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Introduction 

The main purpose of this paper is to give a new proof for a theorem of KOVÁCS 

and Szűcs [4] concerning the ergodic behaviour of elements in a von Neumann 
algebra under certain groups of its automorphisms. We shall even point out that 
a more general result is true for semi-groups of normal endomorphisms instead 
of groups of automorphisms. In the original proof the Alaoglu—Birkhoff ergodic 
theorem played a key role, while in our present paper we shall use the 
Ryll-Nardzewski fixed point theorem [5]. We remark that a different proof also 
using Ryll-Nardzewski's fixed point theorem is given in [6]. 

Preliminaries 

Let § be a complex Hilbert space and denote by the algebra of all bounded 
linear operators on Among the most often used topologies of ^ ( 5 ) are the ultra-
strong and ultra-weak topologies. The ultra-strong and the ultra-weak topologies 

- \z 

are defined by the semi-norms of the form T-* 2 IITx,||2 ,T 

respectively, and where and 2 IWI2 < +°=. 

i 

2(Tx„x'i) 

J . DIXMIER has proved [1] that every ultra-strongly continuous linear form is a 
linear combination of functionals of the form 

2(Tx„xd, where x , e § > i | x l [ l . < + « . 1 ) ' 
/=1 i=i 

' ) I n par t icular , we can see tha t every ul tra-strongly con t inuous l inear f o r m is ul t ra-weakly 
con t inuous , as well. Since the u l t ra-s t rong ope ra to r topology is obviously finer than the ul t ra-weak 
one, the converse of this is evident . 
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. A subalgebra s4 of 3$ (§) that is closed with respect to taking adjoint, contains 
the identity operator $nd is closed with respect to one (and then with respect to 
both)2) of the topologies just discussed is called a von Neumann algebra.3) 

By an endomorphism of a von Neumann algebra si we 'mean a mapping g 
of si into itself that is linear, multiplicative arid adjoint preserving. We shall deal 
with ultra-weakly continuous endomorphisms only. The ultra-weakly continuous 
endomorphisms can be called normal4) endomorphisms, too, relying on a theorem 
of [2] (Chap. I, § 4. Th. 2, p. 56). In the sequel we shall do so, for the modifier "nor-
mal" is shorter than the modifier "ultra-weakly continuous". By the way, we shall 
never use the above mentioned theorem in our paper, however, the proof of part 
(iV) of Theorem 2 in [4], which is referred to in our present work, uses a generaliza-
tion of it. 

Let G now be a semi-group of normal endomorphisms of si and consider an 
arbitrary but fixed element T of s4. Denote by Jf0(T, G) the convex hull of the 
set of all elements of the form g(T) (g€G). Let jf(T,G) denote the ultra-strong 
(and then the ultra-weak) closure of Jf0(T, G). Furthermore, denote by si° the 
set of all elements of si which are invariant with respect to all elements of G.5) 
Let us denote by £%(si, G) the set of all ultra-weakly continuous linear forms on si 
that are invariant with respect to G. We shall denote by 01+ {si, G) the positive 
portion of M(si, G). 

We shall use in our study the Ryll-Nardzewski fixed point theorem [5]. For' 
the comfort of the reader we state this theorem as a lemma. 

L e m m a . Let K be a non-empty weakly compact convex subset of a locally 
convex Hausdorjf space E and let G be a non-contracting6) semi-group of weakly 
continuous affine maps of K into itself Then there exists a common fixed point of the 
elements of G. 

The following definition of G-finiteness generalizes the one given in [4]. 

2) F r o m the preceding foo tno te and f r o m the separat ion theorem of convex sets ([3], 14.4, p . 
119) it follows tha t every ultra-strongly closed convex subset of ¿$(¡5 ) is ul tra-weakly closed, 
a s well. 

3) F o r the theory of von N e u m a n n algebras we refer the reader to [2]. 
J) A n endomorph i sm, or more generally an order preserving positive mapp ing g of a von 

N e u m a n n algebra si in to ano the r von N e u m a n n algebra 8ft is said to be n o r m a l if g ( s u p # ) = 
= s u p '¿(0") for any u p w a r d dierected b o u n d e d subset S' of the positive po r t i on of si. 

5) In general, sia is no t a von N e u m a n n algebra bu t there exists a maximal (or thogonal ) 
projec t ion P in siG such tha t sia\P§> is a von N e u m a n n algebra. 

8) By definition, G is non-cont rac t ing if fo r any two distinct elements x a n d y of K there exists a 
strongly con t inuous semi-norm p on E (depending on x and y) such that inf {p (gx —gy): € G} > 0. 
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D e f i n i t i o n . Let si be a von Neumann algebra and consider a semi-group G 
of normal endomorphisms of si. The algebra si is said to be G-finite if for every 
non-zero element T of si*1) there exists an element <x of (si, G) such that 
a(T)^0.s) . 

The theorems 

KOVÁCS and Szűcs [4] proved the following :9) 

T h e o r e m 1 .Let si be a von Neumann algebra and consider a semi-group G 
of its normal endomorphisms. Suppose that si is G-finite. Then for every element T of 
si the set X~(T, G)DsiG consists of exactly one element. 

P r o o f . The von Neumann algebra si with the ultra-strong operator topology 
is a locally convex Hausdorlf space. By Dixmier's result cited in Preliminaries, 
the weak topology of this locally convex space coincides with the ultra-weak operator 
topology. It is a well-known and easily provable fact that the unit ball of is 
ultra-weakly compact. This implies that c€~(T, G) is compact in the ultra-weak 
operator topology for every element T of si. For every g£G we obviously have 
g(X~0(T, G))QJíí0(T, G) and then by the ultra-weak continuity of the elements 
of G we have g(jf (T, G)) Q jf (T, G). Ryll-Nardzewski's theorem shows that to 
prove Jf (T, G ) f W G 7 i 0 for any T^si it is enough to show that G is non-contracting 
on every c€(T, G) in the ultra-strong operator topology. To verify this, fix an-ele-
ment T of si and consider two distinct members A and B of G). From the 
G-finiteness of si there follows the existence of an element a of 3%+(si,G) such 
that a((A-B)*(A-B))^0. For every element 5 of sé put p(S) = [a(S* S)]*. It 
is easy to see that p is a semi-norm on si. Furthermore, for every element g of G, 
we have 

p2(g(A)-g(B))=p'(g(A-B)) = (r(g(A-B)*(g(A-B))) = 

= a(g(A - Bf (A - B)) = a ((A -B)* (A - B)). 

This shows that inf (p(g(A)-g(B)): g€G} >0 . We shall show t h a t p is ultra-sttongly 
continuous. In fact, consider a net {«Sj of elements of si that tends to 0 in the ultra-
strong topology. Then, by the definitions of the ultra-strong and ultra-weak topologies, 
S*Sa tends to 0 in the ultra-weak topology. Hence ^(5 t t) = [<7(S*5,

tt)]i tends to 0 
wich shows that p is ultra-strongly continuous. Summarizing all our investigations, 

7) si*, denotes the positive por t ion of si. 
8) If si as G-finite, then it is easy to see that g(l) = I for every element g of G. Therefore in 

this case siG is a von N e u m a n n algebra (see the foo tno te on p. 000). 
9) They supposed that G was a g roup . 
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the Ryll-Nardzewski fixed point theorem applies to every J f (T, G) and to the 
semi-group G, so Jf {T, G)C\siG?±Q for every element T of si. 

To accomplish the proof of Theorem 1 we have to show .that J f ( T , G)C\siG 

has only one element. To this effect denote by Q the set of all linear maps of si 

into itself of the form J? a ^ («¡=-0, ^ <*;== 1, 6 . Consider a fixed element 
¡-1 A ¡-1 ) 

T of si and suppose that S and R are two distinct elements of X {T, G ) f W G . 
Since S£JíT(T, G), there exists a net { g j of elements of Q such that l img a ( r ) = 5' a 
where the limit is taken in the ultra-weak topology. For every element <r of {si, G) 
we have 

< 7 ( 0 S - R f S ) = l ima ({S-Rfg^T)) = lim <r (gx({S~R)*T)) = a({S-R)*T). 
a a 

Similarly, for R in place of S we have . 

(T^S-i?)*^) = o((S-R)*T). 
By subtraction we obtain 

o ( ( S - R ) * ( S - R ) ) = 0. 

Since a was an arbitrary element of 0t+{si, G), the G-finiteness of si implies that 
S=R. This completes the proof of Theorem 1. 

In accordance with [4] let us denote the unique element of K(T, G) fl si° by TG. 
Relying on the previous theorem, KOVÁCS and Szűcs [4] proved the following 

result stated for groups of automorphisms only. 

T h e o r e m 2. Let si be a von Neumann algebra in a complex Hilbert space §> 
and let G be a semi-group of normal endomorphisms of si. Suppose that si is G-finite. 
Then the mapping T-*T° possesses the following properties: 

(i) o{T) = o{TG) for every oi@,(si,G) and T£si; 

( i i ) T-~TG is linear and strictly positive; 

(iii) {ST)G = STG and (TS)°=TGS for T£si, S£si°; 

(iv) T-~TG is ultra-weakly and ultra-strongly continuous; 

(v) T=TG for every T£sia; 

(vi) (g(T))G = TG for every Ttsi and g£G. 

Conversely, if we do not suppose that si is G-finite but we know that there exists 
an ultra-weakly continuous strictly10) positive linear mapping T^-T' of si onto si° 
such that 

10) In [4] the assumpt ion of strictness does not occur. 
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a) T=T' for every T£siG; 

b) (g(T))' = T' for every Ttst, g£G, 

then si is necessarily G-finite and T' = T° for every T£si. 

Relying on our Theorem 1, in the more general situation of semi-groups of 
normal endomorphisms properties (i)—(vi) of the so-called G-canonical mapping 
T—TG can be proved in the same way as they were in [4] with a minor modification 
in the proof of (vi) except for the first statement in property (ii) which asserts that 
the mapping T—TG is linear. The proof of this fact in [4] relies not.only on Theorem 
1 of [4] but on its proof as well. Now we are going to show the linearity of the 
G-canonical mapping in the more general situation when G is a semi-group of normal 
endomorphisms of si. ' 

In fact, suppose that si is G-finite and use the notations of Theorem 1. Con-
sider two elements, R and S, of si. Since the G-canonical map is obviously homo-
geneous, it is enough to show that (R + S)G=R° + SG. Since (R + S)G £ X (R + S, G) 
we can find a net of elements of Q such that 

(1) (R + S)G = ultra-weak limga(/? + 5'). 
a 

Since X(R, G) is ultra-weakly compact, we can find a subnet {hp} of the net { g j 
such that hp(R) is convergent in the ultra-weak topology. Then (1) shows that hp(S) 
is ultra-weakly convergent, too. Put i ^ l i m hfi(R) and S 0 =l im hfi(S). Then we have 

t> P 
R0eX(R,G), S0 £ X(S, G) and CR + S1)0 = R0 + S0. 

The fact R0£Jf{R,G) implies that X(R0, G ) £ X ( R , G) and so, by uniqueness, 
RG = RG. Similarly, SG = SG. Choose a net {ArJ of elements of Q such that ultra-weak 
l imK Y (R 0 ) = RA. Then we have 

ky (S0) = ky {(R + S)G~ R0) = (R + Sf - ky (R0) 

which shows that ky(S0) is convergent in the ultra-weak topology, too. Put 
lim ky (S0) = . Then we have 

• (R + S)G = RG + Slt S^X(S,G). 

The fact S^X(5, G) implies that SG = S°. Choose a net {/¿} of elements of Q such 
that ultra-weak lim ls(S^) — SG. Then we have 

<5 
(R + S)G = hmld((R + S)G) = limls(RG) + \imls(S1) = RG + SG. 

S <5 6 

This completes the proof of the linearity of the G-canonical mapping. 
As far as the rest of Theorem 2 is concerned, in the case of semi-groups of 

normal endomorphisms we have to modify the proof of [4] in the following way: 
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Suppose that si admits an ultra-weakly continuous strictly positive linear mapping 
T— T' having properties a) and b) of Theorem 2. Consider an arbitrary non-vanishing 
element S of si+. It follows that S' is a non-vanishing positive element of si°. 
Then put T0=S' and define a as in [4]. We have <j£m+(si, G) and <r(S)=<7(S") = 
~a(T0)^0. Since S was an arbitrary non-vanishing element of si+, this shows that 
si is G-finite. 

The equation T' = TG (T£si) can be proved in the same' way as in [4]. 
We are now going to conclude with an example of a von Neumann algebra 

si and a cyclic semi-group G={g"}°°of its normal endomorphisms such that si is 
n = 1 

G-finite and g is not an automorphism. In fact, let si be the von Neumann algebra 
of all multiplication operators generated by essentially bounded Lebesgue measur-
able functions on the complex Hilbert space L2[0, 1] and let g be the endomorphism 
of si generated by the point transformation T: x—2x(mod 1) in the following way: 
[g(f)](x)=f(Tx) ( / € < > (here we identified the elements of si with any of the func-
tions which generate them). It is immediate that g is normal, si is G-finite and g 
is not an automorphism. In this case the G-canonical mapping of si reduces to 

I 
the mapping / - * ( / w h e r e e denotes the constant 1 function on [0, 1]. 
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