/[]l

is commultative. The map ¢ which is continuous and open generates a fiber structure
on the space G/H. Since the terminology of fiber structures will prove convenient
subsequently, the map ¢ will be called the fiber structure defined by the invariant sub-
group A on the coset space G/H.

The result of Montgomery and Zippin on the characlerization of transilive
Lie group actions is based on the fact that if G/H is a finite dimensional coset space
of a group G which can be approximated by Lie groups then there exists a compact
invariant subgroup 4 of G defining a locally trivial fiber structure ¢ on G/H such
that the base space G’/H’ is a manifold and the fibers are totally disconnected ([6],
pp. 236—246 and [11]). In what next follows this theorem is generalized for arbitrary
coset spaces of locally compact groups. At first that case when G can be approximated
by Lie groups will be settled by

Lemma 4. Let H be a closed subgroup of the group G which can be approximated
by Lie groups. Then a locally factorizing invariant subgroup A of G defines a locally
trivial fiber structure @: G{H —~G’[|H’ such that the base space G'|H’ is a manifold
and the fibers are homeomorphic to the coset space A/B where B=ANH.

Proof. Let 4 be a locally factorizing invariant subgroup of G. In order to
show that the fiber structure ¢ defined by A4 is locally trivial consider the Lie sub-
groups L, M of G and the neighborhoods ¥, ¥ H of the identity in these subgroups
which correspond to A according to Theorem 1. Let S be a symmetric open neigh-
borhood of the identity in L such that S2c V. Put T=SNM then there is a cell
Zc S and a homeomorphism

P: ZXT - S
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where Z X T is a cartesian product only but y is given by y(z, t)=zt. Let now

o: SXA - SA and f:TXB -~ TB

be the isomorphisms of the direct products which exist according to Theorem 1;
thus a(s, @)=sa and B(¢, b)=tb. Since S=SA4 is a neighborhood of the identity
in G, thet set S’=n(S) is a neighborhood of the identity in G'=G/A4. Moreover
Z=y(S) is a neighborhood of H in G/H and Z’=y'(S’)=¢(Z) is a neighborhood
of H” in G'/H’. Let now

%S> SXA and A:Z->T

be the embeddings given by the trivial cross-sections through the identities, then
nogox:S — S’ and pu = y'omoaoxoyor:Z -~ Z’
are obviously homeomorphisms. Consider now the canonical projection
EZXTXA ~ ZXAB.
It will be shown now that there exists a8 homeomorphism
NZXAB~ Z
which is uniquely defined by the requirement that the diagram

S
ZXTXA Z X AIB

R
N ~s—=
=

be commutative. In fact consider (z;, #;, a)€ZXTXA and g;=s;0,=2z;t;a; where
i=1, 2 such that y(g;)=y(g,) holds. Thus there is an #€ H with g,=g, 4, and con-
sequently h=g;lg,=(s1ay)] 1 Soty =57 850,0,€ S2ACVA. Hence h€e VANH and
therefore h=tb with t€T, b€ B according to Theorem 1. Thus gy=z,t,ay=gh=
=2,1ya,tb=z,t,t ab which imply that

Zg = Z7p, tz = tlt alld ay = alb.

Conversely the validity of these equalities obviously implies that y (g,)=yx(g,) holds.
The preceding assertions yield now that

aloy™(Z) = {z} X TX aB
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for 2€Z with z€Z and a€A. Therefore the existence and uniqueness of » wilh the
above required propertics obviously [ollows.

In order to prove now that the fiber structure ¢ is locally trivial at x(II)eG/H
consider the homeomorphism

G:2Z'XAIB ~ Z

given by &(z',aB)=zall where z=p~'(z’). Then @o d(Z/, aB)=q¢@zaH)=y o
on(za)=2" hold by the preceding stipulalions.

The [act thal the (iber structure ¢ is locally trivial at y(g)=gH€cG/H can be
shown evidently by means of the homcomorphisms

Ay GIH ~ GIH and A,:G'|H — G'|H’

which are defined by the left translations L,: G—~G and L,: G’ ~G’ where g"=n(g).
Now Z,=A,(Z) is a neighborhood of gH in G/H and Z),= A,(Z") that of g’H’
in G'/H’. Moreover u,: Z—Z,, defined by p,=A,0op is a homeomorphism. Con-
sider now the map

®,:Zy X A|B ~ Z,

defined by @,(g’z’, aB)=gzaH where z= ,ug‘l(g’z’). Then o ®,(g’z’, aB)=g’z’and
@, is obviously a homeomorphism.

The proof of the assertions concerning the base space and the fibers are implicitely
contained in the above argument.

The extension of the above results to locally compact groups in entire generality
will be carried out by a standard method [11] based on the following lemma, the
proof of which being a prerequisite for subsequent considerations is reproduced here
for convenience.

Lemma 5. Let G* be an open and H a closed subgroup of the topological group G.
Then the coset space G[H is the free union of its subsets which are homeomorphic to
coset spaces G*|H* where H*=G*N\gHg' with some g€G.

Proof. The sets G*gH for g€G are obviously open in G, and since two such
sets are either identical or disjoint they are closed in G as well. Consequently there
is an index set 4 and to any «€ 4 an element g,€G such that

G = U{G*g,H|nc A}

where G*g,H and G*g,H are disjoint if ap. Let x: G~G/H be the canonical
projection then the sets ¥ (G*g,H) are both open and closed in G/H and y(G*g,H),
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x(G*gy H) are disjoint if a7 pB. Consequently G/H is the free union of these sets.
Let now
¥, G* > x(G*g, H)

be defined by ¥, (g)=y(gg,) for g€G* then y, is surjective. Moreover ,(g)=
=y, (g, if and only if g,g,H=g,g,H which is equivalent to g;'g,€g,Hg,*. Con-
sequently v, is a canonical projection onto the coset space G*/H* where Hg*=G*N
Ng,Hg . Therefore y(G*g,H) is homeomorphic to G*/Hg}.

According to a well-known theorem of H. YAMABE [9] a locally compact group
G always has an open subgroup G* which can be approximated by Lie groups,
Therefore if HC G is a closed subgroup then G/H is the free union of coset spaces
of G* by the preceding Lemma. Since an invariant subgroup 4 of G* defines a fi-
ber structure ¢, on G*/H, a fiber structure is obtained on x(G*g,H). There is a uni-
que extension ¢ of all these ¢,, € A on G/H which obviously yields a fiber struc-
ture ¢: G/H —~G’/H’. As in general A is not an invariant subgroup of G, this fiber
structure ¢ is not defined by 4 in the above specified sense. Accordingly it will be
said that @: G/H ~G'[/H’ is a fiber structure corresponding to the invariant subgroup
A of G*. The preceding two lemmas obviously yield the following

Theorem 2. Let G be a locally compact group HCG a closed subgroup and
G* G an open subgroup which can be approximated by Lie groups. If A is a locally
Sfactorizing invariant subgroup of G* and ¢: G/H —~G’'[H’ a fiber structure correspond-
ing to A, then ¢ is locally trivial, the base space G'|H’ is a free union of manifolds
and the fibers are homeomorphic to coset spaces of A.

Strictly speaking the above theorem is not a generalization of the one due to
Montgomery and Zippin concerning finite dimensional coset spaces of locally com-
pact groups. This is easily seen from the fact that the assertion about the fiber type
in the above theorem does not reproduce that of Montgomery and Zippin by assum-
ing G/H finite dimensional. In solving the problem considered here, however, Theo-
rem 2 has a role analogous to that of the theorem due to Montgomery and Zippin
in solving this problem in the special finite dimensional case.

A result of A. BoreL ([3], pp. 306—310) implies that if G is a compact group
and Hc G a closed subgroup such that G/H is contractible then H=G holds. The
following lemma extends the validity of this assertion.

Lemma 6. Let G be a compact group, HCG a closed subgroup, x: G —~G|/H
the canonical profection, ACG a closed invariant subgroup and A’ =yx(A). If A’ is
contractible over G/H then AC H.

Proof. Let 4y, HiC G, be respectively the identity components of 4, HC G
and consider the connected compact group G, the epimorphism A: G —~G, and the
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connceted closed subgroups A, Hc G with Ay=A(A) and Il,=A(H) given by Lemma
3. Thus A(dy)=AHANA)c AU NA(A)=H,N A4, is valid. Consequently there are
unique continuous surjections &: G/IT-Gy/Il, and n: A/Ay - Ao/II,N Ay such that

; i 74
g >~ G/H a ‘ o A/ Ay
/1, ¢ A"l 0
G() N ?"Go/[‘[g AO " \er/I'Ioon
Zo X

where A4 is the restricted epimorphism and %, x,, ¥4, xi' are the canonical projec-
tions. The subgroup A4 is a direct factor of G according to Lemma 3 since 4, is
invariant in G,. Thus there is a closed connected invariant subgroup BC G with
G=AXB. Morcover H=A;XB; with the subgroups Ay, By given by the co-
rollary of the same lemma. Thus the coset space G/H=(AXB)/(A;X By) can and
in what follows will by identified with the cartesian product (4/A4y) X (B/B). Let now

§: 4|4y ~ (A/Ag) X (B/Bp)
be the embedding defined by &(@Ay)=(ady, éBy) where €€G is the identity ele-
ment, Consider moreover the homeomorphism gy: Ay/HyNAy—xo(A4,) which is

uniquely defined by the validity of eyoyd=y,. Thus the following commutative
diagram is obtained

o

AlAy (A]Ay)X (B|By) = G/H
nl ¢
AO/HOQAO £ - GO/HO

In fact the validity of &o&(ddy)=E&(@Ay, éBy)=¢@H)=Eo ¥ (a)=yyo0 A(@) and of
ggon (adg)=ey0n 0 (@) =gy0 xi 0 4*(@) =y 0 A(d) implies the commutativity of this
diagram. The inclusions Hyc HNG, and Hy,NA,C HN A, canonically define the
continuous surjections

w: GolHy - Go/HNGy and  v: AfHyNAy - Ag/HN A,
which are obviously covering maps. Moreover if

X4:Go > Go/HNG, and x%:d4y ~ Af/HN 4,
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are the canonical projections then there is a homeomorphism ¢..: Ao/HN Ay~ % (4o)
which is uniquely defined by the validity of ¢, o x4 =y,. Hence the following com-
mutative diagram is obtained

&
Ao/ Hy(\ Ay ————> Gy/H,
v 7
Ao/HN Ay - > GolH (1 Gy
+

In fact the validity of poey(a(HyNAg))=u(aHy)=a(HNG,) and of e,0
ov(a(HyNAy)=¢e4(a(HNAp))=s, o xt(@)=x+(@)=a(HNG,) implies that the dia-
gram commutes. Let now y4: A ~A/HNA be the canonical projection then there
is a homeomorphism g: A/HNA A’ =y (A) which is uniquely defined by the validity
of goy?=y. The results obtained in proving Lemma 5 yield the homeomorphisms
@: Go/HN Gy~ x(Go) and i A/ HN Ay~ 3" (d,) such that y(g)=¢ oy, (g) for g€G,
and y4 (a)-——lpoxj‘_(a) for a€A,. Moreover these results yield that y4(4,) is a com-
ponent of A/HNA. But the assumption that 4” is contractible over G/H implies
that A’ is connected. Consequently the map o voy is surjective. Thus the following
commutativ diagram is obtained

¢ &

AoJH N Ao L Go/HN Gy
1 @
AJHN A - G/H

In fact the validity of gog.(a(HNAg)=poe,oxi(@=poy.(@=yx(@ and of
goy(a(HNAy))=coyo X’ﬂ(a) =gox4(a)=y(a) implies that the diagram commuies.
The assumption that 4’ is contractible over G/H obviously implies that there
exists a continuous map
w: AIHNAXI -~ G/H, I=10,1]

which is a deformation of the imbedding & into a constant map of 4/HNA into
G/H, in other words x(x, 0)=¢(x) for x€ A/HN A, and x(x, 1) is the same point
of G/H for every x€ AJHN A. Moreover by the above stipulations ¢ oy is a covering
map of Go/H, onto x(G,), and since (pop)ogy=coyov holds the map coyov is
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covered by g. Furthermore the continuous map
%,: Ao/l]om/loxl - G/I’I

which is defined by #’(x, ©)=x( o v(x), 7) for x€Ao/FH,N A, and €1 is obviously
a delormation of ¢of o v into a constant map. Consequently there exists a lif

%0: Ao/][oﬂAoXI el Go/[.[o

ol %" which is a homotopy of ¢y; in other words %, is a continuous map such that
Pouoxy(x, v)=u"(x,7) and x,(x, 0)=gy(x) for x€Ay/HyNAy, t€I. Thus %, is
obviously a homotopy [rom ¢, o a constant map. Obscrve now that the map & is
covering ¢yo 4 since € of=¢yon by the commutativity of the diagram in which they
occur, and that the continuous majp

%: Al A X I ~ GolH,

which is defined by (¥, ©)=%0(n(x), 1) for x€A4/Ay, 1€l is a homotopy [rom
gon lo a constant map. It will be shown now that even this homotopy #, can be
lifted. Consider for this purpose a system of invariant subgroups of G, which defines
a system {G,, n?} of Lie groups approximating G,. Then the construction made in
proving Lemma 3 yields the inverse system {G,, 7"} of Lie groups approximating
G along with the system {A,|x€4} of epimorphisms and with the closed subgroups
H,cG,, H,CG,. Then since H,=A,(H,) is valid the epimorphism A, defines a con-
tinuous surjection &,: G,/H,—G,/H, such that

- e -

G, G,/ H,
)"d \l (fq

Ga % [ Goz/ H o

where y,, ¥, are the canonical projections. Since the epimorphism A, has discrete
kernel ¢, is a covering map. On account of the fact that H,=n/(H,)=n,(H,) and
H,=l(H,)=7,(H) are valid the epimorphisms 74, ,, 7, 7, define the continuous
sutjections of, ¢;, @, @, such that

G, G, Gy < Gy G

=2

Lo
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Thus inverse systems {G,/H,, of}, {G,/H,, d’} are obtained which approximate
Go/H,, G/H respectively in the sense that the maps
0:Go/Hy — lim{G,/H,Juc 4} and §:G/H —~ lim{G,/H,|oc 4}

which are defined by ¢(gH,)={0,(gH)|x€4} and g(§H)={0,(§H)|x€ 4} prove to
be homeomorphisms according to standard theorems (see [7], vol. II, pp. 99—122
and [11]). Consider now the following diagram

N ay R a i
Ga/l T Gﬂ/Hﬂ : G/H
éa l éﬂl l é
G JH, " GylHy=——5——— GulHy

In fact stipulations above yield that
éﬂoéﬂ (gH) = époépoi(g) = fpofﬁoﬁﬂ @ = Xﬁolpoﬁp(g),
onf(gﬁ) = QﬂoéoZ(g) = 050x00A () = Xﬂonﬂo}t(g) = Xﬂoflﬂoﬁp €3]
and faoég(gﬁﬁp) = §,0 éa(gﬁ); ngé/f (g/x Hﬂ) = ngéﬂo Op (gH) = 0,0¢ (gﬁ)
which show that the diagram commutes. But the commutativity of this diagram
implies that a map

£t lim (G, FJac 4}  Jim (G,/H,Jo€ A}
is defined by ¢_({g,H, e AY)={&, (g, H,)|€4}. Moreover by the same reason even
¢ =g 'ol.0p

is valid. The map g, 08 is covering now the map g,o¢g,0# since &,0g,0E=g,0800n
is valid and g,o%, is a homotopy from g,0g,01 to a constant map. Since &, is a
covering map of manifolds there exists a unique lift %, of g,0xp; in other words
there exists a unique continuous map

Ra:Z/ZIIXj = Ga/Ha
such that &,0%,(x, 1)=g,0% (x, t) and %,(x, 0)=g,0&(x) for x€A/Ay, t¢I. Con-
sider now the continuous map
Rt A| Ay X — I1{G,/H,|u€ 4}

which is defined by #%_,(x, 7)={%,(x, t)|a€ 4}. The image of this map %_ is actually
in the subset [im {G,/H,ja€A4} of the cartesian product I {G,/H,jucA}. In order
to verify this observe that glo#%, is a homotopy of g,0& and covers g,o, since
@b osty(x, 0)=akogz0&(x)=g,08(x) and &,0000%,(x,7)=0l 0&so#,(x, 1)=0lo
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0 @ 0 %o(X, 7)== g, 0 %y(x, T) for x€A/Ay, t€L Thus by the uniqueness of the Ll
%,=0% 0%, holds. Now the formerly mentioned lift of the homotopy %, is obviously
given by the continuous map

R = g7 0kt Al Ay X1 -~ GIH

which is a homotopy from & to a constant map. Let o (A/Ay) X (B/By) ~A/Ay be
the canonical projcction, then the continuous map

oo AJAy X1 ~ Al

defines a contraction of A/A;; over itsell. Thus by the above cited result of Borel
A, =4 holds. But then A/FNA consists of a single point since y o voy is surjective.
Consequently AcC H is valid.

The main result of this paper from which the solution of the characterization
problem directly [ollows is given by the following

Theorem 3. Let G be a locally compact group and H a closed subgroup such
that the coset space G|H is locally contractible. Then G/ H is a free union of manifolds
which are coset spaces of Lie groups.

Proofl. Let G*CG be an open subgroup which can be approximated by Lie
groups. Then in consequence of Lemma 5 and Theorem 2 it suffices to show that
G*/H*, where H*=H(NG*, is homeomorphic to the coset space of a Lie group.

Let A be a locally factorizing invariant subgroup of G*. Then according to
Lemma 4 this subgroup 4 defines a locally trivial fiber structure ¢: G*/H* ~G’/H’
such that G'=G*/4, H'=H*|B are Lie groups and the fibers are homeomorphic
to A/B where B=ANH*. Consider now the point n*(H*)€G*/H *. According to
the local triviality of ¢ there is a neighborhood Z’ of pon*(H™) in G’/H’ and a
homeomorphism @: Z’X A/B~Z such that ¢ o $(z’, aB)=z" where Z=¢1(Z’) is
a neighborhood of n* (H *) in G*/H *. The assumption that G/H is locally contractible
yields now the existence of a neighborhood WcZ of n*(H*) such that any subset
Xc W can be contracted over Z onto n*(H?*). Considering the construction by
which a locally factorizing invariant subgroup was obtained from a given approximat-
ing inverse system of Lie groups, it is easy to see that there exists a locally factorizing
invariant subgroup A4 of G* such that if ¢: G¥/H* ~G/H is the fiber structure
defined by A then the fiber containing n*(H*) is a subset of W. More precisely the
fiber of ¢ containing n* (H*) is 4/B and the fiber of ¢ containing n*(H*) is A/B
where B=H*NA. But A/B can be identified with 4’=n'(4) where n’': A~ A/B is
the canonical projection. Let now

w: A’XI ~Z
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be a contraction of A’ over Z onto n* (I *) where I is the closed unil interval. More-
over consider the map
0:Z'XAIB —~ AJB

which is the canonical projection of the cartesian product on the second factor.
Then by the map
god tou: A’XI ~ A/B

obviously a contraction of 4" over 4/B is obtained. Bul then Lemma 6 yields that
AcB is valid. This in turn implies that B=A4 and consequently G*/H* is homeo-
morphic to G/A. Since G is a Lie group and H is a closed subgroup the assertion of
the theorem follows.

3. The characterization of transitive Lie group actions

The proof of the following theorem which yields the solution of the general
characterization problem is achieved now by the standard argument.

Theorem 4. Let a o-compact group G with compact G|G, be an effective and
transitive topological transformation group of a locally compact and locally contractible
space X. Then G is a Lie group and X is homeomorphic to a coset space of G.

Proof. Lel H be a stability subgroup of G then H is a closed subgroup of G
and X is homeomorphic to the coset space G/H according to a result of PONTRIAGIN
(see [7], vol. I, pp. 167—169). Since G/G, is compact G can be approximated by
Lie groups (see [6], pp. 175—176). Let now A be the locally factorizing invariant
subgroup of G given in the proof of the preceding theorem. Then B=A4 holds and
implies that 4 H. But then the assumption that G acts effectively yiclds that 4= {e}.
Consequently G is a Lie group and the assertion follows.

In the special case when H={e} holds Theorem 3 yields the following

Corollary. A locally compact group with compact G|G, is a Lie group if’ and
only if G is locally contractible.

This topological characterization of Lie groups can be oblained directly from
results of XK. H. HormANN as well ([4], p. 59). Tn fact local contractibility implies
the hypothesis of the Main Lemma there and wipes out the factors Z and T too.
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