On an ergodic type theorem for von Neumann algebras

By S. M. ABDALLA and J. SZUCS in Szeged

Introduction

The main purpose of this paper is to give a new proof for a theorem of KovAcs
and SzUcs [4] concerning the ergodic behaviour of elements in a von Neumann
algebra under certain groups of its automorphisms. We shall even point out that
a more general result is true for semi-groups of normal endomorphisms instead
of groups of automorphisms. In the original proof the Alaoglu—Birkhoff ergodic '
theorem played a key role, while in our present paper we shall use the
Ryll-Nardzewski fixed point theorem [5]. We remark that a different proof a]so
using Ryll-Nardzewski’s fixed point theorem is given in [6].

Preliminaries

Let $ be a complex Hilbert space and denote by % ($) the algebra of all bounded
linear operators on $. Among the most often used topologies of Z(9) are the ultra-
strong and ultra-weak topologies. The ultra-strong and the ultra-weak topologies

1
are defined by the semi-norms of the form T—»[Z’ llTx,.||2]2, T~

i=1

3 (%, %),
i=1
respectively, and where x;€9 -and 2 |x]* < + <.

: i=1

J. DixMIER has proved [1] that every ultra-strongly continuous linear form is a
linear combination of functionals of the form

T — S’ (Tx;, x;), where x,~€55,~g' %12 < 4 eo. 1)'
i=1 i=1

) In particular, we can see that every ultra-strongly continuous linear form is ultra-weakly
continuous, as well. Since the ultra-strong operator topology is obvnously ﬁner than the ultra-weak
one, the converse of this is evident.
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. A subalgebra & of Z(9) that is closed with respect to taking adjoint, contains
the identity operator and is closed with respect to one (and then with respect to
both)?) of the topologies just discussed is called a von Neumann algebra.?)

By an endomorphism of a von Neumann algebra &/ we 'mean a mapping g
of & into itself that is linear, multiplicative and adjoint preserving. We shall deal
with ultra-weakly continuous endomorphisms only. The ultra-weakly continuous
endomorphisms can be called normal*) endomorphisms, too, relying on a theorem
of [2] (Chap. I, § 4. Th. 2, p. 56). In the séque] we shall do so, for the modifier “nor-
mal” is shorter than the modifier “ultra-weakly continuous”. By the way, we shall
never use the above mentioned theorem in our paper, however, the proof of part
(iV) of Theorem 2 in [4], which is referred to in our present work, uses a generaliza-
tion of it. ‘ ‘

Let G now be a semi-group of normal endomorphisms of & and consider an
arbitrary but fixed element 7 of /. Denote by A (T, G) the convex hull of the
set of all elements of the form g(T) (g€G). Let & (T, G) denote the ultra-strong
(and then the ultra-weak) closure of 2 o(T, G). Furthermore, denote by ¢ the
set of all elements of & which are invariant with respect to all elements of G.%)
Let us denote by % (s, G) the set of all ultra-weakly continuous linear forms on &
that are invariant with respect to G. We shall denote by %+ (&£, G) the positive
portion of Z(«, G).

We shall use in our study the Ryll-Nardzewski fixed point theorem [5]. For
the comfort of the reader we state this theorem as a lemma.

Lemma. Let K be a non-empty weakly compact convex subset of a locally
convex Hausdorff space E and let G be a non-contracting®) semi-group of weakly
continuous affine maps of K into itself. Then there exists a common fixed point of the
elements of G. :

The following definition of G-finiteness generalizes the one given in [4].

‘%) From the preceding footnote and from the separation theorem of convex sets ([3], 14.4, p.
119) it follows that every ultra-strongly closed convex subset of B(H ) is ultra-weakly closed,
as well. . ' _

3) For the theory of von Neumann algebras we refer the reader to [2].

%) An endomorphism, or more generally an order preserving positive mapping ¢ of a von
Neumann algebra &7 into another von Neumann algebra & is said to be normal if g (sup ¥ )=
=sup g(%) for any upward dierected bounded subset & of the positive portion of 7.

%) In general, &7 is not a von Neumann algebra but there exists a maximal (orthogonal)
projection P in &/ such that &/ °|P% is a von Neumann algebra.

%) By definition, G is non-contracting if for any two distinct elements x and y of K there exists a
strongly continuous semi-norm p on E (depending on x and y) such that inf {p(gx—gy): g€ G}>0.’ .
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Definition. Let & be a von Neumann algebra and consider a semi-group G
of normal endomorphisms of s. The algebra & is said to be G-finite if for every
non-zero element T of &/+7) there exists an element ¢ of #*+(#/, G) such that
a(T)=0.8) .

The theorems

' KovAcs and S7UCS [4] proved the following:?)

Theorem 1. Let &/ be a.von Neumann algebra and conszder a semi-group G
of its normal endomorphisms. Suppose that s/ is G-finite. Then for every element T of
o the set A (T, G)NLC consists of exactly one element.

Proof. The von Neumann algebra & with the ultra-strong operator topology
is"a locally convex Hausdorff space. By Dixmier’s result cited in Preliminaries,
the weak topology of this locally convex space coincides with the ultra-weak operator
topology. It is a well-known and easily provable fact that the unit ball of Z(9) is
ultra-weakly compact. This implies that o (T, G) is compact in the ultra-weak
operator topology for every element T of &/. For every g€ G we obviously have
g(A (T, G))E A (T, G) and then by the ultra-weak continuity of the elements
of G we have g(# (T, G)) S A (T, G). Ryll-Nardzewski’s theorem shows that to
prove A (T, G)Ns2¢=0 for any T€ it is enough to show that G is non-contracting
on every A (T, G) in the ultra-strong operator topology. To verify this, fix an.ele-
ment T of o/ and consider two distinct members 4 and B of & (T, G). From the
* G-finiteness of &7 there follows the- existence of an element ¢ of 2+ (&, G) such
that o((4—B)*(4--B))#0. For every element S of & put p(S)=[c(S*S)E. It
is easy to see that p is a semi-norm on &/. Furthermore, for every element g of G,
we have

P(e(4)~2(B)) = p*(2(4~B) = o(g(4— B (g(4—B)) =
= o(g(A— B)*(4— B)) = o((4 - B)*(4— B)).

This shows that inf {p(g(4)— g(B))' 2€G}) >0. We shall show that p is ultra-strongly
continuous. In fact, consider a net {S,} of elements of 57 that tends to 0 in the ultra-
strong topology. Then, by the definitions of the ultra-strong and ultra-weak topologies,
S S, tends to O in the ultra-weak topology. Hence p(S,)=[c(S* St tends to O
wich shows that p is ultra-strongly continuous. Summarizing all our investigations,

" &/ * denotes the positive portion of A,

8 If d as G-finite, then it is easy to see that g(/)=1 for every element gof G. Therefore in
this case /€ is a von Neumann algebra (see the foomote on p. 000).

%) They supposed that G was a group.
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the Ryll-Nardzewski fixed pomt theorem apphes to every X (T G) and to the

, semi-group G, so o (T, G)N# %50 for every element T of .

To accomplish the proof of Theorem 1 we have to show that A (T, ) NAC
has only one element. To this effect denote by Q the set of all linear maps of o/

into itself of the form Zn'ozigi (a,.>0, Zn"a‘:l; g,-EG) . Consider a fixed element
i=1 .. i=1 ’ :

" T of & and suppose that S and R are two distinct elements of #'(7, G)N</°.

Since S€A"(T, G), there exists a net {2} of elements of Q such that hm ga(T) S

where the limit is taken in the ultra—weak topology For every element ¢ of'gf‘r (o, G)
we have

o((S—R)*S) = lim o((S— R)* ga(T)) = lim o(g,((S—~ R)*T)) = o((S— R)*T).

Slmllarly, for R in place of S we have .

oS- R)*R) =o((S— R)*T)
By subtraction we obtain
' o((S—Ry*(S—R)) = 0.

Since ¢ was an arbitrary element of #+(sZ, G), the G-finiteness of & implies that
S=R. This completes the proof of Theorem 1. _
In accordance with [4] let us denote the unique element of K(7, G)N € by TS.
Relying on the previous theorem, KovAcs and SZUCS [4] proved the following
result stated for groups of automorphisms only. -

Theorem 2. Let o be a von Neumann.algebra in a complex Hilbert space H
and let G be a semi-group of normal endomorphisms of sf. Suppose that d is G-finite.
Then the mapping T—T¥€ possesses the following properties:

() o(T)=0(TC) for every a€R (s, G) and TesA ;
(i) T—T€ is linear and strictly positive;
(111) (ST)C=8T€C and (TS)°= TGSfor TEoA, SE.MG
(1v) T—~TC is ultra-weakly and ultra-strongly continuous;
(V) T=TEC for every T€L; | o

i) (g(T))°=TC for every Test and g€G.

Conversely, if we do not suppose that of is G-finite but we know that there exists
an ultra-weakly continuous strictly'®) posmue linear mapping T—T’ of & onto dG
such that

19) Tn [4] the assumption of strictness does not occur.
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"a) T=T for every T€AS;
b) (g(T))Y =T’ for every T¢ o, g€G,
then o is necessarily G-finite and T’ =T° fbr every Ted.

Relying on our Theorem 1, in the more general situation of semi-groups of
normal endomorphisms pr?_)perties (i)—(vi) of the so-called G-canonical mapping
T-TC can be proved in the same way as they were in [4] with a minor modification
- in the proof of (vi) except for the first statement in property (ii) which asserts that
the mapping T—T°¢ is linear. The proof of this fact in [4] relies not.only on Theorem
1 of [4] but on its proof as well. Now we are going to show the linearity of the
G-canonical mapping in the more general situation when G is a semi-group of normal
endomorphisms of 7. ' :

In fact, suppose that &/ is G—ﬁmte and use the notations of Theorem 1. Con-
sider two elements, R and S, of . Since the G-canonical map is obviously homo-
geneous, it is enough to show that (R+ 5)°=R%+ 5. Since (R+ S)°€ A (R+S, G)
we can find a net {g,} of elements of Q such that "

@ - (R+S)¢ = ultra-weak lim g,(R+S).

Since A (R, G) is ultra-weakly compact, we can'find a subnet {/;} of the net {g,}
such that /;(R) is convergent in the ultra-weak topology. Then (1) shows that /,;(S)
is ultra-weakly convergent, too. Put R0=lim hg(R)and Sozlim hg(S). Then we have

Ro€# (R, G), S,c(S,G) and (R+5)° = Ry+So.

The fact R,€# (R, G) implies that # (R,, G) S (R, G) and so, by uniqueness,
R§=RS. Similarly, S¢=S°. Choose a net {k,} of elements of Q such that ultra-weak
11mk y(Ro)= RC. Then we have :

k (So) =k ((R+S)G Ry) = (R+5)°—k,(Ry)
" which shows that k ,(Sp) is convergent in the ultra-weak topology, too. Put_
hmk ,(Sp)=3S,. Then we have

"(R+8)% = R°+S,, S,€¥4(S,G).

The fact S;€24° (S, G) implies that S¥=S¢. Choose a net {l,,} of elements of Q such
that ultra weak llm I;(S)= SS. Then we have

" (R+95)¢ = lim;((R+S5)¢) = llm I5(RSY +1im /5(S,) = R¢+SC.
P P P

This completes the proof of the linearity of the G-canonical mapping.
As far as the rest of Theorem 2 is concerned, in the case of semi-groups of
normal endomorphisms we have to modify the proof of [4] in the following way:
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Suppose that .7 admits an ultra-weakly continuous strictly positive linear mapping
T—T’ having properties a) and b) of Theorem 2. Consider an arbitrary non-vanishing
element S of o+, It follows that S is a non-vanishing positive element of oLC.
Then put Ty=S’ and define ¢ as in [4]. We have c€ 2+ (&, G) and 6(S)=0(S")=
=¢(T,)#0. Since S was an arbitrary non-vanishing element of &/ *, this shows that
& is G-finite.
The equatlon T'=TC% (T€) can be proved in the' same way as in [4].
We are now going to conclude with an example of a von Neumann algebra
& and a cyclic seml group G={g"}> of its normal endomorphlsms such that .« is
n=1.
G-finite and g is not an automorphism. In fact, let &/ be the von ‘Neumann algebra
of all multiplication operators generated by essentially bounded Lebesgue measur-
able functions on the complex Hilbert space L?[0, 1] and let g be the endomorphism
-of o/ generated by the point transformation 7": x ~2x(mod 1) in the following way:
[g(N(x)=f(Tx) (fe ) (here we identified the elements of &/ with any of the func-
tions which generate them). It is immediate that g is normal, & is G-finite and g
is not an automorphlsm In this case the G-canonical mapping of &/ reduces to

the mapping f—»( f f(t)dt)e where: e denotes the constant 1 function on [0, 1].
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