A note on non-quasitriangular operators*)

By L. A. FIALKOW in Stony Brook (N. Y., USA)

1. Introduction. Let $ be a fixed, separable, infinite dimensional, complex
Hilbert space, and let £ ($) denote the algebra of all bounded linear operators
on $. Let 2 denote the directed set of all finite rank projections in Z () under the
usual ordering, and for each T in" Z(9H) deﬁne q(T)—llmmfII(l-—P)TPll and

Q(T)~]1m sup |](l—P)TP|| In [10], HALMOS initiated the study of quasitriangular

operators and proved that an operator T is quasitriangular if and only if ¢(T)=0.
In [7], DouGLAs and Pearcy-employed the y-function of BROWN and PEARCY (see
[5], [12]) to prove that T is a thin operator (i.e., an operator that is the sum of a
scalar and a compact operator) if and only if Q(T)=0. The functions ¢ and Q were
studied, respectively, by AposToL in [1] and by Folas and Zsipo in [8]. We apprecia-
tively acknowledge access to preliminary versions of [1] and [8]. .
In a preliminary version of [8], Foias and Zsip6 proved the following lemma.

Lemma F—Z. Let Thein £($), |T||=1, and for 0=t=1, let E, denote the
spectral projection of (T*T)t which corresponds to the-interval [0, t]. The following
zmplwatlons are valid. ' , :

i) If q(T)=1, then dim E,$=<¥, for all 1<1.
i) Ifq(T)éO.95, then there exists t=1—q(T) such that dim E;H<§,.

Because of its length and complexity, this writer could not see through the
proof of Lemma F—Z. One purpose of this note is to provide (in section 3) a straight-
forward and short proof of a somewhat stronger version of Lemma F—Z. In parti-
‘cular, we prove that if |T|j=1 and ¢(T)>2/3, then there exists t=1—¢q(T) such
that dim E,H<8,; an example shows that 2/3 is the best possible lower bound.
We discuss the relationship between this result and a theorem of [8]. In section 2,
values of g and ¢/Q are obtained for certain partial isometries. We also prove that if

*) This paper constitutes part of the author’s Ph. D, thesis written at the University of Mlchlgan
under the direction of Prof. Carl Pearcy.
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Aisin Z(%) and ¢(T+A4)=0 for each quasitriangular operator T in 2 ($), then 4~
is a thin operator.

The referee has kindly pornted out that several of the results in sectlon two
were proven independently by ApostoL, FoiAg, and Zsipd in [4], and by AposToL,
Foias, and VoicuLEescu in [2]. These papers followed [1] and [8] in a series of papers
on non-quasitriangular operators. In an appendix we give the precise relationship
between our results and those of the Rumanian mathernaticians.

2. Partial isometries. Let (QT) and (N) denote, respectrvely, the subsets of quasi-
triangular and normal operators in £ ().

In section 3 of [10], HALMOS. proved (N)c(QT). For each T in Z(H) we set
d(T)- mf ||T~S|| and -d, (T)— mf |T—S|. Then clearly d(T)=dy(T). The

proofs of the followmg two lemmas are easy and will be omrtted

Lemma 2.1. (APOSTOL [11) If A and B are operators in & (Sj) then
lg(A)—q(B)|=]4—B].

_Remark. Lemma 2.1 implies that if T is in Z($), then q(T)=d(T). Indeed,
if g(§)=0, we have ¢(T)=||T— S|, and therefore ¢(T)=- inf |T-—-S|. We are
' 5€(QT) '

also able to prove the reverse inequality d(T)=¢(T) and to thereby conclude that
g(T) is the distance from T to the set (QT). This result is not used in thls note and
the-proof will appear elsewhere.

Lemma 2.2. (Foias and ZsiDO [8].) The following irrlplications are valid.
i) If U is a non-unitary isometry, then q(U)=1.
i) If Tisin £(9) and A is a thin operator, tl1en g(T)=q(T+ A).

The following proposition, which we believe to be new, is the co.niferse of
Lemma 2.2 ii). ' oo

Proposition 2.3. If A is in £(9) and q(T—I—A):Oﬂﬁ each T in (QT), then
A is a thin operator

Proof If A is not thin, then Corollary 3.4 of [5] implies that A4 is 51mllar to
an operator H @ H of the form
B V
4, = [C 0],

where V is a non-unitary isometry. Let A, be the operator on $ & $ whose matrix is
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and choose an integer n>1 such that n>A,||. Let. S denote the invertible operator
on H®H of the form’ :
1 0
' 0 n)’

and let 4,=5714, S. Fmally, let Xand Y denote, respectively, the operators on Sj & )

whose matrices are ) .
0.0 : d 0.ny
n 0 a.“ o o)

Theorem 6 of [6] implies that g(X)=0, and from Lemma 2.2 i), We have ¢(X+Y)=n
Since |q(X+A43)—q(X+7Y)|=|A;— Y| <n, it is clear that g(X+45)=0. Let
R: H$—-9H® % be an invertible operator such that 4=R™*A4;R. Theorem 9 of {6]
implies that g(R"*XR)=0, and it follows that g(R™*XR+4)=0. (Indeed, if
g(R™*XR+ A)=0, another application of [6, Theorem 9] shows that
0= q(R(R 'XR+A)R™') = qg(X+RAR™ 1) = qg(X+A4,),
which is a contradiction.) . _
Corollary 2.4. (DoucLas and Pearcy [7]) If A is in ZL(9) and
11m (1—P)AP| =0, then A is a tlun operator.
Proof. If llm (1= P)APll—O it is easy to prove that for each 7 in (QT),
g(A+T)=0. Then from Proposntlon 2.3, A is a thin operator '

Lemma 2.5. If V is an 1sometry in .Z’(Sf)), then q(V*)=0. .

Proof. The proof is trivial if ¥ is a unilateral shift of multiplicity one. If V
is unitary, then ¥* is in (V). The proof for an arbitrary isometry- procedes from -
the above special cases via the von Neumann decomposition theorem and Theorem 4
of [10].

Proposxtlon 2.6. Let Vbe apartzal isometry in .,?(5) with nullzty V—cx and

corank V=B. The followmg implications are valid. -
1) Ifa=f<8,, then q(V)=0.

i) If a=F=y,, then q(V)él/Z.

iii) If a<f, then q(V)=1 and q(V*)=0. .

Proof. i) Ifa=f<8,, there is a finite rank operator F such that V+F is
unitary. Then q(V)=q(V+ F)=0. ii) The proof of [9, Theorem 5] shows that if
a=p, then dy(V)=1/2. Therefore q(V)=d(V)=dy(V)=1/2.iii) If a<p, there i
a finite rank operator G such that ¥+ G is a non-unitary isometry. From.L_emmai
22 1), q(V)=q(V+G)=1, and from Lemma 2.5, g(V*)=¢(V*+G*)=0.
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Lemma 2.7. Let U denote a unilateral slnfl of mulflpllaty one in L(9). If
T=U®0in Z(HD D), then q(T)—1/2 and Q(T)=1.

Proof. Let S= T—1/2. Since S is bounded below by 1/2 and nullity S* 0,
Lemma21 of [6] implies that q(1)= q(S)\l/Z The reverse inequality follows
directly from Proposition 2.6 ii).

Let 2, denote the directed set of all finite rank projections in £ ($ @ $) under
the usual ordering. To show that Q(T)=1, it suffices to prove that if P, is in 2,
then there exists P; in &, such that P, =P, and [[(1—P;)TPy|=1. Now since P,
is in 91, it is easy to prove that there exist projections R in & and P, in 2, such that
P,=R®R and P,=P,. The proof of [6, Lemma 2.1] implies that R may be chosen
so that [(1—R)UR||=1. Then ||(1—P1)TP1||—I](I—R)URH—I Since Q(T)=|T| =1,
the proof is complete.

: Proposition 2.8, If 0=r=1/2, there exist partial isometries V and W in
L(HE D) such that q(V)|Q(V)=r and q(W)=r.

Proof. Let U'be a unilateral shift of multiplicity one in 5,”(5’)), and for 0=r=1
define P(¢) by the operator matrix '
[ U0
yi—& o)

Then P(t) is a'norm continuous function on [0, 1] whose values are partial isometries
in Z(9@9). It is easy to prove that if 0=¢=1, then Q(P(r))>0. From Lemma 2.1
and an obvious analogue. involving Q, the functions ¢ and @ are continuous. If
f(®=q(P®)) and f,(1)=£(t)/Q(P (1)), then f; and f, are each continuous on
[0, 1] and therefore each- has connected. range. The proof is completed by noting
" that P(0) is quasitriangular [6, Theorem 6] and that f,(1)=f;(1)=1/2 by Lemma 2.7.

3. An improvément of Lemma F —Z. Theorem 3.1. Let Thein L(H), | T|=1,
and for 0=t=1, let E, denote the spectral projection for (T*T)* which corresponds to
the interval [0, t]. The following implications are valid.

) If 0=t,<1/3 and dim E, =, then ¢(T)=(3~15)]4.
i) If 1/3<t0<l and dim E, —&0, Ihen g(T)=(1+1y)/2.

Proof. i) Let T=UP denote the polar decomposition of T. Smce E,, reduces
P, P=P,+P,, with P, in Z((E, 9)*) and P, in L (£, 9). Clearly P, and P, are
positive operators The spectral theorem implies that ||P2|| =t, and that ;=P =1.
Ifv=u(Q —E,O), then V' is a partial isometry such that nullity V'= Ro. Proposition 2.6
implies that ¢(V)=1/2,and therefore

4(T) = (14 /2V)+1P—(1+ /20~ EJ| = (+1)4+[Py—(1 +) 2@ Pyl
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‘Since :

1Py —(1 +t°)/2||§,053,21 1= (1+16)2| = (1-15)/2

and _ ' .

- IPs = 1= (1-1)/2,

it follows that
' g(T) = (1+1)/4+ (1 =1)/2 = B3~1,)/4.

it) - P;roceeding as above, we have q(T)<q((I——t(,)V)+[|P (1—t)(1 —E, )||<
<(1_t0)/2+”(P1_(1_to))@qu Now || P, — (l_zo)”< sup |t—(1 =1y, andaneasy

to=t=1

calculation shows that the supremum is less than or equal to #,. Since [Pofl=t,, we
have q(T)=(1—19)/2+1,=(1 +1,)/2. ‘

Corollary 3.2. Let T be as above. Ifq(T)>2/3 then thereex:stst>1— (T)
such that dim E,H<=R,.

Proof. Suppose that for each r=1—q(7), dimESj-—xO Since .q(T)=2/3,
then 1 —g(7T)<1/3, and therefore dim E, $=y,. Theorem 3.1 11) implies that ¢(7)=
=(1+1/3)/2=2/3, which is impossible.

The following example shows that’ 2/3 is the best possible lower bound for a
result like Corollary 3.2. 4 '

Example 3.3. Let U denote the unilateral shift of multiplicity one in £ ($)
and let A=U€B—1/3'and B=U®0. Since 4—1/3 is bounded below by 2/3 and
nullity (4—1/3)*0, Lemma 2.1 of [6] implies that g(4)=¢g(4—1/3)=2/3. Lemma
2.7 states that ¢(B)=1/2, and therefore |q(4)—q(2/3B)|=|q(A4)—1/3|=|A—2/3B||=
=1/3. Now 1 —¢(4)=1/3 and dim E, $=4,. Therefore, for each r>1/3, dim E, $=
=8,. Since ||4||=1, this example shows that Corollary 3.2 cannot be extended
beyond those operators for, which ¢(7)=2/3|T]||.

Remark In [8] Foias and Zsipo used Lemma F—Z to prove that if T is in
Z(®), IT||=1, and ¢(T)=0.95, then T=U+ S+K, where U is a nonunitary iso-
metry, S is an operator such that ||S|| <g(T), and K is a finite rank operator. Corol-
lary 3.2 extends this result to any bperator T in £ ($) such that ¢(T)>2/3 and
ITI=1. In particular, T is a semi-Fredholm operator with negative index. We
. furthur remark that if T is in Z($), [T|=1, and T has the above structlire, then
g(T)>1/2. Indeed, since T=U+ S+K, q(T)=q(U+ S) and therefore |g(U) —q(T)|=
=[S|l<qg(T). Since q(U)=1, we have 1—¢g(T)<g(T), and the result follows.
On the other hand, if 0<g=2/3, then there exists a Fredholm operator T, in
Z(HD9), such that || T,|| =1, the index of T, is negative, and g(T,)=e. For example,
if ¥ is the unilateral shift of multiplicity one in .# (%), then we may let T, be the



214 ' . L. A. Fialkow: Non-quasitriangular operators

operator in Z($ @ $) whose matrix is

o v

e 0)°
Finally, if 1/2<g=2/3, it is easy to prove that there exists t>1—q(T,) such that
dim E, $<8,. This proves that the converse of Corollary 3.2 is false.

4. Appendix. We wish to indicate that some of our results are related to results
in [2] and [4]. (The results in [4] were announced in [3].) Proposmon 2.6 is identical
to Corollary 2.7 of [4]. The remark on page 3 is contained in Theorem 2.2 of [2],
which proves, additionally, that the distance from an operator to the set (QT)
is actually attained at some operator in (QT). Lemma 2.7 (about g) is contained -
in Corollary 4.3 of [2], and Proposition 2.8 (about ¢q) is identical to Theorem 4.4
(about g) of [2]. In each of the above cases the proofs of the corresponding results
differ somewhat from one another
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