Representations of groups by automorphisms
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1. Introduction

The theory of group representations has always developed in close connection
with physics. Group representation meant first a group homomorphism into the
group of invertible linear transformations of a linear vector space. Then it was
recognized that in quantum mechanics unitary ray representations play the funda-
mental role rather than usual representations; here group elements are represented
by certain equivalence classes of unitary or antiunitary operators on a Hilbert space.
Note that ray representations do not differ very much from, and can be reduced
to, usual representations ([1]).

Recently, however, in the axiomatic foundation of quantum mechanics (or,
rather, of general mechanics) it turned out that one need to represent groups in a
so far unusual sense. Here one defines representations as group homomorphisms
into the group of automorphisms of various algebraic and topological structures
([2], [3]). It has become clear that unitary ray representations are nothing else than
representations by automorphisms of the lattice of closed linear subspaces of a separ-
able Hilbert space ([2]). Usual representations can be formulated as representations
by automorphisms of a linear vector space. Topological transformation groups can
be considered as a special sort of representations by automorphisms of a topo-
logical space.

This suggests how we should define the standard notions of group representa-
tions in the most general form using the theory of categories. Then, first of all, the
question arises, how we can state the generalization of the celebrated Schur lemma.
Schur’s lemma has several different formulations in the literature. For convenience
we cite the most important ones. All linear vector spaces are over the field C of
complex numbers and G is a given group in the sequel.

1) Let A® be irreducible representations of G on the finite dimensional linear
vector spaces V@ (i=1,2). If for a linear map T:V "~ ¥® we have TAP=4DT
for all g€@, then either T=0 or T is one-one and onto.
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2) Let U® be irreducible unitary representations of G on the Hilbert spaces
H® (i=1,2). If for a bounded lincar map T:1IV—~H® we have ’I'Ug‘)—:U(f)T
for all g€G, then T=AW where A€C and W is a unitary map.

3) Letl U be an irreducible unitary representiation of G. If for a bounded linear
operator we have TU,=U,T [or all g€G, then T=AI (I is the identily operator.)

4) Let A be an irreducible representation of G on the lincar vector space V.
If for a lincar map T:V—V we have T'A,=A,T for all g€G, then T=Al.

We shall reler to the versions 1), 2) and 3), 4) as the [irst and the sccond type
of Schur’s lemma, respectively, At first sight one would say that the second type is
a morc or less immediate conscquence of the first one. In reality, however, in the
casc of unitary rcpresentations both types can be considered as a conscquence of
each other ([4]). We are going to find a gencral framework in which thc nature of
the diflerent types of Schur’s lemma becomes more apparent.

2. Basic notions

We use, for our purposes, the language and some results of the theory of cate-
gories, which may be found, for instance, in [5], [6], [7].

The notion of subobjects will have a crucial importance [or us. Let € denote
a given category. In general, a pair (U, #) is called a subobject of X€¢Ob % if UcOb %,
u€Mor (U, X) and u is monic. Let (U, ) and (¥, v) be subobjects of X; (U, u)
majorates (or is greater than) (V,v) if there is a weMor (¥, U) so that uw=v. If
also (¥, v) majorates (U, u) then we say that the two subobjects are equivalent;
in this case w is an isomorphism, Equivalent subobjects are considered to be the same.

In a variety of applications this definition of subobjects is not suitable because
its content is too large. For instance, in the category of topological spaces and
continuous maps a subset of a topological space equipped with a topology finer
than the induced topology would be a subspace. That is why we make another defini-
tion. We require that u have some property p and we say that u is a p-morphism
and (U, u) is a p-subobject. In concrete categories — in which objects are sets with
some structure and morphisms are certain maps —- there is, generally, a natural
way to choose the property p. For instance, in the category mentioned above a
monomorphism # is a p-morphism if it cannot be factored in the form u=vw where
v is a monomorphism, w is a bimorphism but is not an isomorphism. Of course,
in order that the definition of p-subobjects be consistent, the following conditions
must be fulfilled:

1) isomorphisms are p-morphisms;

2) the composition of two p-morphisms is a p-morphism;

3) if u and uv are p-morphisms then v is a p-morphism.
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If there is no need to mention explicitly the object U or the monomorphism u,
we use also the notation () or (U) for the subobject (U, u). For example (X) and (idy)
denote the trivial subobject (X, idy).

Now we can turn to our aim,

Definition 1. A subobject (U, u) of X€Ob %) is invariant for a€End (X) if
there is a b€End (U) such that au=ub.

It is routine to check that a subobject equivalent to (U, ) is also invariant [or
a; so the definition is consistent. In concrete categories Definition 1 coincides with
the usual definition of invariant subspaces, subalgebras etc. Note, lastly, that b is
uniquely determined because # is a monomor phism,

Now we give an easy but important assertion concerning invariant subobjects.
A subobject (U, u) of X will be called initial if Mor (U, X)={u}. A zero object, for
instance, is an initial subobject of all objects.

Proposition 1. (X) and all initial subobjects of X are invariant for all auto-
morphisms of X.

Let us given now a group G and let ¢ be the category whose only object is G
and whose morphisms are the elements of G with group multiplication as composi-
tion of morphisms.

Let us construct the category ¥¥ whose objects are covariant functors from %
into % and whose morphisms are the natural transformations (functorial morphisms)
between such functors. The category #@ of contravariant functors is constructed
similarly, A functor 4: 9—~% associates an object 4(G) of € with G and an auto-
morphism A4, of A(G) with each g€G. A natural transformation between the func-
tors A and B is now a morphism f: 4(G)~B(G) in ¥ such that f4,=B, ffor all g€G.
We shall use the notation {4;=4,:g€G}.

Definition 2. An object 4 of ¥ resp. of ?@ is called a Jeft resp. right rep-
resentation of G in %. Faithful representations are faithful functors. A representa-
tion A is called p-irreducible if there is no p-subobject of 4(G) invariant for all 4,
and not invariant for all automorphisms of 4(G). Two representations 4 and B
are said to be equivalent if there is a natural equivalence (functorial isomorphism)
between 4 and B. A morphism 4B in ¢ or in Y% is called a G-intertwiner from
A into B.

In view of physical applications we introduce another sort of irreducibility.

Definition 3. Let % be a concrele category. A representation 4 of the group
G in % is weakly irreducible if there is no x € 4 (G) invariant for all 4, and not invariant
for all automorphisms of 4(G).

If x€ A(G) is invariant for an automorphism of 4 (G), then, in many important
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cases, the subobject generated by the element .x is also invariant for the automorphism.
I so, irreducibility implics weak irreducibility.

Lastly, belore going [lurther, we introduce threc calegories which are [unda-
mental in the theory of usual representations. Let Pect be the category of complex
linear vector spaces and linear maps. Vectf is its full subcategory whosc objects are
fnite dimensional vector spaces. Finally let il be the category of Hilbert spaces
and linear contractions. The p-subobjccts are chosen as usually in the theory of
such spaces.

3. General results

Let us see now in general, how the irreducible representations can be charac-
terized in a similar fashion as the Schur lemma does. Let us start with the second
lype. It is based on the relation between the commutant of an endomorphism and
subobjects invariant for a representation. For this reason, first, we introduce the
following notations.

Letl X be an arbitrary object of ¥ and let ECEnd (X). Then we define

E’ :={b€End (X): ab=ba for all acE};

E+:=E'NAut (X);

EP :=the class of p-subobjects invariant for all a€ E.

We find that if Ec FCEnd (X) then F'CE’ and FPcCEP. A p-irreducible
representation 4 of G on X is characterized by 4%=Aut (X)?. For being able to
say more we impose a condition on X which makes sharper the relation £+ c Aut (X),
Aul (X)*CE+P, We formulate it as

Condition 1. Let a€End (X). If {a}* = Aut (X) then Aut (X)°5{a}*>.

Theorem 1. Let A be a p-irreducible representation of the group G in € and
suppose X=A(G) satisfies Condition 1. If acEnd (X) is a G-intertwiner then {a}* =

=Aut (X).

Proof. The assertion of the theorem can be formulated so that if Agc {a}+
then {a}+ =Aut (X). Since Agzc {a}* cAut(X), we have Aut (X)°c {a}*Pc 43,
but from the irreducibility of 4 it follows that 4%=Aut (X)P. Thus by Condition 1
we conclude that {a}*=Aut (X).

Let us consider, as examples, the categories Vectf and Hil. Objects of both
categories satisfy Condition 1 and we have from Theorem 1 the versions of the
second type of Schur’s lemma. Indeed, because of the fact that if >0 is a bounded
linear operator on a Hilbert space then af||a is a contraction, Condition 1 says
in both cases that if a>21id (A€C) is a bounded linear operator, then there exists
a non trivial closed linear subspace invariant for all automorphisms commuting
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with a; in Vectf such invariant subspaces are eigenspaces of «, in Hil they are the
subspaces corresponding to the spectral families of the self-adjoint operators a+a*
and i(@a—a™).

Two simple examples show that Condition 1 does not always hold but it does
for an object different from the previous ones, First take the category of sets and
maps where p-subobjects are subsets. Here {a}* #Aut (X) for all a€¢End (X) and
Aut (X)*={(X), (#)}. Let X be a finite set; if a is a cyclic permutation of clements
then {a}*={(X), (#)} and Condition 1 fails for X. Secondly consider the category
of partially ordered sets and monotone maps, where p-subobjects are subsets with
induced ordering. Let X={0, x, y, 1} where x and y are not related. The only auto-
morphism of X, besides the identity, is the one-to-one monotone map b defined
by b(x)=y. Thus if {a}*=Aut (X) then {a}*={idy}. One can sec that {idy}’+#
# Aut (X)P, hence Condition 1 is fulfilled.

Let us go further. The first type of Schur’s lemma — in the case of linear rep-
resentations — is based on the relation between subspaces associated with linear
maps and subspaces invariant for representations. For this reason we shall be inter-~
ested in special categories where the corresponding notions — kernels and images —
are well defined. There is a sort of categories known in the theory which offers
itself for investigations. Unfortunately there is no unique nomenclature in the litera-
ture; we shall call a category % pre-Abelian if

1) there is a zero object in ¥;

2) for all pairs of objects X and ¥ there is given a commutative group structure
on Mor (X, Y) which is distributive with the composition of morphisms;

3) all morphisms have a kernel and a cokernel.

% will be in the sequel a pre-Abelian category with zero object N.

The kernel and the image of feMor (X, ¥) are subobjects of X and ¥ respec-
tively; we denote them by (Kerf, kerf) and (Imf, imf). Remind that im f=
=ker (coker f).

Proposition 2. Let X and Y be objects of a pre-Abelian category. Let
acEnd (X), b€End (Y) and fe¢Mor (X, Y) such that fa=bf. Then (ker f) is invariant
for a and (im f) is invariant for b.

Proof. The proof of the two assertions are similar, hence we omit the simpler
one. Since coker fobof=coker fofoa=0, there is a u such thal coker fob=
=wocoker f; now it follows that coker foboim f=0 and consequently there is a
v€End (Im /) with which boim f=im fouv.

It is a natural requirement that in a pre-Abelian category the property p be
chosen in such a manner that all kernels (and cosequently all images), as the most
important subobjects, be p-subobjects. Doing so we have the next immediate result
for group representations.
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Theorem 2. Let G be a group, A and B its representations in a pre-Abelian
category. Suppose [ is a G-intertwiner from A into B. If' A is p-irreducible then (ker f)€
cAul (A(Q). IS B is p-irreducible then (im /)€ Aut (B(G))".

This theorem is a gencralization of the first type of Schur’s lemma, though it
has a [orm rather diffcrent from the usual one, Wc can get il in a more [amiliar
form, imposing a condition on the objects in question.

Condilion 2. Aut (X)*={(N), (X)}.

Theorcm 3. Let A and B be representations of the group G in a pre-Abelian
category and suppose A(G) and B(G) satisfy Condition 2. Let [ be a G-intertwiner
Srom A into B. If A is p-irreducible then either [=0 or f is a monomorphism. If’ B is
p-irreducible then either f=0 or [ is an epimorphism. As a consequence if both A and
B are p-irreducible then either f=0 or fis a bimorphism.

Proof. In a pre-Abelian category we have the following easily provable rela-
tions for a morphism f ([5], [6]):

ker f=0 if and only if f is monic,
kerf=1id if and only if f=0,
imf=0 il and only if f=0,

im f=id if and only if f is epic.

Objects of the categories Vect and Hil satisfy Condition 2. In Vect every bi-
morphism is an isomorphism, so Theorem 3 gives at once the known version of
the first type of Schur’s lemma. In Hil, as we could expect, the known version is
stronger than the one arising [rom Theorem 3.

There are well-known pre-Abelian categories, for which, consequently, Theorem 2
is valid. Condition 2, however, does not hold in general, but only for certain objects
of them. Nevertheless, Theorem 2 is interesting in itself and in the case of the category
of Abelian groups, for instance, there are sufficient results concerning characteristic
subgroups (invariant for all automorphisms) ([8]) to get further information about
homomorphisms intertwining two representations.

On the other hand, there are important categories which are not pre-Abelian;
for example, the category of orthocomplemented lattices defined on the base of
[3]. Pre-Abelian categories were useful to illuminate the way we should follow.
Now we want only that certain images and counterimages (see [7]) exist in the
category 4.

The image of f€ Mor (X, Y) is the smallest subobject of Y through which f is
factored. In other words f=im fof and if f=vk, where v is a monomorphism, then
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there exists a morphism / such that im f=wvh. Let (U, u) be a subobject of X; the
image of fu is called the image of (U, #) under f and is denoted sometimes by
(S©), £G).

The counterimage of a subobject (¥, v) of ¥ under f€¢ Mor (X, Y) is a subobject
of X, denoted by (/~*(V), f ~1(v)), for which there is a morphism fsuch that ff~1(v) =
=uf and if fk=uvj, there exists a unique morphism 4 such that the diagram below
is commutative:

k/ |7 )

Sy ——— V

Z

Proposition 3. Let X and Y be objects of €. Let acEnd (X), beAut (Y)
and feMor (X, Y) such that fa=bf. If (U,u) is an invariant subobject for a then
(/f( U)), if exists, is invariant for b. If (V, v) is an invariant subobject for b then (f~1(V)),
if exists, is invariant for a.

Proof. Let au=ua. Then bfu=fau=fua and we see that it suffices to consider
the case #=idy. We have the factorization bf=im (bf)oj and f=b"toim (bf)oJ.
Since b~toim (bf) is monic, there is a morphism % so that b~toim (5f)oh=imf,
that is im () o h=>boim f. Furthermore im (bf")=im ( fa@); now observe that im ( fa)
is factored through im f:im (fa)=im fok and consequently boim f=im fohok,

Let bo=vb. Then faf ~*(v)=>bff L(v)=buf=vbf. As a consequence there is a
morphism A with which af =1 (v)=/"1(v)h.

Now again we have an immediate result for representations.

Theorem 4. Let G be a group, A and B its representations in the category €
and let f be a G-intertwiner from A into B, Assume images and counterimages of p-sub-
objects in 4 under f exist and are p-subobjects. If A is p-irreducible then for all (V)€
€Aut (B(Q)P we have (f~1(V))€Aut (A(G)). If B is p-irreducible then for all
(U)eAut (A(G)) we have (f(U))eAut (B(G)).

Now of course, we cannol expect in general a result like Theorem 3, and we
do not need it either. Theorem 2 and Theorem 4 are the real generalizations of the
first type of Schur’s lemma.
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Let us sec some examples using the notations X=:A(G), Y= B(G). In the calegory
Vectf Theorem 4 gives the known version. In the category of orthocomplemented
lattices, il Aut (X)°={(M), (X)} where M={0, 1}, and the same is truc for ¥, we
obtain the corresponding part of Theorem 3.2 in [3] (weak irreducibility there cor-
responds to irreducibility here). In the category of partially ordered sets with maximal
and minimal clements, if Aut (X)*={{0}, {1}, M, X'} and il the same holds for ¥,
we have that a monotone map S intertwining two irreducible representations is either
trivial (/(X)=0 or /(X)=:1) or /(0)=0 and f(1)=1; furthermore /'is cither surjective
or empty. Thus if the cardinality of ¥ is higher than that ol X, there is no map X —~ Y
intertwining irreducible representations.

4. Remarks

In the case of unitary representations the two types of Schur’s lemma coincide.
Now we see that in the case of linear representations the two types are fully different:
we have got a proof of the second one independent of the first one. Of course, one
can take B=A in Theorems 2 and 4 to have a result for a morphism commuting with
an irreducible representation. If Condition 1 does not hold it is really a result,
but with Condition 1 it is implied by Theorem 1. Surely it can happen that by the
aid of Theorems 2 and 4 one needs a condition weaker than Condition 1 to have
the result of Theorem 1. In this respect the second type can be a corollary of the
first one. For example, in the case of an object satisfying Condition 2 in a pre-
Abelian category, we should test Condition 1 only for bimorphisms. As another
example, let us consider the category of orthocomplemented lattices.

From Theorem 3.2 in [3] il follows that we need Condition 1 only for auto-
morphisms. From Axiom 2 in [3] we conclude that {h}*> {(M), (X)} for all h€ Aut (X)
and we obtain the second type of Schur’s lemma (Theorem 3.9 in [3]) for ortho-
complemented lattices with Aut (X)?={(M), (X)}. Now we call attention that it is
not right here to define irreducibility in general by 4%={(M), (X)} as it is done in
[3], because there are orthocomplemented lattices for which Aut (X)?= {(M), (X)}.
The o-algebra of Borel sets in the real line serves as an example: the subalgebra of
sets containing denumerably many points or having such a complement is invariant
for all automorphisms.*)

Lastly we mention that there are certain other formulations of the Schur lemma,
different from the ones given at the beginning of this paper. In a version for unitary
representations the intertwining operator need not be bounded but only closed
([4D. Such a result, of course, cannot be reached by the method of categories.

*) This example was given me by my colleague J. SzUcs.
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