
The ring N + is not adequate 

By E R I C A. N O R D G R E N in D u r h a m (N. H „ U S A ) 

O . HELMER [2] defined an integral domain R (see [3]) to be adequate in case 
1) every finitely generated ideal in i? is principal and 2) if a, b£R and a^O, then a—rs 
for r, s£R such that g.c.d.(r, b)=1 and every nonunit divisor of Í shares a nonunit 
divisor with b. The purpose of this note is to provide a negative answer to the ques-
tion, raised by J. Szűcs in the preceding paper [5], of whether or not the ring N + 

of quotients of H°° functions by bounded outer functions (see [1]). is adequate. 
That N + satisfies 2) is shown in [5]. That it does not satisfy 1) will be a consequence 
of the following fact. 

T h e o r e m . There exist finitely generated weak* dense ideals of H°° thai con-
tain no outer functions. 

P r o o f . Let a be the atomic inner function 

a(z) = e x p - [ ( l + z ) / ( l - z ) ] , 

and let b be the Blaschke product with zeros z„ = l — l/n- (/7 = 1, 2, ...). If / i s the 
ideal in H°° generated by a and b, then since a and b have no nontrivial common 
inner divisors, and since weak* closed ideals of-H°° have the form (pH°° for cp inner 
[4], it follows that / is weak* dense in 

Suppose / contains an outer function c. Then there exist x and y in H" such that 

ax -{-.by = c. 

Letting u be the quotient of the outer factor of x by c, we would then have 

(1) . k(z„)w(z„)] S 1 

for n= 1, 2, ... , which is not possible, as will be shown. 
Let P be the Poisson kernel: P(0; z) = Re [(eie+z)l(ew-z)]. -Since 

1 2" 
\u(z)\ = exp — . f P(0; z) log |M(ei9)| d6, 
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taking logarithms converts inequality (1) to 
-.in 

(2) — J P(0; z„) log |u(ew)\ d6-(\+ z„)/( 1 - zn) S 0. 

Choosing (5>0 so that 

— Ő 
and denoting the left hand side of (2) by dn, we have 

1 S - 2n-S 
dn ^ ^ / P(0-,z„)\\og\u(ei0)\\ d0 + — f P(0;z„)log \u(ei9)\de-(l + z„)/(l - z „ ) 

— 5 i 

•j. , i ő i 2 n — ö 

-T^TlH / \^g\u(ew)\\dd + — f P(d; z„)log\u(eie)\ de-(I+zn)/(l-z„)^ n 3 
j 2fr-i5 < 

7 z„) log|w(eí0)| —— (1 +z„)/(l —zn). 
ő 

This implies that — since the last integral tends to 0 as H - ® , contradicting 
(2), and the proof is complete. *) 

To see that N+ does not satisfy 1) consider an ideal I of H°° satisfying the con-
ditions of the theorem and generated by functions a and b. The functions a and b 
then have no common inner divisor and consequently if the ideal they generate in 
N+ were principal, then it would have to be all of N+ since outer functions are units 
in N + . Thus we could choose x and y in N+ such that 

ax + by = 1, 

and consequently it would follow that the product of the denominators of x and y 
is in / , which is impossible. 

References 

[1] P . L. DUREN, Theory of Hp spaces, Academic Press (New Y o r k , 1970). 
[2] O. HELMER, The elementary divisor theorem fo r certain r ings wi thout chain condi t ion , Bull. 

Amer. Math. Soc., 49 (1943), 225—236. 
[3] N . JACOBSON, Lectures in abstract algebra, Vol. I, V a n N o s t r a n d (Princeton, N . J., 1951). 
[4] T . P. SRINIVASAN, Simply invariant subspaces and generalized analyt ic funct ions , Proc. Amer. 

Math. Soc., 1 6 ( 1 9 6 5 ) , 8 1 3 — 8 1 8 . 

[5] J. S z ű c s , Diagonal iza t ion theorems for matr ices over certain domains , Acta Sci. Math., 36 
( 1 9 7 4 ) , 1 9 3 — 2 0 1 . 

(Received October 9, 1973) 

*) The same example of inner funct ions a, b for which ax+by is not outer fo r any choice of 
x,y(.H°°, was conta ined , in connect ion with another p rob lem, in an earlier letter of C. Foia§ to 
the Edi tor . (The Editor) 


