On an ergodic type theorem for von Neumann algebras

By S. M. ABDALLA and J. SZŰCS in Szeged

Introduction

The main purpose of this paper is to give a new proof for a theorem of Kovács and Szűcs [4] concerning the ergodic behaviour of elements in a von Neumann algebra under certain groups of its automorphisms. We shall even point out that a more general result is true for semi-groups of normal endomorphisms instead of groups of automorphisms. In the original proof the Alaoglu—Birkhoff ergodic theorem played a key role, while in our present paper we shall use the Ryll-Nardzewski fixed point theorem [5]. We remark that a different proof also using Ryll-Nardzewski's fixed point theorem is given in [6].

Preliminaries

Let \mathfrak{H} be a complex Hilbert space and denote by $\mathscr{B}(\mathfrak{H})$ the algebra of all bounded linear operators on \mathfrak{H} . Among the most often used topologies of $\mathscr{B}(\mathfrak{H})$ are the ultrastrong and ultra-weak topologies. The ultra-strong and the ultra-weak topologies

are defined by the semi-norms of the form $T \to \left(\sum_{i=1}^{\infty} ||Tx_i||^2\right)^{\frac{1}{2}}, T \to \left|\sum_{i=1}^{\infty} (Tx_i, x_i)\right|,$ respectively, and where $x_i \in \mathfrak{H}$ and $\sum_{i=1}^{\infty} ||x_i||^2 < +\infty.$

J. DIXMIER has proved [1] that every ultra-strongly continuous linear form is a linear combination of functionals of the form

$$T \rightarrow \sum_{i=1}^{\infty} (Tx_i, x_i)$$
, where $x_i \in \mathfrak{H}, \sum_{i=1}^{\infty} ||x_i||^2 < +\infty.$ ¹)

¹) In particular, we can see that every ultra-strongly continuous linear form is ultra-weakly continuous, as well. Since the ultra-strong operator topology is obviously finer than the ultra-weak one, the converse of this is evident.

A subalgebra \mathscr{A} of $\mathscr{B}(\mathfrak{H})$ that is closed with respect to taking adjoint, contains the identity operator and is closed with respect to one (and then with respect to both)²) of the topologies just discussed is called a von Neumann algebra.³)

By an endomorphism of a von Neumann algebra \mathscr{A} we mean a mapping g of \mathscr{A} into itself that is linear, multiplicative and adjoint preserving. We shall deal with ultra-weakly continuous endomorphisms only. The ultra-weakly continuous endomorphisms can be called normal⁴) endomorphisms, too, relying on a theorem of [2] (Chap. I, § 4. Th. 2, p. 56). In the sequel we shall do so, for the modifier "normal" is shorter than the modifier "ultra-weakly continuous". By the way, we shall never use the above mentioned theorem in our paper, however, the proof of part (iV) of Theorem 2 in [4], which is referred to in our present work, uses a generalization of it.

Let G now be a semi-group of normal endomorphisms of \mathscr{A} and consider an arbitrary but fixed element T of \mathscr{A} . Denote by $\mathscr{K}_0(T, G)$ the convex hull of the set of all elements of the form g(T) ($g \in G$). Let $\mathscr{K}(T, G)$ denote the ultra-strong (and then the ultra-weak) closure of $\mathscr{K}_0(T, G)$. Furthermore, denote by \mathscr{A}^G the set of all elements of \mathscr{A} which are invariant with respect to all elements of G.⁵) Let us denote by $\mathscr{R}(\mathscr{A}, G)$ the set of all ultra-weakly continuous linear forms on \mathscr{A} that are invariant with respect to G. We shall denote by $\mathscr{R}^+(\mathscr{A}, G)$ the positive portion of $\mathscr{R}(\mathscr{A}, G)$.

We shall use in our study the Ryll-Nardzewski fixed point theorem [5]. For the comfort of the reader we state this theorem as a lemma.

Lemma. Let K be a non-empty weakly compact convex subset of a locally convex Hausdorff space E and let G be a non-contracting⁶) semi-group of weakly continuous affine maps of K into itself. Then there exists a common fixed point of the elements of G.

The following definition of G-finiteness generalizes the one given in [4].

⁵) In general, \mathscr{A}^{G} is not a von Neumann algebra but there exists a maximal (orthogonal) projection P in \mathscr{A}^{G} such that $\mathscr{A}^{G}|P\mathfrak{H}$ is a von Neumann algebra.

⁶) By definition, G is non-contracting if for any two distinct elements x and y of K there exists a strongly continuous semi-norm p on E (depending on x and y) such that $\inf \{p(gx-gy): g \in G\} > 0$.

^{a)} From the preceding footnote and from the separation theorem of convex sets ([3], 14.4, p. 119) it follows that every ultra-strongly closed convex subset of $\mathscr{B}(\mathfrak{H})$ is ultra-weakly closed, as well.

³) For the theory of von Neumann algebras we refer the reader to [2].

⁴⁾ An endomorphism, or more generally an order preserving positive mapping g of a von Neumann algebra \mathscr{A} into another von Neumann algebra \mathscr{B} is said to be normal if $g(\sup \mathscr{F}) = = \sup g(\mathscr{F})$ for any upward dierected bounded subset \mathscr{F} of the positive portion of \mathscr{A} .

On an ergodic type theorem

Definition. Let \mathscr{A} be a von Neumann algebra and consider a semi-group G of normal endomorphisms of \mathscr{A} . The algebra \mathscr{A} is said to be *G*-finite if for every non-zero element T of \mathscr{A}^{+7}) there exists an element σ of $\mathscr{R}^{+}(\mathscr{A}, G)$ such that $\sigma(T) \neq 0.^{8}$)

The theorems

Kovács and Szűcs [4] proved the following:9)

Theorem 1. Let \mathcal{A} be a von Neumann algebra and consider a semi-group G of its normal endomorphisms. Suppose that \mathcal{A} is G-finite. Then for every element T of \mathcal{A} the set $\mathcal{K}(T,G) \cap \mathcal{A}^G$ consists of exactly one element.

Proof. The von Neumann algebra \mathscr{A} with the ultra-strong operator topology is a locally convex Hausdorff space. By Dixmier's result cited in Preliminaries, the weak topology of this locally convex space coincides with the ultra-weak operator topology. It is a well-known and easily provable fact that the unit ball of $\mathscr{B}(\mathfrak{H})$ is ultra-weakly compact. This implies that $\mathscr{K}(T, G)$ is compact in the ultra-weak operator topology for every element T of \mathscr{A} . For every $g \in G$ we obviously have $g(\mathscr{K}_0(T, G)) \subseteq \mathscr{K}_0(T, G)$ and then by the ultra-weak continuity of the elements of G we have $g(\mathscr{K}(T, G)) \subseteq \mathscr{K}(T, G)$. Ryll-Nardzewski's theorem shows that to prove $\mathscr{K}(T, G) \cap \mathscr{A}^G \neq \emptyset$ for any $T \in \mathscr{A}$ it is enough to show that G is non-contracting on every $\mathscr{K}(T, G)$ in the ultra-strong operator topology. To verify this, fix an element T of \mathscr{A} and consider two distinct members A and B of $\mathscr{K}(T, G)$. From the G-finiteness of \mathscr{A} there follows the existence of an element σ of $\mathscr{R}^+(\mathscr{A}, G)$ such that $\sigma((A-B)^*(A-B))\neq 0$. For every element S of \mathscr{A} put $p(S)=[\sigma(S^*S)]^{\frac{1}{2}}$. It is easy to see that p is a semi-norm on \mathscr{A} . Furthermore, for every element g of G, we have

$$p^{2}(g(A) - g(B)) = p^{2}(g(A - B)) = \sigma(g(A - B)^{*}(g(A - B))) =$$
$$= \sigma(g(A - B)^{*}(A - B)) = \sigma((A - B)^{*}(A - B)).$$

This shows that inf $\{p(g(A)-g(B)): g \in G\} > 0$. We shall show that p is ultra-strongly continuous. In fact, consider a net $\{S_{\alpha}\}$ of elements of \mathscr{A} that tends to 0 in the ultra-strong topology. Then, by the definitions of the ultra-strong and ultra-weak topologies, $S_{\alpha}^* S_{\alpha}$ tends to 0 in the ultra-weak topology. Hence $p(S_{\alpha}) = [\sigma(S_{\alpha}^* S_{\alpha})]^{\frac{1}{2}}$ tends to 0 wich shows that p is ultra-strongly continuous. Summarizing all our investigations,

⁸) If \mathscr{A} as G-finite, then it is easy to see that g(I)=I for every element g of G. Therefore in this case \mathscr{A}^{G} is a von Neumann algebra (see the footnote on p. 000).

⁹) They supposed that G was a group.

⁷) \mathcal{A}^+ denotes the positive portion of \mathcal{A} .

the Ryll-Nardzewski fixed point theorem applies to every $\mathscr{K}(T, G)$ and to the semi-group G, so $\mathscr{K}(T, G) \cap \mathscr{A}^G \neq \emptyset$ for every element T of \mathscr{A} .

To accomplish the proof of Theorem 1 we have to show that $\mathscr{K}(T, G) \cap \mathscr{A}^G$ has only one element. To this effect denote by Q the set of all linear maps of \mathscr{A} into itself of the form $\sum_{i=1}^{n} \alpha_i g_i \left(\alpha_i > 0, \sum_{i=1}^{n} \alpha_i = 1, g_i \in G \right)$. Consider a fixed element T of \mathscr{A} and suppose that S and R are two distinct elements of $\mathscr{K}(T, G) \cap \mathscr{A}^G$. Since $S \in \mathscr{K}(T, G)$, there exists a net $\{g_{\alpha}\}$ of elements of Q such that $\lim_{\alpha} g_{\alpha}(T) = S$ where the limit is taken in the ultra-weak topology. For every element σ of $\mathscr{R}^+(\mathscr{A}, G)$ we have

$$\sigma((S-R)^*S) = \lim_{\alpha} \sigma((S-R)^*g_{\alpha}(T)) = \lim_{\alpha} \sigma(g_{\alpha}((S-R)^*T)) = \sigma((S-R)^*T).$$

Similarly, for R in place of S we have

$$\sigma((S-R)^*R) = \sigma((S-R)^*T).$$

By subtraction we obtain

$$\sigma((S-R)^*(S-R)) = 0.$$

Since σ was an arbitrary element of $\mathscr{R}^+(\mathscr{A}, G)$, the G-finiteness of \mathscr{A} implies that S=R. This completes the proof of Theorem 1.

In accordance with [4] let us denote the unique element of $K(T, G) \cap \mathscr{A}^G$ by T^G . Relying on the previous theorem, Kovács and Szűcs [4] proved the following result stated for groups of automorphisms only.

Theorem 2. Let \mathscr{A} be a von Neumann algebra in a complex Hilbert space \mathfrak{H} and let G be a semi-group of normal endomorphisms of \mathscr{A} . Suppose that \mathscr{A} is G-finite. Then the mapping $T \rightarrow T^{G}$ possesses the following properties:

- (i) $\sigma(T) = \sigma(T^G)$ for every $\sigma \in \mathcal{R}(\mathcal{A}, G)$ and $T \in \mathcal{A}$;
- (ii) $T \rightarrow T^{G}$ is linear and strictly positive;

(iii) $(ST)^G = ST^G$ and $(TS)^G = T^G S$ for $T \in \mathcal{A}$, $S \in \mathcal{A}^G$;

- (iv) $T \rightarrow T^{G}$ is ultra-weakly and ultra-strongly continuous;
- (v) $T = T^G$ for every $T \in \mathscr{A}^G$;
- (vi) $(g(T))^G = T^G$ for every $T \in \mathscr{A}$ and $g \in G$.

Conversely, if we do not suppose that \mathscr{A} is G-finite but we know that there exists an ultra-weakly continuous strictly¹⁰) positive linear mapping $T \rightarrow T'$ of \mathscr{A} onto \mathscr{A}^G such that

¹⁰) In [4] the assumption of strictness does not occur.

On an ergodic type theorem

a) T = T' for every $T \in \mathscr{A}^G$;

b)
$$(g(T))' = T'$$
 for every $T \in \mathscr{A}$, $g \in G$,

then \mathscr{A} is necessarily G-finite and $T' = T^G$ for every $T \in \mathscr{A}$.

Relying on our Theorem 1, in the more general situation of semi-groups of normal endomorphisms properties (i)—(vi) of the so-called G-canonical mapping $T \rightarrow T^G$ can be proved in the same way as they were in [4] with a minor modification in the proof of (vi) except for the first statement in property (ii) which asserts that the mapping $T \rightarrow T^G$ is linear. The proof of this fact in [4] relies not only on Theorem 1 of [4] but on its proof as well. Now we are going to show the linearity of the G-canonical mapping in the more general situation when G is a semi-group of normal endomorphisms of \mathscr{A} .

In fact, suppose that \mathscr{A} is G-finite and use the notations of Theorem 1. Consider two elements, R and S, of \mathscr{A} . Since the G-canonical map is obviously homogeneous, it is enough to show that $(R+S)^G = R^G + S^G$. Since $(R+S)^G \in \mathscr{K}(R+S, G)$ we can find a net $\{g_{\alpha}\}$ of elements of Q such that

(1)
$$(R+S)^G = \text{ultra-weak } \lim_{\alpha} g_{\alpha}(R+S).$$

Since $\mathscr{K}(R, G)$ is ultra-weakly compact, we can find a subnet $\{h_{\beta}\}$ of the net $\{g_{\alpha}\}$ such that $h_{\beta}(R)$ is convergent in the ultra-weak topology. Then (1) shows that $h_{\beta}(S)$ is ultra-weakly convergent, too. Put $R_0 = \lim h_{\beta}(R)$ and $S_0 = \lim h_{\beta}(S)$. Then we have

$$R_0 \in \mathscr{K}(R, G), \quad S_0 \in \mathscr{K}(S, G) \quad \text{and} \quad (R+S)^G = R_0 + S_0.$$

The fact $R_0 \in \mathscr{H}(R, G)$ implies that $\mathscr{H}(R_0, G) \subseteq \mathscr{H}(R, G)$ and so, by uniqueness, $R_0^G = R^G$. Similarly, $S_0^G = S^G$. Choose a net $\{k_\gamma\}$ of elements of Q such that ultra-weak $\lim k_\gamma(R_0) = R^G$. Then we have

$$k_{\gamma}(S_0) = k_{\gamma}((R+S)^G - R_0) = (R+S)^G - k_{\gamma}(R_0)$$

which shows that $k_{\gamma}(S_0)$ is convergent in the ultra-weak topology, too. Put $\lim k_{\gamma}(S_0) = S_1$. Then we have

$$(R+S)^G = R^G + S_1, \quad S_1 \in \mathscr{K}(S, G).$$

The fact $S_1 \in \mathscr{K}(S, G)$ implies that $S_1^G = S^G$. Choose a net $\{l_\delta\}$ of elements of Q such that ultra-weak $\lim_{l \to 0} l_\delta(S_1) = S^G$. Then we have

$$(R+S)^G = \lim_{\delta} l_{\delta} ((R+S)^G) = \lim_{\delta} l_{\delta} (R^G) + \lim_{\delta} l_{\delta} (S_1) = R^G + S^G.$$

This completes the proof of the linearity of the G-canonical mapping.

As far as the rest of Theorem 2 is concerned, in the case of semi-groups of normal endomorphisms we have to modify the proof of [4] in the following way:

Suppose that \mathscr{A} admits an ultra-weakly continuous strictly positive linear mapping $T \rightarrow T'$ having properties a) and b) of Theorem 2. Consider an arbitrary non-vanishing element S of \mathscr{A}^+ . It follows that S' is a non-vanishing positive element of \mathscr{A}^G . Then put $T_0 = S'$ and define σ as in [4]. We have $\sigma \in \mathscr{R}^+(\mathscr{A}, G)$ and $\sigma(S) = \sigma(S') = = \sigma(T_0) \neq 0$. Since S was an arbitrary non-vanishing element of \mathscr{A}^+ , this shows that \mathscr{A} is G-finite.

The equation $T' = T^G$ ($T \in \mathscr{A}$) can be proved in the same way as in [4].

We are now going to conclude with an example of a von Neumann algebra \mathscr{A} and a cyclic semi-group $G = \{g^n\}^{\infty}$ of its normal endomorphisms such that \mathscr{A} is *G*-finite and *g* is not an automorphism. In fact, let \mathscr{A} be the von Neumann algebra of all multiplication operators generated by essentially bounded Lebesgue measurable functions on the complex Hilbert space $L^2[0, 1]$ and let *g* be the endomorphism of \mathscr{A} generated by the point transformation $T: x \rightarrow 2x \pmod{1}$ in the following way: $[g(f)](x) = f(Tx) \ (f \in \mathscr{A})$ (here we identified the elements of \mathscr{A} with any of the functions which generate them). It is immediate that *g* is normal, \mathscr{A} is *G*-finite and *g* is not an automorphism. In this case the *G*-canonical mapping of \mathscr{A} reduces to the mapping $f \rightarrow (\int_{-1}^{1} f(t) dt)e$ where *e* denotes the constant 1 function on [0, 1].

References

- J. DIXMIER, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France, 81 (1953), 9-39.
- [2] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien. Algèbres de von Neumann (Paris, 1957).
- [3] J. L. KELLEY and J. NAMIOKA, Linear topological spaces (Toronto, New York, London, 1963).
- [4] I. Kovács and J. Szűcs, Ergodic type theorems in von Neumann algebras, Acta Sci. Math., 27 (1966), 233–246.
- [5] C. RYLL-NARDZEWSKI, On fixed points of semigroups of endomorphisms of linear spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, Berkeley, Calif. 1965/66, vol. II, Contributions to Probability Theory, part I, Univ. of California Press (Berkeley, Cal., 1967), pp. 55-61.
- [6] KAZUYUKI SAITÔ, Automorphism groups of von Neumann algebras and ergodic type theorems, Acta Sci, Math., 36 (1974), 119–130.

(Received May 30, 1973)