On cosine operator functions in Banach spaces

By B. NAGY in Budapest

A cosine operator function C in a complex Banach space X is a mapping of the field of real numbers R into B(X), the space of bounded linear operators on X to X, satisfying C(0)=I (the identical operator) and

(1)
$$C(s+t)+C(s-t) = 2C(s)C(t)$$

for s, $t \in \mathbb{R}$. Throughout this paper we will also assume that the operator function C(s) is strongly continuous on \mathbb{R} (cf. [7]. Def. 3.2.2).

Strongly continuous cosine operator functions in Banach spaces have been considered e.g. in [2], [4], [6], [11], while generalizations in some linear topological spaces ([4], [13]) or special results in Hilbert spaces ([5], [12]) have also been presented. S. KUREPA [8] has given results concerning cosine operator functions continuous on R in the sense of the uniform operator topology.

The aim of this paper is to present further new results about strongly continuous cosine operator functions. The investigations comprise a perturbation theorem, the concept of the adjoint cosine operator function, spectral theorems and Taylor's formula for cosine functions. The basic concept is that of the generator operator A

of the cosine operator function C, which is defined as $Ax = \lim_{t\to 0} \frac{2}{t^2} \{C(t) - I\}x$ for exactly those $x \in X$ for which this limit exists in the norm topology of X. It is known that A is a densely defined closed linear operator and A = C''(0) if the derivatives of C(s) are defined in a similar way. The main method of investigation makes use of the fact that for some $w \ge 0$ every complex z with $\operatorname{Re} z > w$ satisfies $z^2 \in \varrho(A)$ (the resolvent set of A) and for every $x \in X$

(2)
$$zR(z^2; A)x = \int_0^\infty e^{-zt} C(t)x \, dt$$

where R(z; A) denotes the resolvent operator of A. Thus the method of investigation is akin to that of the semi-groups of operators and therefore the proofs will be given in a concise form.

1.

The following perturbation theorem generalizes [4-1], Lemma 6.1.

Theorem 1. Let A be the generator of the cosine operator function C(s; A)and B a bounded linear operator in X. Then A--B is the generator of a cosine operator function S(s; A+B) and $\lim_{\|B\|\to 0} \|S(s; A+B) - C(s; A)\| = 0$ uniformly on every compact $K \subset R$.

Proof. Since C is a cosine function, there exist positive numbers M and w such that $s \ge 0$ implies $||C(s)|| \le Me^{ws}$. Define $T(s)x = \int_{0}^{s} C(t)x \, dt$ $(s \ge 0, x \in X)$, then $||T(s)|| \le \frac{M}{w}e^{ws}$. Put $f_0(s) = ||C(s)||$, f(s) = ||T(s)||, $f_n(s) = ||B|| \int_{0}^{s} f(s-t)f_{n-1}(t)dt$ $(s \ge 0; n=1,2,...)$, then f_n is Lebesgue integrable on every [0,a], a > 0. Moreover, define $S_0(s) = C(s), S_n(s)x = \int_{0}^{s} T(s-t)BS_{n-1}(t)x \, dt$ $(s \ge 0, x \in X)$, then we have for n=0, 1, 2, ...:

- 1) $S_{\mu}(s)x$ is continuous in s for $s>0, x \in X$,
- 2) $||S_n(s)|| \le f_n(s)$ for $s \ge 0$

as it is seen by induction using [3], VIII. 1. 21.

Introduce the notation $w_0 = w + \frac{M}{w} \cdot ||B||$, then for $p > w_0$

$$\|B\| \int_{0}^{\infty} e^{-ps} f(s) ds \le \frac{M \|B\|}{w(p-w)} = r(p, B) = r < 1$$

and induction gives for n=0, 1, 2, ... that $f_n(s) \leq Me^{ps} r^n$. Indeed, this is true for n=0, and the validity for n-1 implies

(3)
$$f_n(s) \leq M e^{ps} r^{n-1} \|B\| \int_0^s e^{-pt} f(t) dt \leq M e^{ps} r^n.$$

From (3) we obtain that $S_n(s)x$ is continuous at s=0 from the right, the series $S(s) = \sum_{n=0}^{\infty} S_n(s)$ converges absolutely for $s \ge 0$ and $||S(s)|| \le \frac{Me^{ps}}{1-r}$, moreover S(s)x is continuous in s for $s \ge 0$.

If Re $v > w_0$, then (3) gives $\int_0^\infty e^{-s \operatorname{Re} v} \|BS_u(s)x\| ds < \infty$, and we get for n=0, 1, 2, ...

$$\int_{0}^{\infty} e^{-vs} S_{n}(s) x \, ds = v R(v^{2}; A) \{ BR(v^{2}; A) \}^{n} x \quad (x \in X).$$

Indeed, for n=0 see [4-I], Lemma 5.6, and the validity for n-1 implies by [3], VIII. 1. 22

$$\int_{0}^{\infty} e^{-vs} S_{n}(s) x \, ds = \int_{0}^{\infty} e^{-vs} T(s) B \int_{0}^{\infty} e^{-vt} S_{n-1}(t) x \, dt \, ds =$$

(4)

$$= v \int_{0}^{\infty} e^{-vs} T(s) \{ BR(v^{2}; A) \}^{n} x \, ds = vR(v^{2}; A) \{ BR(v^{2}; A) \}^{n} x.$$

For $v > w_0$ we have $||BR(v^2; A)|| \le ||B|| \int_0^\infty e^{-vs} ||T(s)|| ds \le r(v, B) < 1$, therefore $\sum_{n=0}^\infty \{BR(v^2; A)\}^n$ converges absolutely, moreover $\int_0^\infty e^{-vs} S(s)x \, ds = \sum_{n=0}^\infty \int_0^\infty e^{-vs} S_n(s)x \, ds$ $(x \in X)$, by [3], III. 6.16. Now if D(A+B) = D(A), then (4) and [7], Theorem 5.10.4 give $v^2 \in \rho(A+B)$ and

$$\int_{0}^{\infty} e^{-vs} S(s) x \, ds = v R(v^2; A+B) x \quad (x \in X),$$

thus [4-I], Lemma 5.8 yields that S is a cosine operator function with generator A+B. For $p > w_0$ we have

$$\|S(s; A+B) - C(s; A)\| \le \sum_{n=1}^{\infty} f_n(s) \le M e^{ps} \frac{r(p, B)}{1 - r(p, B)} \quad (s \ge 0)$$

and $\lim_{\|B\|\to 0} r(p, B) = 0$ gives the last assertion of Theorem 1 for $s \ge 0$, while for s < 0 it follows from the fact that every cosine operator function is even in s.

Corollary. Under the conditions of Theorem 1 if $||C(s; A)|| \leq Me^{w|s|}$ $(s \in R, w>0)$ and $p > w + \frac{M}{w} ||B||$, then there exists an N = N(p) > 0 such that $||S(s; A+B)|| \leq Ne^{p|s|}$ for $s \in R$.

In the following part of this section the concept of the adjoint cosine operator function will be defined and investigated. To make complicated formulas more readable, we shall write $\langle x^*, x \rangle$ instead of $x^*(x)$ if $x \in X$, $x^* \in X^*$ (the adjoint space of X). It is clear that if $C: R \to B(X)$ is a strongly continuous cosine operator function, then the mapping $C^*: R \to B(X^*)$ defined by $C^*(s) = C(s)^*$ satisfies (1), $C^*(0) = I^*$, $\|C^*(s)\| = \|C(s)\|$ for $s \in R$, and $C^*(s)$ is continuous on R with respect to the w^* operator topology of $B(X^*)$. However, it may happen that $C^*(s)$ is not a strongly continuous operator function.

The proof of the following lemmas will be only indicated or omitted.

Lemma 1. 1) If $x^{\dagger} \in D(A^*)$, then for $s \in R$ we have $C^*(s)x^{\dagger} \in D(A^*)$ and $A^*C^*(s)x^* = C^*(s)A^*x^*$. For every $x \in X$

$$\left\langle \{C^*(s) - I^*\} x^*, x \right\rangle = \int_0^s (s-t) \left\langle C^*(t) A^* x^*, x \right\rangle dt.$$

2) $x^* \in D(A^*)$ if and only if there exists $w^* - \lim_{s \to 0} \frac{1}{s^2} \{C^*(s) - I^*\} x^* = \frac{y^*}{2}$, and then $A^* x^* = y^*$.

The proof of 1) makes use of [11], 2.13. and 2.14., while that of 2) of [11], 2.11. Definition 1.

$$X_0^* = \{x^* \in X^* : \lim_{s \to 0} C^*(s) x^* = x^*\}.$$

Lemma 2. 1) X_0^* is a closed linear subspace of X^* . For every $s \in R$ we have $C^*(s)X_0^* \subset X_0^*$.

2) $D(A^*) \subset X_0^*$ and for $x^* \in D(A^*)$

$$\|\{C^*(s) - I^*\} x^*\| \le \frac{s^2}{2} \|A^* x^*\| \sup_{0 \le t \le |s|} \|C(t)\|.$$

Definition 2. Let $\{C_0^*(s); s \in R\}$ be the restriction of $\{C^*(s); s \in R\}$ to X_0^* , and A_0^* the generator of the strongly continuous cosine operator function $C_0^*(s)$. C_0^* will be called the *cosine operator function adjoint to C*.

Remark. Lemma 2 implies that C_0^* satisfies (1), and Definition 1 and [11], 2.7 that C_0^* is strongly continuous.

In the next lemma and theorem \overline{H} denotes the closure of $H \subset X^*$ in the norm topology of X^* .

Lemma 3. 1) $D(A_0^*) \subset D(A^*)$ and $\overline{D(A^*)} = X_0^*$. 2) $D(A_0^*) = \{x^* \in D(A^*): A^*x^* \in X_0^*\}$, and $x^* \in D(A_0^*)$ implies $A_0^*x^* = A^*x^*$.

In the following theorem we use the definitions of [7], 14.2 and 14.3.

Theorem 2. If A is a cosine generator, then A is a \odot -operator and $X^{\odot} = X_0^*$ (cf. [7], Def. 14.2.1). Moreover, $A^{\odot} = A_0^*$ and for $s \in \mathbb{R}$ we have $C(s)^{\odot} = C_0^*(s)$ (cf. [7], Def. 14.3.1).

Proof. By assumption, A also generates a semi-group of operators of class $H\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, according to [2]. Hence A is a \odot -operator, by [7], 14.4. According to definition $X^{\odot} = \overline{D(A^*)}$, and Lemma 3 gives $X^{\odot} = X_0^*$. The second part of Lemma 3 and [7], Def. 14.3.1. imply $A^{\odot} = A_0^*$, finally $C(s)^{\odot} = C_0^*(s)$ for every $s \in R$, by Lemma 2.

In the investigation of spectral theorems the next lemma will be fundamental.

Lemma 4. Suppose C is a cosine operator function, A is its generator, $s \in \mathbb{R}$ and $a \in K$ (the complex field). Then $S(s; a)x = \int_{0}^{s} \operatorname{sh} a(s-t)C(t)x \, dt \ (x \in X)$ defines a bounded linear operator in X, for which

(5)
$$AS(s; a)x = a^{2}S(s; a)x + a\{C(s) - ch(as)\}x \quad (x \in X).$$

Proof. Suppose $x \in D(A)$ and $f: R \to K$ is twice continuously differentiable. Then, by [4-I], Lemma 5.4,

$$\int_{0}^{s} f(t)C(t)Ax \, dt = \int_{0}^{s} f(t)C''(t)x \, dt$$

and integrating by parts, we get by [11], 2.16

(6)
$$\int_{0}^{s} C(t) \{ [f(t) - f(s)] Ax - f''(t)x \} dt = f'(0)x - f'(s)C(s)x.$$

For a=0 the assertions of the lemma are trivial. For $a \neq 0$ put $f(t) = \frac{1}{a}e^{at}$ and $f(t) = -\frac{1}{a}e^{-at}$ into (6), then we get after some calculation

(7)
$$S(s; a)Ax = a^{2}S(s; a)x + a \{C(s) - ch (as)\}x$$

and [3], III. 6.20 implies (5) for $x \in D(A)$. Now if $x \in X$, $\lim_{n \to \infty} x_n = x$, $\{x_n\} \subset D(A)$, then $\lim_{n \to \infty} S(s; a)x_n = S(s; a)x$ and there exists $\lim_{n \to \infty} AS(s; a)x_n$, for (5) is true on D(A). Then the closedness of A implies (5) for $x \in X$, and the proof is complete.

In the following theorems $P\sigma$, $C\sigma$ and $R\sigma$ denote the point, continuous and residual spectra. We shall refer to the spectral properties P_v (v=1, 2, 3) of a linear operator T from $D(T) \subset X$ to X, whose definition is as follows (cf. [7], Def. 2.16.2):

- P_1 : T is not one-to-one,
- P_2 : R(T), the range of T, is not dense in X,
- P₃: there is a sequence $\{x_n\} \subset D(T)$ such that $||x_n|| = 1$ and $||Tx_n|| \to 0$.

Theorem 3. If C is a cosine operator function, A is its generator and $s \in R$, then ch $\{s\sqrt{\sigma(A)}\} \subset \sigma\{C(s)\}$. Similar relations hold if we write $P\sigma$ and (for $s \neq 0$) $C\sigma$ and $R\sigma$, respectively, instead of σ on both sides. Proof. We may assume, obviously, that $s \neq 0$. If $a \neq 0$ complex, then for $x \in D(A)$ we have, by Lemma 4,

(8)
$$\frac{1}{a} \int_{0}^{s} \operatorname{sh} a(s-t)C(t) \{a^{2}-A\} x \, dt = \{\operatorname{ch} (as) - C(s)\} x.$$

On the other hand, [11], 2.15 gives for $x \in D(A)$

(9)
$$\int_{0}^{s} (s-t) C(t) \{0-A\} x \, dt = \{ ch \ 0 - C(s) \} x.$$

Suppose now $a^2 \in \sigma(A)$. If $a \neq 0$, then (8), while if a=0, then (9) immediately yield that if $a^2 - A$ has the spectral property P_v (v=1, 2, 3), then so does ch (as) -C(s). This gives the statements of the theorem.

The converse relation for the point spectra is given in the following

Theorem 4. If $s \in R$, $s \neq 0$, $p \in P\sigma\{C(s)\}$ and $\{r_n\}$ is the set of all complex solutions of the equation ch (rs) = p, then $r_n^2 \in P\sigma(A)$ for some n. Therefore, ch $\{s \mid \overline{P\sigma(A)}\} = P\sigma\{C(s)\}$.

Proof. If $a \neq 0$ complex and ch $(as) \in \varrho \{C(s)\}$, then R(ch(as); C(s)) commutes with S(s; a) and $a^2 \in \varrho(A)$, by Theorem 3. Moreover, by Lemma 4,

(10)
$$R(a^{2}; A) = \frac{1}{a} S(s; a) R(\operatorname{ch}(as); C(s)).$$

Suppose $p \in P\sigma\{C(s)\}$, $s \neq 0$, $M = \{x \in X: C(s)x = px\}$. Then M is a nontrivial closed linear subspace of X, invariant for C(t), $t \in R$. In the remainder of this proof C(t) ($t \in R$) and A denote the restrictions of these operators to M, unless explicitly stated otherwise. Thus if ch (as) $\neq p$, then ch (as) $\in \varrho\{C(s)\}$ and, by (10),

(11)
$$R(a^{2}; A) = \frac{1}{a} (\operatorname{ch} (as) - p)^{-1} S(s; a) \quad (\text{if } a \neq 0).$$

If for some complex r_n for which ch $(r_n s) = p$, $S(s; r_n)$ is not the zero operator in M, then the resolvent R(v; a) has a pole at $v = r_n^2$, by (11), consequently $r_n^2 \in P\sigma(A)$ even if A is considered on all of D(A), thus the theorem is true. Therefore we assume that $S(s; r_n) = 0$ on M for every r_n for which ch $(r_n s) = p$. Put $\{r_n\} = \{a_n\} \cup \{b_n\}$ where $a_n = a_0 + i \frac{\pi}{s} 2n$, $b_n = -a_0 + i \frac{\pi}{s} 2n$ (*n* integer) are all solutions of the above equation. By our assumption, we obtain for $x \in M$

(12)
$$\int_{0}^{s} C(s-t) \operatorname{sh}(a_{0}t) \cos\left(\frac{\pi}{s} 2nt\right) \cdot x \, dt =$$
$$= \int_{0}^{s} C(s-t) \operatorname{ch}(a_{0}t) \sin\left(\frac{\pi}{s} 2nt\right) x \, dt = 0.$$

C(s) is an even function, therefore we may assume s > 0. Fix $x \in M$, and define the functions $f, g: \mathbb{R} \setminus \{ns; n \text{ integer}\} \rightarrow X$ to be periodic with period s, and for $t \in (0, s)$

(13)
$$f(t) = C(s-t) \operatorname{ch} (a_0 t) x, \quad g(t) = C(s-t) \operatorname{sh} (a_0 t) x.$$

Then the sine Fourier coefficients of f and the cosine coefficients of g vanish by (12), and their Fourier series are (C, 1)-summable to f(t) and g(t), respectively, for $t \in (0, s) + ns$ (*n* integer) as in the numerical-valued case. Hence f is even and g is odd, and we obtain for $t \in (0, s)$ that on M

(14)
$$C(t)e^{a_0s} = C(s-t) = C(t)e^{-a_0s}.$$

Since M is a nontrivial subspace, thus we can not have $C(t)M = \{0\}$ for $t \in (0, s)$, hence $e^{a_0 s} = \pm 1$ and $p = \operatorname{ch}(a_0 s) = 1$ or else p = -1.

Now if $e^{a_0s} = -1$, then by (14) $C\left(\frac{s}{2}\right) = 0$ on M and C(t+s) = -C(t) for $t \in R$.

It can be shown that $E(t)=C(t)+iC\left(t+\frac{s}{2}\right)$ is a strongly continuous group of operators for which E(s)=-I and whose generator G satisfies $G^2=A$ (cf. [9]). But then $-1\in P\sigma\{E(s)\}$ and [7], Theorem 16.7.2 give that for some complex r, for which ch (rs)=-1, $r\in P\sigma(G)$ and, consequently, $r^2\in P\sigma(A)$ holds even if A is considered on all of D(A).

Finally, if $e^{a_0s} = 1$, then using (14) it can be shown that, on M, C(t) is periodic with period s. According to [6], $P\sigma(A) = \sigma(A)$ is then nonvoid and $P\sigma(A) \subset \{r_n^2\}$, thus the proof is complete.

In view of our results concerning the adjoint cosine operator function and the point spectra, in the following two theorems a similar reasoning can be applied as in [7], Theorem 16.7.3 and 16.7.4.

Theorem 5. If $p \in R\sigma \{C(s)\}$ and $\{r_n\}$ is the set of all complex solutions of the equation ch (rs) = p, then $r_n^2 \in R\sigma(A)$ for some n, and $r_n^2 \notin P\sigma(A)$ for every n. Moreover we have $p \in P\sigma \{C_0^*(s)\}$.

Proof. We only remark that, by Theorem 2, Λ is a \odot -operator and for $t \in R$, C(t) commutes with Λ in the sense of [7], Def. 14.3.2, for there is a $w \ge 0$ such that Re v > w implies

$$R(v^{2}; A)C(t)x = \frac{1}{v} \int_{0}^{\infty} e^{-vu}C(u)C(t)x \, du = C(t)R(v^{2}; A)x \quad (x \in X).$$

Now the proof is similar to that of [7], Theorem 16.7.3.

Theorem 6. If $p \in C\sigma \{C(s)\}$ and r_n as in Theorem 5, then $\{r_n^2\} \subset C\sigma(A) \cup \varrho(A)$. It can happen that every $r_n^2 \in \varrho(A)$.

Proof. The first assertion follows from Theorem 3, and the following example proves the second one. Let X be the complex l_2 space, and for $\{z_n; n=1, 2, ...\} \in l_2, s \in \mathbb{R}$ put C(s) $\{z_n\} = \{\cos(ns)z_n\}$. Then $A\{z_n\} = \{-n^2z_n\}$ with $D(A) = \{\{z_n\} \in l_2; \sum_{n=1}^{\infty} n^4 |z_n|^2 < \infty\}$, and $\sigma(A) = P\sigma(A) = \{-n^2; n=1, 2, ...\}$. Clearly, $P\sigma\{C(1)\} = \{\cos n; n=1, 2, ...\}$, $K \setminus [-1, 1] \subset \varrho\{C(1)\}$ and Theorem 5 implies $C\sigma\{C(1)\} = [-1, 1] \setminus \{\cos n; n=1, 2, ...\}$. Thus the second assertion is also proved.

The next theorem (Taylor's formula for cosine operator functions) generalizes [11], 2.15.

Theorem 7. Suppose C is a cosine operator function, A is its generator and $x \in D(A^n)$ (n positive integer). Then for $t \in \mathbb{R}$

(15)
$$C(t)x = x + \frac{t^2}{2!}Ax + \dots + \frac{t^{2n-2}}{(2n-2)!}A^{n-1}x + \int_0^t \frac{(t-s)^{2n-1}}{(2n-1)!}C(s)A^nx\,ds.$$

Proof. It is known that, for $x \in D(A)$, C(t)x is twice continuously differentiable on R, $C(t)x \in D(A)$, and C''(t)x = C(t)Ax = AC(t)x for every $t \in R$; moreover, C'(0)x=0, cf. [4-I], [11]. From these facts it can be deduced by induction that for $x \in D(A^n) C(t)x$ is 2*n* times continuously differentiable on R, $C^{(2u)}(t)x = C(t)A^n x =$ $= A^n C(t)x$ for $t \in R$, and $C^{(2k-1)}(0)x=0$ whenever $1 \le k \le n$. Hence the Taylor theorem for vector-valued functions (see e.g. [10], (IV, 9; 47)) gives the assertion of the theorem.

References

- [1] P. BUTZER-H. BERENS, Semi-Groups of Operators and Approximation (Berlin, 1967).
- [2] G. DA PRATO-E. GIUSTI, Una caratterizzazione dei generatori di funzioni coseno astratte, Boll. Unione Mat. Italiana, 22 (1967), 357-362.
- [3] N. DUNFORD-J. SCHWARTZ, Linear Operators, I (New York, 1958).
- [4] H. O. FATTORINI, Ordinary differential equations in linear topological spaces, I—II, J. Diff. Equ. 5 (1968), 72-105; 6 (1969), 50-70.
- [5] H. O. FATTORINI, Uniformly bounded cosine functions in Hilbert space, *Indiana Univ. Math. J.*, 20 (1970), 411–425.
- [6] E. GIUSTI, Funzioni coseno periodiche, Boll. Unione Mat. Italiana, 22 (1967), 478-485.
- [7] E. HILLE-R. PHILLIPS, Functional Analysis and Semi-Groups (Providence, 1957).
- [8] S. KUREPA, A cosine functional equation in Banach algebras, Acta Sci. Math., 23 (1962), 255-267.
- [9] B. NAGY, A sine functional equation in Banach algebras, to appear
- [10] L. SCHWARTZ, Analyse Mathématique (Paris, 1967).
- [11] M. SOVA, Cosine operator functions, Rozprawy Matematyczne XLIX (Warszawa, 1966).
- [12] M. SOVA, Semigroups and cosine functions of normal operators in Hilbert spaces, Casopis pěst. mat. 93 (1968), 437---458.
- [13] F. VAJZOVIĆ, Einige Funktionalgleichungen im Fréchetschen Raum, Glasnik matematicki, 3-(23) (1968), 19–38.

TECHNICAL UNIVERSITY, BUDAPEST, AND KOSSUTH L. UNIVERSITY, DEBRECEN

(Received June 12, 1973, revised December 29, 1973)