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A cosine operator function C in a complex Banach space X is a mapping of 
the field of real numbers R into B(X), the space of bounded linear operators on 
X t o X, satisfying C ( 0 ) = / (the identical operator) and 

(1) C(i+0 + C(i-i) = 2 C(s)C(t) 

for s,t£R. Throughout this paper we will also assume that the operator function 
C(s) is strongly continuous on R (cf. [7]. Def. 3.2.2). 

Strongly continuous cosine operator functions in Banach spaces have been 
considered e.g. in [2], [4], [6], [111, while generalizations in some linear topological 
spaces ([4], [13]) or special results in Hilbert spaces ([5], [12]) have also been presented. 
S . K U R E P A [8] has given results concerning cosine operator functions continuous on 
R in the sense of the uniform operator topology. 

The aim of this paper is to present further new results about strongly continuous 
cosine operator functions. The investigations comprise a perturbation theorem, the 
concept of the adjoint cosine operator function, spectral theorems and Taylor's 
formula for cosine functions. The basic concept is that of the generator operator A 

2 
of the cosine operator function C, which is defined as Ax=lim— {C(t)—I)x for 

t-*o r 
exactly those x g Z f o r which this limit exists in the norm topology of X. It is known 
that A is a densely defined closed linear operator and A = C"{0) if the derivatives of 
C(i ) are defined in a similar way. The main method of investigation makes use of 
the fact that for some » 5 0 every complex z with R e z > i c satisfies Z2£Q(A) (the 
resolvent set of A) and for every x£X 

(2) zR(z^\A)x = J e~ztC(t)xdt 
o 

where R(z; A) denotes the resolvent operator of A. Thus the method of investigation 
is akin to that of the semi-groups of operators and therefore the proofs will be given 
in a concise form. 

4 A 
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X. 

The following perturbation theorem generalizes [4—I], Lemma 6.1. 

T h e o r e m 1. Let A be the generator of the cosine operator function C(.v; A) 
and B a bounded linear operator in X. Then A B is the generator of a cosine 
operator function S(s; A-\-B)and lim A-\-B) — C(s\ A)\\=0 uniformly on every 

IIBII-0 
compact Kc: R. 

P r o o f . Since C is a cosine function, there exist positive numbers M and w 
8 

such that j S O implies | |C(j) | | ;sMew s . Define T(s)x= J C(t)x dt ( iSO, x<EX), then 
o 

M " 
w 0

J 

(s^O; « = 1,2,...), then f„ is Lebesgue integrable on every [0,a], a>0. Moreover, define 

S0(s) = C(s), S„(s)x= f T(s—t)BSn-xi^x dt (s » 0, x£X), then we have for 
o 

« = 0 , 1, 2, .. .: 
1) Sn(s)x is continuous in s for s>-0, x£X, 
2) | |S, , ( i ) |N/„W for s^O 

as it is seen by induction using [3], VIII. 1. 21. 
M 

Introduce the notation w0—w+— • ||5||, then for p>w0 
w 

|*| fe-*°Xs)ds S. - ^ L = B) = / ' < 1 

and induction gives for n—0,1,2, ... that fn(s)=Mel'sr". Indeed, this is true for 
n—0, and the validity for n— 1 implies 

(3) f„(s) =£ Me"sr"-1\\B\\ J e~ptf(t)dt ^ Me"sr". 
o 

From (3) we obtain that Sn(s)x is continuous at s=0 from the right, the series 
oo Meps 

S(s)— ^ Su(s) converges absolutely for JSO and j| (̂ s')11 si , moreover S(s)x 
n = 0 1 — r 

is COntinUOUS in S for ,S'£=0. 

If Re v>w0, then (3) gives J e~sRe" H/itS',,(a')x|| ds<°°, and we get for 
o 

n=0, 1, 2, ... 

J e~vsS„(s)xds = vR(v2;A){BR(v2;A)}"x (xdX). 
o 



On cosine operator functions 283 

Indeed, for 7 7 = 0 see [4-1], Lenuna 5.6, and the validity for 77 —1 implies by [3], 
VIII. 1. 22 

f e~vsS„(s)xds = f e~""T(s)B J e~vt S ^ ^ x d t ds = 
0 0 0 

(4) 
= v f e~vsT(s) {BR(v2; A)}"xds = vR(v2; A){BR(v*; A)}"x. 

0 

' For v>w0 we have \\BR(v*; ii)|| ||j?|| f e-vs\\T(s)\\dsSr(v, B)<1, therefore 
0 

ex> 00 00 03 

2 {BR(v2;A)}" converges absolutely, moreover f e~vs S(s)xds= 2 f e-"sS„(s)x ds 
11=0 0 H = 0 » 
(x<=X), by [3], III. 6.16. Now if D(A+B)=D(A), then (4) and [7], Theorem 5.10.4 
give u2£g (A + B) and 

CO 

/ e-"sS(s)xds = vR(v2;A+B)x (x£X), 
0 

thus [4-1], Lenuna 5.8 yields that S is a cosine operator function with generator 
A + B . Foryj >H'0 we have 

||S(s; A +B) — C(s; A)|| == s Meps— 0 S 0) 
71 = 1 1 — r { P , B ) 

and lim r(p, B) = 0 gives the last assertion of Theorem 1 for iSO, while for s < 0 
IIBIKO 

it follows from the fact that every cosine operator function is even in s. 

C o r o l l a r y . Under the conditions of Theorem I if \\C(s\ A)\\^Mew^ (s£R, 
M 

w>0)andp>-w-\ ||5||, then there exists an N=N(p)>0 such that ||>S(tf; A+B)\\s 
w 

siiVe^i for s£R. 

In the following part of this section the concept of the adjoint cosine operator 
function will be defined and investigated. To make complicated formulas more 
readable, we shall write (x*, x) instead of x*(x) if x£X, x*£X* (the adjoint space 
of X). It is clear that if C: R-+B(X) is a strongly continuous cosine operator func-
tion, then the mapping C*:R-»B(X*) defined by C * (i) = C(s)* satisfies (1),C* (0) = / * , 
| | C * ( J ) | | = | |C ( J ) | | for s£R, and £*(.?) is continuous on R with respect to the W*-

operator topology of B(X*). However, it may happen that C*(s) is not a strongly 
continuous operator function. 

The proof of the following lemmas will be only indicated or omitted. 
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L e m m a t . 1) If x'ÇD(A*), then for sdll we have C* (s)x* ÇD(A') and 
A*C*(s)x* = C*(s)A*x\ For every xdX 

<{C*(,V) - / * } x 1 , x) = f (s- t){C*(t) A*x*, x)dt. 
o 

1 y* 
2) x*Ç.D(A*) if and only if there exists w!|~lim — {C+(.v)—1 = — , and 

s» o s* 2 

then A*x'*=yy. 

The proof of 1) makes use of [11], 2.13. and 2.14., while that of 2) of [11], 2.11. 

D e f i n i t i o n 1. 
XJ = {x*CzX*: firn C*(s)x* = x*}. 

L e m m a 2. 1) X(* is a closed linear subspace of X*. For every s^R we have 
C*(s)X*cXl 

2) B(A*)cX* and for x*£D(A*) 

sup ||C(0I|. 
Z Os ts l s l 

D e f i n i t i o n 2 . Let { C 0 * ( J ) ; J Ç J R } be the restriction of { C % V ) ; to X*, 
and the generator of the strongly continuous cosine operator function C 0 * ( I ) . 

C0* will be called the cosine operator function adjoint to C. 

R e m a r k . Lemma 2 implies that C* satisfies (1), and Definition 1 and [11], 2.7 
that C0* is strongly continuous. 

In the next lemma and theorem II denotes the closure oi HeX* in the norm 
topology of X*. 

L e m m a 3. 1) D(A*)cD(A*) and D(A*) =X*. 
2) £>(A*)={x*eD(A*): A*x*ÇX0*}, and x*£D(A*) implies A%x*=A*x*. 

In the following theorem we use the definitions of [7], 14.2 and 14.3. 

T h e o r e m 2 . If A is a cosine generator, then A is a o -operator and X°=X£ 
(cf. [7], Def. 14.2.1). Moreover, AQ=A* and for s£R we have C(s)° = C*(s) (cf. 
[7], Def. 14.3.1). 

P r o o f . By assumption, A also generates a semi-group of operators of class 

(it n") 

——, — , according to [2]. Hence A is a o-operator , by [7], 14.4. According to 
definition X° = D (A*), and Lemma 3 gives X°=X*. The second part of Lemma 3 
and [7], Def. 14.3.1. imply AQ=A*, finally C(s)G=C*(s) for every s£R, by Lemma 2. 
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2. 

In the investigation of spectral theorems the next lemma will be fundamental. 

L e m m a 4. Suppose C is a cosine operator function, A is its generator, s£R 
s 

and a£K (the complex field). Then S(s;a)x= J sh a(s—t)C(t)x dt (x£X) defines 
o 

a bounded linear operator in X, for which 

(5) AS(s; a)x = a2S(s; a)x+a{C(s)—ch (as)}x (x£X), 

P r o o f . Suppose x£D(A) and f-.R-^-K is twice continuously differentiable. 
Then, by [4-1], Lemma 5.4, 

s s 

J f(t)C(t)Axdt = f f(t)C"(t)xdt 
0 0 

and integrating by parts, we get by [11], 2.16 

(6) / C(t){[f(t) -Rs)]Ax -f"(t)x}dt =f'{V)x-f'(s)C(s)x. 
o 

1 
For « = 0 the assertions of the lemma are trivial. For a^O put f(t)=—eat and 

a 

f ( t ) = ——e~at into (6), then we get after some calculation 
a 

(7) S(s; a)Ax = azS(s; a)x+a{C(s)—ch 

and [3], III. 6.20 implies (5) for xf:D(A). Now if x£X, lim x„=x, {x,}cD{A), 

then lim S(s; a)x„ = S(s; a)x and there exists lim AS(s; a)xn, for (5) is true on 
*!->- oo /J->oo 

D(A). Then the closedness of A implies (5) for x£X, and the proof is complete. 

In the following theorems Pa, Cc and Ra denote the point, continuous and 
residual spectra. We shall refer to the spectral properties Pv (v=l, 2, 3) of a linear 
operator Tfrom D(T)czXto X, whose definition is as follows (cf. [7], Def. 2.16.2): 

Pj: T is not one-to-one, 
P2: R(T), the range of T, is not dense in X, 
P3: there is a sequence {x„}czD(T) such that ||x„|| = l and | |TxJ —0. 

T h e o r e m 3. If C is a cosine operator function, A is its generator and s£R, 
then ch {i/er^O} cerlC^,?)}. Similar relations hold if we write Pa and (for s^O) Ca 
and Ra, respectively, instead of a on both sides. 
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P r o o f . We may assume, obviously, that s^O. If A c o m p l e x , then for x$D (A) 
we have, by Lemma 4, 

1 « 
(8) - f she; (s -t)C(t) {a2 - A} x (It = {ch (as) - C(,v)} *. 

a o 

On the other hand, [11], 2.15 gives for x£D(A) 

s 

(9) f (s-t) C(t) {0 ~A}x (It = {ch 0 -C(s)} x. 
o 

Suppose now a2£cr(A). If a /-0, then (8), while if a=0, then (9) immediately yield 
that if a2—A has the spectral property Pv (i>= 1, 2, 3), then so does ch (as)-C(s). 
This gives the statements of the theorem. 

The converse relation for the point spectra is given in the following 

T h e orern 4. Ifs(iR, s?^0,p (zP<r {C(A')} and {/'„} is the set of all complex solutions 
of the equation ch (rs) = p, then r2£Pa(A) for some n. Therefore, ch {.? jAPc (A)} = 
=Pa{C( i )} . 

P r o o f . If a^O complex and ch (as)<Eq {C(.V)}, then R(ch (as); C(s)) commutes 
with S(s;a) and a2^g(A), by Theorem 3. Moreover, by Lemma 4, 

(10) R(a2; A) = jS(s; a)R(ch (as); C(s)). 

Suppose p£ Pcf{C(s)}, s^0, M={x£X: C(s)x—px}. Then M is a nontrivial 
closed linear subspace of X, invariant for C(t), t£R. In the remainder of this proof 
C(t) (t <Q R) and A denote the restrictions of these operators to M, unless explicitly 
stated otherwise. Thus if ch (as) ^p, then ch (a j )€e{C( j )} and, by (10), 

(11) R(a2; A) = ~ (ch (as)-p)~1S(s; a) (if a ^ 0). 

If for some complex rn for which ch (r„s)=p, S(s; ru) is not the zero operator 
in M, then the resolvent R(v; a) has a pole at v=rft, by (11), consequently r2£Pa(A) 
even if A is considered on all of D (A), thus the theorem is true. Therefore we assume 
that S(s; rn)—0 on M for every r„ for which ch (r„s)=p. 
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% Tt 
Put K}={«H}U{/'„} where a„=a0+i—2n, b„ = —a0+i — 2n (n integer) are all 

s s 
solutions of the above equation. By our assumption, we obtain for x£M 

J C (s — /) sh (a01) cos 2ntj •xdt — 

(12) ° 
= f C(s — t) ch (a0 0 sin 2»ij x dt = 0. 

C(s) is an even function, therefore we may assume 0. Fix and define the 
functions / , g: /i integer} -»X to be periodic with period s, and for i£(0, s) 

(13) / ( 0 = C(s-t) ch (a00*> , ( 0 = C(s-t) sh (a0 i)x. 

Then the sine Fourier coefficients of / and the cosine coefficients of g vanish by 
(12), and their Fourier series are (C, l)-summable to f ( t ) and g(t), respectively, for 
t£(0, s)+ns (n integer) as in the numerical-valued case. Hence / is even and g is odd, 
and we obtain for /£(0, s) that on M 

(14) C(t)ea«s = C(s-t) = C(t)e-"°s. 

Since M is a nontrivial subspace, thus we can not have C(t)M= {0} for t£(0, s), 
hence e"»s = ± l and p=ch. (a0s)= 1 or else p = — 1. 

Now if e"°s = - 1 , then by (14) C = 0 on M and C(t+s) = - C(t) for tdR. 

It can be shown that E(t) = C(t)+iC a strongly continuous group of 

operators for which E(s) = — I and whose generator G satisfies G2=A (cf. [9]). 
But then — I CPcr (ii(>y)} and [7], Theorem 16.7.2 give that for some complex r, 
for which ch («0 = — 1, r£Pa{G) and, consequently, r2£Pa(A) holds even if A is 
considered on all of D(A). 

Finally, if e"° s =l , then using (14) it can be shown that, on M, C(t) is periodic 
with period s. According to [6], Pa (A) = a (A) is then nonvoid and Per (A) c {/•%}, 
thus the proof is complete. 

In view of our results concerning the adjoint cosine operator function and the 
point spectra, in the following two theorems a similar reasoning can be applied as 
in [7], Theorem 16.7.3 and 16.7.4. 

T h e o r e m 5. If pdRo {C(s)} and {r„} is the set of all complex solutions of the 
equation ch (rs)=p, then r2£Ra(A) for some n, and r2$Pa(A) for every n. Moreover 
we havep£Pa{C*(s)}. 
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P r o o f . Wc only remark that, by Theorem2, A is a ©-operator and for t£R, 
C(t) commutes with A in the sense of [7], Def. 14.3.2, for there is a wSO such that 
Rc v vv implies 

< oo 
R(vi;A)C(t)x = - J e~v"C(u)C(t)xchi = C{t)R(v*\ A)x (*€*)• 

v o 

Now the proof is similar to that of [7], Theorem 16.7.3. 

T h e o r e m 6. If p€Co {CO)} and rn as in Theorem 5, then {r*}cCo(A)\J q(A). 
It can happen that every (A). 

P r o o f . The first assertion follows from Theorem 3, and the following example 
proves the second one. Let Z b e the complex /2 space, and for {z„;n= 1, 2, 

p u t C ( j ) {z„}= {cos (7JJ)Z„}. Then A {z„} = {-n*z„} withZ>U)=|{z„}6/2 ; |>4|z,,|2-<-j, 
and o- (A)=Pa (A)={-«2; n = l , 2 , ...}. Clearly, Pa {C(l)}= {cos n; n=1,2,...}, 

[ - 1 , 1 ] c Q {C(l)} and Theorem 5 implies Co {C(l)}=[ - 1 , 1 ] \ {cos n;n= 1,2,...}. 
Thus the second assertion is also proved. 

The next theorem (Taylor's formula for cosine operator functions) generalizes 
[11], 2.15. 

T h e o r e m 7. Suppose C is a cosine operator function, A is its generator and 
x£D(A") (n positive integer). Then for t£R 

/2 /2(1-2 ' (t _ r,\2jj — 1 
(15) C(t)x = x+~Ax+ - +(2n_2v

A"~lx+f (2n — 1)! C^A"xds-

P r o o f . It is known that, for xt D(A), C(t)x is twice continuously differentiable 
on R, C(f)x£D(A), and C"(t)x-C(l)Ax=AC(t)x for every t£R\ moreover, 
C ' (0)x=0, cf. [4-1], [11]. From these facts it can be deduced by induction that for 
x£D(A") C(t)x is 2/7 times continuously differentiable on R, C<2l,)(t)x=C(t)A"x= 
=A"C(t)x for t£R, and C(zk~1)(0)x=0 whenever 1 3g/cs=K. Hence the Taylor theo-
rem for vector-valued functions (see e.g. [10], (IV, 9; 47)) gives the assertion of the 
theorem. 
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