On cosine operator functions in Banach spaces

By B, NAGY in Budapest

A cosine operator function C in a complex Banach space X is a mapping of
the field of real numbers R into B(X), the space of bounded linear operators on
X to X, satisfying C(0)=1 (the identical operator) and

) C(s+1)+C(s—1) = 2C(5)C(1)

for s, t€R. Throughout this paper we will also assume that the operator function
C(s) is strongly continuous on R (cf. [7]. Def. 3.2.2).

Strongly continuous cosine operator functions in Banach spaces have been
considered e.g. in [2], [4], [6], [11], while generalizations in some linear topological
spaces ([4], [13]) or special results in Hilbert spaces ([5], [12]) have also been presented.
S. KUREPA [8] has given results concerning cosine operator functions continuous on
R in the sense of the uniform operator topology.

The aim of this paper is 1o present further new results about strongly continuous
cosine operator functions. The investigations comprise a perturbation theorem, the
concept of the adjoint cosine operator function, spectral theorems and Taylor’s
formula for cosine [unctions. The basic concept is that of the generator operator 4

, o .2
of the cosine operator function C, which is defined as Ax=111nF {C(#)—TI}x for
t~0

exactly those x¢€X for which this limit exists in the norm topology of X. It is known
that 4 is a densely defined closed linear operator and 4=C”(0) if the derivatives of
C(s) are defined in a similar way. The main method of investigation makes use of
the fact that for some w=0 every complex z with Re z>w satisfies z2€¢(4) (the
resolvent set of A) and for every x€X

) ZR(z%; A)x :fe‘”C(t)xdt
0

where R(z; A) denotes the resolvent operator of 4. Thus the method of investigation
is akin to that of the semi-groups of operators and therefore the proofs will be given
in a concise form.
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1.

The flollowing perturbation theorem gencralizes [4—1], Lemma 6.1.

Theorem L. Let A be the generator of the cosine operator function C(s; A)
and B a bounded linear operator in X. Then A--B is the generator of a cosine
operator function S(s; A--B) and lim | S(s; A--B)—C(s; A)| =0 uniformly on every

IBI-+0

compact K R,
Prool, Since C is a cosine function, there exist positive numbers M and w

such that s=0 implics | C(s)| =Me"™. Define T'(s)x= f C(t)x dt (s=0, xcX), then
0

M 8
17l ‘—é—w—e‘”"~ Put fo()=ICON, fS=IT(DN, f.(s)=IBI ff(s—t)f"ul(f)dt
0
(s=0;n=1,2,...), then f, is Lebesgue integrable on every [0, a], a=0. Moreover, define
So(s) = C(s), S,(s)x= f T(s—t)BS,_1(t)x dt (s =0, xcX), then we have for
0

n=0,1,2,...:
1) S,(s)x is continuous in s for §=0, x€ X,
2) 1S, ()I=/,(s) for s=0

as it is seen by induction using [3], VIIL. 1. 21.

) M
Introduce the notation wy=w+-—-|B|, then for p=w,
w

1B f e P f(5)ds = s w(p w)

=r(p,B)=r=<1

and induction gives for n=0, 1, 2, ... that f,(s)=Me™r". Indeed, this is true for
n=0, and the validity for n—1 implies

® 5,6 = Merr=2|B] [ e f(@)dt = Merr.
0

From (3) we obtain that S,(s)x is continuous at s=0 from the right, the series

DS

i M
S(8)= 2 S,(s) converges absolutely for s=0 and | S(s)| = 7 ¢ , moreover S(s)x
n=0

is continuous in s for s=0.
If Rev=w,, then (3) gives f e SRV |BS, (s)x]|ds<e, and we get for
0
n=0,1,2,...

fe‘”sS.,(S)xds = oR(V*; A){BR*; A)}"'x  (x€X).
0
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Indeed, for n=0 see [4-I], Lemma 5.6, and the validity for n—1 implies by [3],
VIII 1. 22

fe""sS,,(s)xds:f e‘”ST(s)Bf e S,_1(Nxdtds =
0 0 0

@ )
= f e~ T($){BR(v?*; A} xds = vR(v?; A){BR(W?; A)}" x.
0

For v=w, we have ||BR(02;A)||§||B||fe—”sllT(s)ll ds=r(v, B)<1, therefore
0

S’ {BR(v?; A)}' converges absolutely, moreover f e~ S(s)x ds= f f eS8, (8)x ds
0

n=0 n=09
(x€X), by [3], IT1. 6.16. Now if D(4A+B)=D(A), then (4) and [7], Theorem 5.10.4
give 12€ (4 +B) and

f e "S()xds = vR(W*; A+ B)x (x€X),
0

thus [4-1], Lemma 5.8 yields that S is a cosine operator function with generator
A+ B. For p=>w, we have

[S(s; A+B)—C(s; A éngozf,,(s) = Mel’s% (s=0)

and lim r(p, B)=0 gives the last assertion of Theorem 1 for s=0, while for s<0
1BlI--0

it follows from the fact that every cosine operator function is even in s.

Corollary. Under the conditions of Theorem 1 if |C(s; A)||=Me"! (s€R,
M
w=0) and p>w-+— ||B|, then there exists an N=N(p)=0 such that |S(s; A+B)| =
w
=Ne*! for s€R.

In the following part of this section the concept of the adjoint cosine operator
function will be defined and investigated. To make complicated formulas more
readable, we shall write (x*, x) instead of x*(x) if x€X, x*€X™ (the adjoint space
of X). It is clear that if C: R—B(X) is a strongly continuous cosine operator func-
tion, then the mapping C*: R— B(X *) defined by C *(s) = C(s)* satisfies (1),C* (0)=1I*,
IC*(s)|=||C(s)| for s€R, and C*(s) is continuous on R with respect to the w*-
operator topology of B(X*). However, it may happen that C*(s) is not a strongly
continuous operator [unction.

The proof of the following lemmas will be only indicated or omitted.

4%
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Lemma 1. 1) Iff x'€D(A4"), then for s€R we have C*(s)x*€D(A") and
A¥CH(s)x*=C*()A*x*. For every x¢X

{CH @ —~T"}xt, %) = f (s— D(C* (1) A*x", XY dlt.
0

1 A
2) x*eD(A*) if and ouly if there exists W*-lim — {C*(s)~1 *}x"“=—J—)2— , and
g0 S
then A*x*=y", ,
The proof of 1) makes use of [11], 2.13. and 2.14., while that of 2) of [11], 2.11.

Deflinition 1.
Xl = {eFeX*: lin% C*(s)x* = x*}.

Lemma 2. 1) X is a closed linear subspace of X*. For every s€ R we have

C*()XfcX,.
2) D(A*)c Xy and for x*€D(A*)

N S2
{C* () ="} x*|l = = I4*x7] B IC@l.

Definition 2. Let {C(s); S€R} be the restriction of {C*(s);s€R} lo X,
and Ay the generator of the strongly continuous cosine operator function Cy(s).
C, will be called the cosine operator function adjoint to C.

Remark. Lemma 2 implies that Cy satisfies (1), and Definition 1 and [11], 2.7

that Cy is strongly continuous.
In the next lemma and theorem H denotes the closure of Hc X* in the norm

topology of X *.

Lemma 3. 1) D(47)cD(4*) and D(4*)=X,.
2) D(A)={x*€D(A™): A*x*c Xy}, and x*€D (A7) implies Agx*=A*x*

In the following theorem we use the definitions of [7], 14.2 and 14.3.

Theorem 2. If A is a cosine generator, then A is a ©-operator and X©= X}
(cf. [7], Def. 14.2.1). Moreover, A=Ay and for s€ R we have C(5)®=C(s) (cf.
[7], Def. 14.3.1).

Proof. By assumption, 4 also generates a semi-group of operators of class
i1 . .
H [—%, —2—], according to [2]. Hence 4 is a © -operator, by [7], 14.4. According to

definition X©=D(4*), and Lemma 3 gives X©=X. The second part of Lemma 3
and [7], Def. 14.3.1. imply 49 = A, finally C(s)®=C(s) forevery s€ R, by Lemma 2.
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2.

In the investigation of spectral theorems the next lemma will be fundamental.
Lemma 4. Suppose C is a cosine operator function, A is its generator, SER

N

and a€K (the complex field). Then S(s; a)x= f sha(s—t)C(t)x dt (x€X) defines
0
a bounded linear operator in X, for which

®) AS(s;a)x = a®S(s; a)x+a{C(s)—ch (as)}x (x€X).

Proof. Suppose x€D(4) and /: R—~K is twice continuously differentiable.
Then, by [4-I], Lemma 5.4,

f F(OC ) Axdt = f FOC" (B)xdt
0 0

and integrating by parts, we get by [11], 2.16

©) 6/ COSO)—f@)Ax —f7 (@) x}dt = [ (0)x —f" () C(s) .

For a=0 the assertions of the lemma are trivial. For a=0 put f(t)=% e and
§iO) :—aie_”’ into (6), then we get after some calculation

@) S(s; a)Ax = a® S(s; a)x+a{C(s)—ch (as)}x

and [3], III. 6.20 implies (5) for x€D(4). Now if x€X, lim x,=x, {x,}cD(4),

then lim S(s; a)x,=S(s; a)x and there exists lim AS(s; a)x,, for (5) is true on

n-»oco n->-oco

D(A). Then the closedness of A implies (5) for x€X, and the proof is complete.

In the following theorems Pg, Co and Ro denote the point, continuous and
residual spectra. We shall refer to the spectral properties P, (v=1, 2, 3) of a linear
operator T from D(T)c X to X, whose definition is as follows (cf. [7], Def. 2.16.2):

P,: T is notl one-to-one,
P,: R(T), the range of T, is not dense in X,
P,: there is a sequence {x,}cD(T) such that |x,[|=1 and ||Tx,| 0.

Theorem 3. If C is a cosine operator function, A is its generator and s€R,
then ch {syo(A)} Co {C(s)}. Similar relations hold if we write Po and (for s#0) Co
and Ro, respectively, instead of o on both sides.
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Proof. We may assume, obviously, that s0. If @ 0 complex, then [or x€ D (A)
we have, by Lemma 4,

® —(17 f sha(s— ) C () {a®— A} xdt = {ch (as) — C(s)} x.
0
On the other hand, [11], 2.15 gives for x¢ D(A)
) [ 6=HCOO~Ayxdt = {h0—C(s)} x.
0

Supposc now a2€o(4). If a0, then (8), while if =0, then (9) immediately yield
that il @®*—4 has the spectral property P, (v=1, 2, 3), then so does ch (as)—C(s).
This gives the statements of the theorem.

The converse relation for the point spectra is given in the following

Theorem 4. Ifs€R, s#0, p€Po{C(s)} and {r,} is the set of all complex solutions
of the equation ch (rs)=p, then r}cPo(A) for some n. Therefore, ch {syPo(A)} =
=Po{C(s)}.

Proof. If a0 complex and ch (as)€ ¢ {C(s)}, then R(ch (as); C(s)) commutes
with S(s; @) and a*€g(A4), by Theorem 3. Moreover, by Lemma 4,

(10) R(a?; A) = %S(s; a@) R(ch (as); C(s)).

Suppose p€Pa{C(s)}, s7#0, M={x€X: C(s)x=px}. Then M is a nontrivial
closed linear subspace of X, invariant for C(¢), € R. In the remainder of this proof
C(t) (¢€R) and A denote the restrictions of these operators to M, unless explicitly
stated otherwise. Thus if ch (as)>p, then ch (as)€o{C(s)} and, by (10),

(11) R(a*; A) = é—(ch @s)—p)~1S(s; @) (if a » 0).

If for some complex r, for which ch (r,s)=p, S(s; r,) is not the zero operator
in M, then the resolvent R(v; ) has a pole at v=r2, by (11), consequently r2€ Po (4)

even if A4 is considered on all of D(A4), thus the theorem is true. Therefore we assume
that S(s;r,)=0 on M for every r, for which ch (r,s)=p.
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T .
Put {r,}={a,}U{b,} where a,=a,+i z 2n, b, = —a,+i—2n (n integer) are all
) s

solutions of the above equation. By our assumption, we obtain for x€ M

f C(s—1) sh (ayt) cos [% 271t] xdt =
(12) '
= [ C(s—1ch(afsin [%m]m — 0.
0

C(s) is an even function, therefore we may assume s=>0, Fix x€ M, and define the
functions f; g: R\ {ns; n integer} ~X to be periodic with period s, and for #€(0, s)

(13) @) = C(s—1)ch (agt)x, g) = C(s—t)sh (ayt)x.

Then the sine Fourier coefficients of f and the cosine coefficients of g vanish by
(12), and their Fourier series are (C, 1)-summable to f(¢) and g (), respectively, for
t€(0, s)+ns (n integer) as in the numerical-valued case. Hence f'is even and g is odd,
and we obtain for #€(0, s) that on M

(14) C(He"* = C(s—t) = C(H)e %=

Since M is a nontrivial subspace, thus we can not have C(¢#)M ={0} for £€(0, s),
hence e®*=+1 and p=ch (g,s)=1 or else p=—1.

Now if e%*= — |, then by (14) C[%]:o on M and C(t+s)=—C(¢) for tER.
It can be shown that E()=C(t)+iC [t—l—%] is a strongly continuous group of
operators for which E(s)=—I and whose generator G satisfies G?=4 (cf. [9]).
But then —I€Po{E(s)} and [7], Theorem 16.7.2 give that for some complex r,
for which ch (rs) = —1, ré Po(G) and, consequently, r2¢Po(4) holds even if A4 is
considered on all of D(4).

Finally, if e™$=1, then using (14) it can be shown that, on M, C(z) is periodic
with period s. According to [6], Po(A)=a(A) is then nonvoid and Po(4)c {2},
thus the proof is complete.

In view of our resulis concerning the adjoint cosine operator function and the
point spectra, in the following two theorems a similar reasoning can be applied as
in [7], Theorem 16.7.3 and 16.7.4.

Theorem 5. If p€Ro{C(s)} and {r,} is the set of all complex solutions of the
equation ch (rs)=p, then 12€ Ro (A) for some n, and 1% ¢ Po(A) for every n. Moreover
we have p€ Po {Cf(9)}.
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Prool. We only remark that, by Theorem 2, 4 is a ® -operator and for #€R,
C(¢t) commutes with 4 in the sense of [7], Del. 14.3.2, for there is a w0 such that
Re v=w implics

R@WP; AHC(x = %joe“”"C(u)C(r)xdu =CHORW; Ax (x€X).
0

Now the proof is similar to that of [7], Theorem 16.7.3.

Thecorem 6. Ifp C Co {C(s)} and 1, as in Theorem 5, then {1} Co(A)U g(A).
It can happen that every 12€ g (A).

Proof. The first asscrtion follows {rom Theorem 3, and the lollowing cxample
proves the second one, Let X be the complex J, space, and for {z,;n=1, 2, ...}€l,, s€R
put C(s) {z,}={cos (ns)z,}. Then 4{z,} = {—n®z,} with D (4) = {{z,,} €ly; Z’ nz,|2< oo}

n=1
and ¢(4d)=Po(A)={—n?; n=1,2,...}. Clearly, Po{C(1)}={cos n; n=1,2,...},
KN\[—1, 1]ce{C(1)}and Theorem 5 implies Co {C (1)}=[—1, 1]\ {cosn;n=1,2,...}.
Thus the second assertion is also proved.
The next theorem (Taylor’s formula for cosine operator functions) generalizes
[11], 2.15.

Theorem 7. Suppose C is a cosine operator function, A is its generator and
x€D(A") (n positive integer). Then for t€ R

i (Z‘ - s)2"
A" x+ f ]

12" -2
@n—2)] )l

Proof. Itis known that, for x€ D(4), C(¢)x is twice continuously differentiable
on R, C(t)xeD(A), and C”(t)x=C(t)Ax=AC(t)x for every t€R; moreover,
C’(0)x=0, cf. [4-1], [11]. From these facts it can be deduced by induction that for
X€D(A™ C(t)x is 2n times continuously differentiable on R, C® (t)x=C(t)A"x=
=A"C(t)x for tc R, and C*~Y(0)x=0 whenever 1=k=n. Hence the Taylor theo-
rem for vector-valued functions (see e.g. [10], (IV, 9; 47)) gives the assertion of the
theorem.

2 -1
15 C@x= x+%Ax+-~-~|— — C(9)Arx ds.
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