On cosine operator functions in Banach spaces

By B. NAGY in Budapest

A cosine operator function C in a complex Banach space X is a mapping of the field of real numbers R into $B(X)$, the space of bounded linear operators on X to X, satisfying $C(0)=I$ (the identical operator) and

$$
\begin{equation*}
C(s+t)+C(s-t)=2 C(s) C(t) \tag{1}
\end{equation*}
$$

for $s, t \in R$. Throughout this paper we will also assume that the operator function $C(s)$ is strongly continuous on R (cf. [7]. Def. 3.2.2).

Strongly continuous cosine operator functions in Banach spaces have been considered e.g. in [2], [4], [6], [11], while generalizations in some linear topological spaces ([4], [13]) or special results in Hilbert spaces ([5], [12]) have also been presented. S. Kurepa [8] has given results concerning cosine operator functions continuous on R in the sense of the uniform operator topology.

The aim of this paper is to present further new results about strongly continuous cosine operator functions. The investigations comprise a perturbation theorem, the concept of the adjoint cosine operator function, spectral theorems and Taylor's formula for cosine functions. The basic concept is that of the generator operator A of the cosine operator function C, which is defined as $A x=\lim _{t \rightarrow 0} \frac{2}{t^{2}}\{C(t)-I\} x$ for exactly those $x \in X$ for which this limit exists in the norm topology of X. It is known that A is a densely defined closed linear operator and $A=C^{\prime \prime}(0)$ if the derivatives of $C(s)$ are defined in a similar way. The main method of investigation makes use of the fact that for some $w \geqq 0$ every complex z with $\operatorname{Re} z>w$ satisfies $z^{2} € \varrho(A)$ (the resolvent set of A) and for every $x \in X$

$$
\begin{equation*}
z R\left(z^{2} ; A\right) x=\int_{0}^{\infty} e^{-z t} C(t) x d t \tag{2}
\end{equation*}
$$

where $R(z ; A)$ denotes the resolvent operator of A. Thus the method of investigation is akin to that of the semi-groups of operators and therefore the proofs will be given in a concise form.

I.

The following perturbation theorem gencralizes [4--I], Lemma 6.1.
Theorem 1. Let A be the generator of the cosine operator function $C(s ; A)$ and B a bounded linear operator in X. Then $A+B$ is the generator of a cosine operator function $S(s ; A+B)$ and $\lim _{\|B\| \rightarrow 0}\|S(s ; A+B)-C(s ; A)\|=0$ uniformly on every compact $K \subset R$.

Proof. Since C is a cosine function, there exist positive numbers M and w such that $s \geqq 0$ implics $\|C(s)\| \leqq \mathrm{Me}^{w s}$. Define $T(s) x=\int_{0}^{s} C(t) x d t(s \geqq 0, x \in X)$, then $\|T(s)\| \leq \frac{M}{w} e^{w s} . \quad$ Put $\int_{0}(s)=\|C(s)\|, \quad f(s)=\|T(s)\|, \quad f_{n}(s)=\|B\| \int_{0}^{s} f(s-t) f_{n-1}(t) d t$ ($s \geqq 0 ; n=1,2, \ldots$), then f_{n} is Lebesgue integrable on every $[0, a], a>0$. Moreover, define $S_{0}(s)=C(s), S_{n}(s) x=\int_{0}^{s} T(s-t) B S_{n-1}(t) x d t(s \geqq 0, x \in X)$, then we have for $n=0,1,2, \ldots$:

1) $S_{n}(s) x$ is continuous in s for $s>0, x \in X$,
2) $\left\|S_{n}(s)\right\| \leqq f_{n}(s)$ for $s \geqq 0$
as it is seen by induction using [3], VIII. 1. 21.
Introduce the notation $w_{0}=w+\frac{M}{w} \cdot\|B\|$, then for $p>w_{0}$

$$
\|B\| \int_{0}^{\infty} e^{-p s} f(s) d s \leqq \frac{M\|B\|}{w(p-w)}=r(p, B)=r<1
$$

and induction gives for $n=0,1,2, \ldots$ that $f_{n}(s) \leqq M e^{p s} r^{n}$. Indeed, this is true for $n=0$, and the validity for $n-1$ implies

$$
\begin{equation*}
f_{n}(s) \leqq M e^{p s} r^{n-1}\|B\| \int_{0}^{s} e^{-p t} f(t) d t \leqq M e^{p s} r^{\prime \prime} \tag{3}
\end{equation*}
$$

From (3) we obtain that $S_{n}(s) x$ is continuous at $s=0$ from the right, the series $S(s)=\sum_{n=0}^{\infty} S_{n}(s)$ converges absolutely for $s \geqq 0$ and $\|S(s)\| \leqq \frac{M e^{p s}}{1-r}$, moreover $S(s) x$ is continuous in s for $s \geqq 0$.

If $\operatorname{Re} v>w_{0}$, then (3) gives $\int_{0}^{\infty} e^{-s \operatorname{Rev}}\left\|B S_{n}(s) x\right\| d s<\infty$, and we get for $n=0,1,2, \ldots$

$$
\int_{0}^{\infty} e^{-v s} S_{n}(s) x d s=v R\left(v^{2} ; A\right)\left\{B R\left(v^{2} ; A\right)\right\}^{n} x \quad(x \in X)
$$

Indeed, for $n=0$ see [4-I], Lemma 5.6, and the validity for $n-1$ implies by [3], VIII. 1. 22

$$
\int_{0}^{\infty} e^{-v s} S_{n}(s) x d s=\int_{0}^{\infty} e^{-v s} T(s) B \int_{0}^{\infty} e^{-v t} S_{n-1}(t) x d t d s=
$$

$$
\begin{equation*}
=v \int_{0}^{\infty} e^{-v s} T(s)\left\{B R\left(v^{2} ; A\right)\right\}^{n} x d s=v R\left(v^{2} ; A\right)\left\{B R\left(v^{2} ; A\right)\right\}^{n} x \tag{4}
\end{equation*}
$$

For $v>w_{0}$ we have $\left\|B R\left(v^{2} ; A\right)\right\| \leqq\|B\| \int_{0}^{\infty} e^{-v s}\|T(s)\| d s \leqq r(v, B)<1$, therefore $\sum_{n=0}^{\infty}\left\{B R\left(v^{2} ; A\right)\right\}^{n}$ converges absolutely, moreover $\int_{0}^{\infty} e^{-v s} S(s) x d s=\sum_{n=0}^{\infty} \int_{0}^{\infty} e^{-v s} S_{n}(s) x d s$ $(x \in X)$, by [3], III. 6.16. Now if $D(A+B)=D(A)$, then (4) and [7], Theorem 5.10.4 give $v^{2} \in \varrho(A+B)$ and

$$
\int_{0}^{\infty} e^{-v s} S(s) x d s=v R\left(v^{2} ; A+B\right) x \quad(x \in X)
$$

thus [4-I], Lemma 5.8 yields that S is a cosine operator function with generator $A+B$. For $p>w_{0}$ we have

$$
\|S(s ; A+B)-C(s ; A)\| \leqq \sum_{n=1}^{\infty} f_{n}(s) \leqq M e^{p s} \frac{r(p, B)}{1-r(p, \bar{B})} \quad(s \geqq 0)
$$

and $\lim _{\|B\| \rightarrow 0} r(p, B)=0$ gives the last assertion of Theorem 1 for $s \geqq 0$, while for $s<0$ it follows from the fact that every cosine operator function is even in s.

Corollary. Under the conditions of Theorem 1 if $\|C(s ; A)\| \leqq M e^{w|s|}(s \in R$, $w>0)$ and $p>w+\frac{M}{w}\|B\|$, then there exists an $N=N(p)>0$ such that $\|S(s ; A+B)\| \leqq$ $\leqq N e^{p|s|}$ for $s \in R$.

In the following part of this section the concept of the adjoint cosine operator function will be defined and investigated. To make complicated formulas more readable, we shall write $\left\langle x^{*}, x\right\rangle$ instead of $x^{*}(x)$ if $x \in X, x^{*} \in X^{*}$ (the adjoint space of X). It is clear that if $C: R \rightarrow B(X)$ is a strongly continuous cosine operator function, then the mapping $C^{*}: R \rightarrow B\left(X^{*}\right)$ defined by $C^{*}(s)=C(s)^{*}$ satisfies $(1), C^{*}(0)=I^{*}$, $\left\|C^{*}(s)\right\|=\|C(s)\|$ for $s \in R$, and $C^{*}(s)$ is continuous on R with respect to the w^{*}. operator topology of $B\left(X^{*}\right)$. However, it may happen that $C^{*}(s)$ is not a strongly continuous operator function.

The proof of the following lemmas will be only indicated or omitted.

Lemma 1. 1) If $x^{+} \in D\left(A^{*}\right)$, then for $s \in R$ we have $C^{+}(s) x^{+} \in D\left(A^{+}\right)$and $A^{*} C^{\dagger}(s) x^{*}=C^{\dagger}(s) A^{+} x^{\dagger}$. For every $x \in X$

$$
\left\langle\left\{C^{*}(s)-I^{*}\right\} x^{\psi}, x\right\rangle=\int_{0}^{s}(s-t)\left\langle C^{*}(t) A^{*} x^{4}, x\right\rangle d t .
$$

2) $x^{*} \in D\left(A^{*}\right)$ if and only if there exists $\mathrm{w}^{*}-\lim _{s \rightarrow 0} \frac{1}{s^{2}}\left\{C^{+}(s)-I^{*}\right\} x^{*}=\frac{y^{*}}{2}$, and then $A^{+} x^{*}=y^{\dagger}$.

The proof of I) makes use of [11], 2.13. and 2.14., while that of 2) of [11], 2.11.
Definition 1.

$$
X_{0}^{f}=\left\{x^{*} \in X^{*}: \lim _{s \rightarrow 0} C^{*}(s) x^{*}=x^{*}\right\}
$$

Lemma 2. 1) X_{0}^{*} is a closed linear subspace of X^{*}. For every $s \in R$ we have $C^{*}(s) X_{0}^{*} \subset X_{0}^{*}$.
2) $D\left(A^{*}\right) \subset X_{0}^{*}$ and for $x^{*} \in D\left(A^{*}\right)$

$$
\left\|\left\{C^{*}(s)-I^{*}\right\} x^{*}\right\|^{3} \leqq \frac{s^{2}}{2}\left\|A^{*} x^{*}\right\| \sup _{0 \leqq t \leqq|s|}\|C(t)\| .
$$

Definition 2. Let $\left\{C_{0}^{*}(s) ; s \in R\right\}$ be the restriction of $\left\{C^{*}(s) ; s \in R\right\}$ to X_{0}^{*}, and A_{0}^{*} the generator of the strongly continuous cosine operator function $C_{0}^{*}(s)$. C_{0}^{*} will be called the cosine operator finction adjoint to C.

Remark. Lemma 2 implies that C_{0}^{*} satisfies (1), and Definition 1 and [11], 2.7 that C_{0}^{*} is strongly continuous.

In the next lemma and theorem \bar{H} denotes the closure of $H \subset X^{*}$ in the norm topology of X^{*}.

Lemma 3. 1) $D\left(A_{0}^{*}\right) \subset D\left(A^{*}\right)$ and $\overline{D\left(A^{*}\right)}=X_{0}^{*}$.
2) $D\left(A_{0}^{*}\right)=\left\{x^{*} \in D\left(A^{*}\right): A^{*} x^{*} \in X_{0}^{*}\right\}$, and $x^{*} \in D\left(A_{0}^{*}\right)$ implies $A_{0}^{*} x^{*}=A^{*} x^{*}$.

In the following theorem we use the definitions of [7], 14.2 and 14.3.
Theorem 2. If A is a cosine generator, then A is a \odot-operator and $X^{\odot}=X_{0}^{*}$ (cf. [7], Def. 14.2.1). Moreover, $A^{\odot}=A_{0}^{*}$ and for $s \in R$ we have $C(s)^{\odot}=C_{0}^{*}(s)$ (cf. [7], Def. 14.3.1).

Proof. By assumption, A also generates a semi-group of operators of class $H\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, according to [2]. Hence A is a \odot-operator, by [7], 14.4. According to definition $X^{\odot}=\overline{D\left(A^{*}\right)}$, and Lemma 3 gives $X^{\odot}=X_{0}^{*}$. The second part of Lemma 3 and [7], Def. 14.3.1. imply $A^{\odot}=A_{0}^{*}$, finally $C(s)^{\odot}=C_{0}^{*}(s)$ for every $s \in R$, by Lemma 2.

2.

In the investigation of spectral theorems the next lemma will be fundamental.
Lemma 4. Suppose C is a cosine operator function, A is its generator, $s \in R$ and $a \in K$ (the complex field). Then $S(s ; a) x=\int_{0}^{s} \operatorname{sh} a(s-t) C(t) x d t(x \in X)$ defines a bounded linear operator in X, for which

$$
\begin{equation*}
A S(s ; a) x=a^{2} S(s ; a) x+a\{C(s)-\operatorname{ch}(a s)\} x \quad(x \in X) \tag{5}
\end{equation*}
$$

Proof. Suppose $x \in D(A)$ and $f: R \rightarrow K$ is twice continuously differentiable. Then, by [4-I], Lemma 5.4,

$$
\int_{0}^{s} f(t) C(t) A x d t=\int_{0}^{s} f(t) C^{\prime \prime}(t) x d t
$$

and integrating by parts, we get by [11], 2.16

$$
\begin{equation*}
\int_{0}^{s} C(t)\left\{[f(t)-f(s)] A x-f^{\prime \prime}(t) x\right\} d t=f^{\prime}(0) x-f^{\prime}(s) C(s) x . \tag{6}
\end{equation*}
$$

For $a=0$ the assertions of the lemma are trivial. For $a \neq 0$ put $f(t)=\frac{1}{a} e^{a t}$ and. $f(t)=-\frac{1}{a} e^{-a t}$ into (6), then we get after some calculation

$$
\begin{equation*}
S(s ; a) A x=a^{2} S(s ; a) x+a\{C(s)-\operatorname{ch}(a s)\} x \tag{7}
\end{equation*}
$$

and [3], III. 6.20 implies (5) for $x \in D(A)$. Now if $x \in X, \lim _{n \rightarrow \infty} x_{n}=x,\left\{x_{n}\right\} \subset D(A)$, then $\lim _{n \rightarrow \infty} S(s ; a) x_{n}=S(s ; a) x$ and there exists $\lim _{n \rightarrow \infty} A S(s ; a) x_{n}$, for (5) is true on $D(A)$. Then the closedness of A implies (5) for $x \in X$, and the proof is complete.

In the following theorems $P \sigma, C \sigma$ and $R \sigma$ denote the point, continuous and residual spectra. We shall refer to the spectral properties $P_{v}(v=1,2,3)$ of a linear operator T from $D(T) \subset X$ to X, whose definition is as follows (cf. [7], Def. 2.16.2):
$\mathrm{P}_{1}: T$ is not one-to-one,
$\mathrm{P}_{2}: R(T)$, the range of T, is not dense in X,
P_{3} : there is a sequence $\left\{x_{n}\right\} \subset D(T)$ such that $\left\|x_{n}\right\|=1$ and $\left\|T x_{n}\right\| \rightarrow 0$.
Theorem 3. If C is a cosine operator function, A is its generator and $s \in R$, then ch $\{s \sqrt{\sigma(A)}\} \subset \sigma\{C(s)\}$. Similar relations hold if we write Po and (for $s \neq 0$) C σ and $R \sigma$, respectively, instead of σ on both sides.

Proof. We may assume, obviously, that $s \neq 0$. If $a \neq 0$ complex, then for $x \in D(A)$ we have, by Lemma 4,

$$
\begin{equation*}
\frac{1}{a} \int_{0}^{s} \operatorname{sh} a(s-t) C(t)\left\{a^{2}-A\right\} x d t=\{\operatorname{ch}(a s)-C(s)\} x . \tag{8}
\end{equation*}
$$

On the other hand, [11], 2.15 gives for $x \in D(A)$

$$
\begin{equation*}
\int_{0}^{s}(s-t) C(t)\{0-A\} x d t=\{\operatorname{ch} 0-C(s)\} x . \tag{9}
\end{equation*}
$$

Suppose now $a^{2} \in \sigma(A)$. If $a \neq 0$, then (8), while if $a=0$, then (9) immediately yield that if $a^{2}-A$ has the spectral property $P_{v}(v=1,2,3)$, then so does ch $(a s)-C(s)$. This gives the statements of the theorem.

The converse relation for the point spectra is given in the following
Theorem 4. If $s \in R, s \neq 0, p \in P \sigma\{C(s)\}$ and $\left\{r_{u}\right\}$ is the set of all complex solutions of the equation ch $(r s)=p$, then $r_{n}^{2} \in P \sigma(A)$ for some n. Therefore, ch $\{s \sqrt{P \sigma(A)}\}=$ $=\operatorname{Po}\{C(s)\}$.

Proof. If $a \neq 0$ complex and $\operatorname{ch}(a s) \in \varrho\{C(s)\}$, then $R(\operatorname{ch}(a s) ; C(s))$ commutes with $S(s ; a)$ and $a^{2} \in \varrho(A)$, by Theorem 3. Moreover, by Lemma 4,

$$
\begin{equation*}
R\left(a^{2} ; A\right)=\frac{1}{a} S(s ; a) R(\operatorname{ch}(a s) ; C(s)) \tag{10}
\end{equation*}
$$

Suppose $p \in P \sigma\{C(s)\}, s \neq 0, M=\{x \in X: C(s) x=p x\}$. Then M is a nontrivial closed linear subspace of X, invariant for $C(t), t \in R$. In the remainder of this proof $C(t)(t \in R)$ and A denote the restrictions of these operators to M, unless explicitly stated otherwise. Thus if $\operatorname{ch}(a s) \neq p$, then $\operatorname{ch}(a s) \in \varrho\{C(s)\}$ and, by (10),

$$
\begin{equation*}
R\left(a^{2} ; A\right)=\frac{1}{a}(\operatorname{ch}(a s)-p)^{-1} S(s ; a) \quad(\text { if } a \neq 0) . \tag{11}
\end{equation*}
$$

If for some complex r_{n} for which $\operatorname{ch}\left(r_{n} s\right)=p, S\left(s ; r_{n}\right)$ is not the zero operator in M, then the resolvent $R(v ; a)$ has a pole at $v=r_{n}^{2}$, by (11), consequently $r_{n}^{2} \in \operatorname{P\sigma }(A)$ even if A is considered on all of $D(A)$, thas the theorem is true. Therefore we assume that $S\left(s ; r_{n}\right)=0$ on M for every r_{n} for which $\operatorname{ch}\left(r_{n} s\right)=p$.

Put $\left\{r_{n}\right\}=\left\{a_{n}\right\} \cup\left\{b_{n}\right\}$ where $a_{n}=a_{0}+i \frac{\pi}{s} 2 n, b_{n}=-a_{0}+i \frac{\pi}{s} 2 n$ (n integer) are all solutions of the above equation. By our assumption, we obtain for $x \in M$

$$
\begin{align*}
& \int_{0}^{s} C(s-t) \operatorname{sh}\left(a_{0} t\right) \cos \left(\frac{\pi}{s} 2 n t\right) \cdot x d t= \\
= & \int_{0}^{s} C(s-t) \operatorname{ch}\left(a_{0} t\right) \sin \left(\frac{\pi}{s} 2 n t\right) x d t=0 \tag{12}
\end{align*}
$$

$C(s)$ is an even function, therefore we may assume $s>0$. Fix $x \in M$, and define the functions $f, g: R \backslash\{n s ; n$ integer $\} \rightarrow X$ to be periodic with period s, and for $t \in(0, s)$

$$
\begin{equation*}
f(t)=C(s-t) \operatorname{ch}\left(a_{0} t\right) x, \quad g(t)=C(s-t) \operatorname{sh}\left(a_{0} t\right) x \tag{13}
\end{equation*}
$$

Then the sine Fourier coefficients of f and the cosine coefficients of g vanish by (12), and their Fourier series are ($C, 1$)-summable to $f(t)$ and $g(t)$, respectively, for $t \in(0, s)+n s$ (n integer) as in the numerical-valued case. Hence f is even and g is odd, and we obtain for $t \in(0, s)$ that on M

$$
\begin{equation*}
C(t) e^{a_{0} s}=C(s-t)=C(t) e^{-a_{0} s} \tag{14}
\end{equation*}
$$

Since M is a nontrivial subspace, thus we can not have $C(t) M=\{0\}$ for $t \in(0, s)$, hence $e^{a_{0} s}= \pm 1$ and $p=\operatorname{ch}\left(a_{0} s\right)=1$ or else $p=-1$.

Now if $e^{a_{0} s}=-1$, then by (14) $C\left(\frac{s}{2}\right)=0$ on M and $C(t+s)=-C(t)$ for $t \in R$. It can be shown that $E(t)=C(t)+i C\left(t+\frac{s}{2}\right)$ is a strongly continuous group of operators for which $E(s)=-I$ and whose generator G satisfies $G^{2}=A$ (cf. [9]). But then $-1 \in P \sigma\{E(s)\}$ and [7], Theorem 16.7.2 give that for some complex r, for which ch $(r s)=-1, r \in P \sigma(G)$ and, consequently, $r^{2} \in P \sigma(A)$ holds even if A is considered on all of $D(A)$.

Finally, if $e^{a_{0} s}=1$, then using (14) it can be shown that, on $M, C(t)$ is periodic with period s. According to [6], $P \sigma(A)=\sigma(A)$ is then nonvoid and $P \sigma(A) \subset\left\{r_{n}^{2}\right\}$, thus the proof is complete.

In view of our results concerning the adjoint cosine operator function and the point spectra, in the following two theorems a similar reasoning can be applied as in [7], Theorem 16.7.3 and 16.7.4.

Theorem 5. If $p \in R \sigma\{C(s)\}$ and $\left\{r_{n}\right\}$ is the set of all complex solutions of the equation ch $(r s)=p$, then $r_{n}^{2} \in R \sigma(A)$ for some n, and $r_{n}^{2} \notin P \sigma(A)$ for every n. Moreover we have $p \in P \sigma\left\{C_{0}^{*}(s)\right\}$.

Proof. We only remark that, by Theorem 2, A is a \odot "operator and for $t \in R$, $C(t)$ commutes with Λ in the sense of [7], Def. 14.3.2, for there is a w e 0 such that Re $v=w$ implics

$$
R\left(v^{2} ; A\right) C(t) x=\frac{1}{v} \int_{0}^{\infty} e^{--v \|} C(u) C(t) x d u=C(t) R\left(v^{2} ; A\right) x \quad(x \in X)
$$

Now the proof is similar to that of [7], Theorem 16.7.3.
Theorem 6. If $p \in C \sigma\{C(s)\}$ and r_{n} as in Theorem 5, then $\left\{r_{n}^{2}\right\} \subset C \sigma(A) \cup \varrho(A)$. It can happen that ever'y $r_{n}^{2} \in \varrho(\Lambda)$.

Proof. The first asscrtion follows from Theorem 3, and the following example proves the second onc. Let X be the complex l_{2} space, and for $\left\{z_{n} ; n=1,2, \ldots\right\} \in l_{2}, s \in R$ $\operatorname{put} C(s)\left\{z_{n}\right\}=\left\{\cos (n s) z_{n}\right\}$. Then $A\left\{z_{n}\right\}=\left\{-n^{2} z_{n}\right\}$ with $D(A)=\left\{\left\{z_{n}\right\} \in l_{2} ; \sum_{n=1}^{\infty} n^{4}\left|z_{n}\right|^{2}<\infty\right\}$, and $\sigma(A)=P \sigma(A)=\left\{-n^{2} ; n=1,2, \ldots\right\}$. Clearly, $P \sigma\{C(1)\}=\{\cos n ; n=1,2, \ldots\}$, $K \backslash[-1,1] \subset \varrho\{C(1)\}$ and Theorem 5 implies $C \sigma\{C(1)\}=[-1,1] \backslash\{\cos n ; n=1,2, \ldots\}$. Thus the second assertion is also proved.

The next theorem (Taylor's formula for cosine operator functions) generalizes [11], 2.15.

Theorem 7. Suppose C is a cosine operator function, A is its generator and $x \in D\left(A^{\prime \prime}\right)$ (n positive integer). Then for $t \in R$

$$
\begin{equation*}
C(t) x=x+\frac{t^{2}}{2!} A x+\cdots+\frac{t^{2 n-2}}{(2 n-2)!} A^{n-1} x+\int_{0}^{t} \frac{(t-s)^{2 n-1}}{(2 n-1)!} C(s) A^{n} x d s \tag{15}
\end{equation*}
$$

Proof. It is known that, for $x \in D(A), C(t) x$ is twice continuously differentiable on $R, C\left(t^{\prime}\right) x \in D(A)$, and $C^{\prime \prime}(t) x=C(t) A x=A C(t) x$ for every $t \in R$; moreover, $C^{\prime}(0) x=0$, cf. [4-I], [11]. From these facts it can be deduced by induction that for $x \in D\left(A^{n}\right) C(t) x$ is $2 n$ times continuously differentiable on $R, C^{(2 n)}(t) x=C(t) A^{n} x=$ $=A^{\prime \prime} C(t) x$ for $t \in R$, and $C^{(2 k-1)}(0) x=0$ whenever $1 \leqq k \leqq n$. Hence the Taylor theorem for vector-valued functions (see e.g. [10], (IV, 9; 47)) gives the assertion of the theorem.

References

[1] P. Butzer-H. Berens, Semi-Groups of Operators and Approximation (Berlin, 1967).
[2] G. Da Prato-E. Giusti, Una caratterizzazione dei generatori di funzioni coseno astratte, Boll. Unione Mat. Italiana, 22 (1967), 357-362.
[31 N. Dunford—J. Schwartz, Linear Operators, I (New York, 1958).
[4] H. O. Fattorini, Ordinary differential equations in linear topological spaccs, I-II, J. Diff. Equ. 5 (1968), 72-105; 6 (1969), 50-70.
[5] H. O. Fattorini, Uniformly bounded cosine functions in Hilbert space, Indiana Univ. Math. J., 20 (1970), 411-425.
[6] E. Giusti, Funzioni coseno periodiche, Boll. Unione Mat. Italiana, 22 (1967), 478-485.
[7] E. Hille-R. Phillips, Functional Analysis and Semi-Groups (Providence, 1957).
[8] S. Kurepa, A cosine functional equation in Banach algebras, Acta Sci. Math., 23 (1962), 255-267.
[9] B. Nagy, A sine functional equation in Banach algebras, to appear
[10] L. Schwartz, Analyse Mathématique (Paris, 1967).
[11] M. Sova, Cosine operator functions, Rozprawy Matematyczne XLIX (Warszawa, 1966).
[12] M. Sova, Semigroups and cosine functions of normal operators in Hilbert spaces, Časopis pěst. mat. 93 (1968), 437-458.
[13] F. Vajzović, Einige Funktionalgleichungen im Fréchetschen Raum, Glasnik matematicki, 3. (23) (1968), 19-38.

TECHNICAL UNIVERSITY, BUDAPEST, AND
KOSSUTH L. UNIVERSITY, DEBRECEN

