A spectral characterization of the maximal ideal in factors
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Introduction. In a recent paper ({3]) J. A. DYER, P. PORCELLI and M. ROSENFELD
obtained a spectral characterization of the elements in the greatest proper ideal #
of a properly infinite factor .#, namely that x¢_¢ iff o(x+b)No(b)=0 for every
be.#. On the other hand, they proved that if .# is a factor of type I, n<-<o, then
for any 0= x €./ there is b€.# such that a(x+b)N o (h)=0 and they conjectured that
the same assertion is true if ./ is a factor of type 1I;.

In the present paper we prove this conjecture by showing that if .# is a factor
of type II; and 0> x¢.#, then there is a nilpotent element b€.# such that x+5b is
invertible (Corollary 4), getting exactly the same result as for factors of type I,
n<oo. Moreover, the same result is established for elements in a properly infinite
factor .#, which are not of the form 2 +a with 2.€C and a¢ ¢ (that is, for not *“thin”
elements; Corollary 5). This is done by proving Theorem 2 below, which allows
us to represent every element x in .# as a suitable operator matrix and then by
using the trick of BRowN and HaLMOS (cf. the proof of Theorem C in [3] and also
below, Remark 3). . _

For results concerning operator algebras we refer to the treatise DIXMIER [2].

Two projections e, f in a C*-algebra . are said to be equivalent, e~ f, if there
is an element v€.# such that v*v=e, vv* =/, then v=ve=/fv and e, f belong to '
the same (two sided) ideals of . If . is a W*-algebra and x€.#, then LP(x) -
(resp. RP(x))'means the left projection (resp. the right projection) of x; it is known
that LP(x) ~ RP(x) (“LP~ RP” theorem) (cf. [6]). By #(%) we denote the algebra of
all (bounded) operators on the Hilbert space $. As usually, for an element x in a
Banach algebra we denote by a(x) its spectrum.

1. We begin with the following lemma which is surely known:

Lemma. Let e, f€B(9) be two projections such that there is 0<i=1 with
f—fef=Af. Then e/\f=0 and (eV f)(9)=e(H)+/(9H)-

v Proof. The inequality f— fef=Af is equivalent to the'conditions (1—e)fé|=

=YZ | fE|, E€9H. If eE=E=FfE then it follows that £=0, whence e($)Nf($H)=0
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and eAf=0. For & neH we have [len+fE||=ll(en+efl)+(1—e)fEl =(1-e)fell =
=Y | f2ll, so that, if {€(eV f)(H)=e(9)+f(9) and {=lim, (en,+f¢,) then the. se-
quence {fZ,} is convergent and ¢{=lim, f&,€/(9). Then {—¢=lim, en,ce(D), i.e.
{ce(D)+/(9). Hence (eV /) (H)=e(H)+/(9). QE.D.

Remark. The 'greatest A satisfying.the inequality f——feféﬁf could be called
“the sinus of the angle between the projections e and . If A=1, then e and f are
orthogonal, ‘and the lemma says that if “the angle between e and f* is not zero,

then (eV f)(H)=e(H)+1(9).

‘2. Theorem. Let n: M~ be a representation of the W*-algebra M on
the C*-algebra M, % the center of M and F C M a closed ideal in M. For every
XEM, x§Z + F there aré: an invertible element uc.#, two equivalent orthogonal
projections ey, ex€ M ,e1¢ 7 ey, and an element y€ e, Me, such that, putting xo=u""xu,
we have:

» erl:eZXOeI’ YXoer=e;, Xoy=e; v
(ii) for every projection e;=e, there is an equwalent projection e;=e, and an
element y’€e, Me, such that :
Xo€] = ejxper, Y xpel =ef, X,y = ej. _
Proof. Suppose the W*-algebra .# is realized as a von Neumann algebra acting
* on the Hilbert space §, .4 C#($H) and put . =n~(#). Since the center of 4/ F
is the canonical image of & and x¢ Z+ 7, there is a projection pc.# such that
(1—=p)xpé #. Let Xc.# and let pc./#/ bea projection such that n(¥)=x, n(p)=p
and put d=(1—p)%p, |a|=y@* 4. Since the support of |a] is smaller than 5 and -
|a|¢ £, by using the spectral theorem we get a spectral projection &¢ ¢, é=p
such that . '
: : lae¢| = Alé¢ll; ceA; A=>O0.
In particular, for £€%H: . : :
[®ec] = (1 —e)xed| = ||(1 —p)xec| = |laegll = A1&|l. .

We have é= RP(~ ) and we put f—LP()?é) Then f(#)=%é(H)= )fé(g) and
I(1—&)xee| =(4/|%]) |%e&l, ¢€H; that is f— féf=(/|%[)*/. Hence eAf—O and
(& V) (9)=&(#)+f(#), by Lemma 1.

The operator_ ) . ) :
(A-af: f(9)~ (1-&)f($)
is invertible. We put &=¢, &=LP((1—¢&)f) and we note that f=RP((I-2)f).
Let (I1—&)f=w|(I—&)f| be the polar decomposition of (1—&)f and let g€fA f be
the inverse of I(I—e) f| in £/l f. Then the operator

g &(9) ~ 1 ($)
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is the inverse of the operator:
(A-a)f: J(®)~ &(®).

Now define @i=gw*&,+(1 —¢&,)€.4Z. The operator i is one-to-one and #H(H)=
=f(9)+E(H)+(1-&—2)(9). .Since (EV)(H)=8&(H)+f(9) it follows that
7(H)=9H, whence # is invertible and #~1¢.# by the closed graph theorem
We put ¥,=a"1%4. The operator

xe: &(9) ~ f(9)
" is invertible, thus so is the operator

o . %oly: 6(D) = &:(9)
as well as any operator:
Xpe1: e1(9D) — &x(9)

where &;=¢&, is a projection and &,=LP(%,&;)=¢,. It follows that X,é;=¢,%, ¢, and
that there is an element ' € &{M&,, such that " %,8] = &, %,j’ =é,. By the “LP~ RP”
theorém we have & =&~ f~&, and & ~¢&,. Furthermore, since &¢ ¢, we also have
6 ¢ pé,. .

Putting u=n (i), e;=n(8éy), es=m(&,) and y—n(y) (7 is the correspondmg ¥
for é;=2¢,) we obtain (i). If ¢;=e, is a projection then there is a prOJectlon & =é
such that n(é])=:e; and (ii) follows. Q.E.D.

3. Remark. BROWN and HALMOS proved that for every 05 x €2 (9), dim $H < oo,
there is a nilpotent element b€ ($) such that x+b is invertible (cf. the proof of
Theorem C in [3]). The first step of their proof consists of finding an element in
2 ($) similar to x and with a suitable matrix form; this suggested us Theorem 2.
The second step of their proof is as follows. Let x be an operator (nXn)-matrix of
the “suitable form” x=(x;;) with x;-;=0 for j<n and x,, invertible. Consider the
matrix b=(b;;) with b, ;.;=1~x; 41, b; j=—x; ; for j=i41-and b; ;=0 for i=j.
For n=3 the picture is as follows :

0 X1z X3 0 1—xp —xp4 0 1 0

x= 10 x5 Xu|, b= |0 0 l—xp5|, x4+b= |0 xp 1
AXz1 Agz N 0 0 0 o Xa1 X3z X3

It is obvious that b is nilpotent and x-b is invertible.

Now, consider a C*-algebra . with unit such that there are » mutually equiv-
alent, “'mutually orthogonal projections ey, ..., e, in .# such that ¢,+---4¢,=1.
Then every element x€.# can be represented as an operator (#Xn)-matrix whose
components are in e¢,.#e,. Namely, let v, be an element of .#, such that viv;=e,
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vvf=e, v; —uel—ev,, for i=1,...,n. Put x;;=v}xv;€e, . Me,. Then:
x—Z'exe_Z'vaJ (x:7)

where the last equality is a notation. We say that x;; is the (i, j)-th component in
the matrix representation of x with respect to the “basis” (e, ..., e,). It is easy to
see that (x*); ;=x7 ; and (xy); y Zx,k Yxj+ In particular, if x has a “‘suitable’’ matrix

representation then there is a mlpotent element b in /l such that x+b is invertible.
The method just explained and Theorem 2 allows us. to settle affirmatively the
conjecture of DYER, PORCELLI and ROSENFELD.

4. Corollary. Let ./ be a ﬁniie SJactor and 0s¢x€.#. There is a nilpotent
element b€t such that x+b is invertible. In particular. o (x+b)No (b)=0.

Proof. For factors of type I,,, n< <o the result is known. So, let . be a factor
of type II, and denote by d its relative dimension function (d(1)=1). If x is a scalar
" element, then we may take b=0. If not, x is not a central element. Since it suffices
to prove the assertion of the corollary for an element similar (in .#) to x, from
Theorem 2 it follows that we can suppose that there are: a positive integer n, two
equivalent orthogonal projections &,, &€.# and an element y€é,./# &, such that:
d(e)=d(&)=1/n, x&,=8,xe,, yxé,=é;, xy=8&,. Let e, ..., e,€# be mutually’
equivalent, mutually orthogonal projections with e;+... +e,=1 and ¢,=¢,, e,=&,;
then xe; =e,xe,, y€e, Me,, yxe,=e,, xy=e,. The matrix representation of x with
respect to the “basis” (ey,...., e,) is a “suitable” one. Indeed, for jn:

X1 = Ufxv; = vje;xe;v, = v}eje,xe v, = 0

and x, , is invertible in e, .#e, with the inverse y, ,:

V1n¥n1 = (VT y0,) (05 xv1) = Ufyenx'?l = viyxv, = vien, = ¢
Hence the corollary follows from Remark 3. Q.E.D.

~ We can also extend the result obtained in [3] for properly infinite factors to
properly infinite “C*-factors”. In the following corollary “large” projections are
those which are equivalent to 1 and “small” projections are those which are not
equivalent to 1.

5. Corollary. Let n: M —.# be a representation of the properly infinite W *-al-
gebra M on the C*-algebra . whose center reduces to the scalar elements. Then 4
has a greatest .ideal § which is generated by the small projections in M, and an element
x€.4 belongs to £ iff o(x+b)Na(b)=0 for every b #. Moreover, if x is not “thin”
(i.e. x is not of the form i+a where L€ C and a€ §), then there is a mlpotent element
bE.//l such that x+b is invertible.
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Proof. It is well known that in a properly infinite factor the small projections
form a p-ideal and since any factor has a greatest ideal this is generated by the small
projections. It is easy to imitate the above argument in the present situation and
so, .# has a greatest ideal # and # is generated by the small projections. .

Since the spectral theorem holds in .# and in . there are “large” and “small”
projections, HALMOS’s proof for the infinite dimensional case of the theorem of
DvER, PorRCELLI and ROSENFELD applies and so, xE 7 iff 6(x+b)Na(b)50 for every
bed. '

Now suppose xEJZ and x is not “thin”. By Theorem 2. we can suppose that'
there are two orthogonal equivalent projections &, &,€.4, e, ¢ 3 é and an element. .
yE€ éljléé such that xé,=&,xé,, yxé; =&, Xxy=E¢,. Since 1—-¢é;=é;,~1 and & ~1= -
=& +(1—&,) there are two orthogonal large projection 2;, 2’ whose sum is 2.
Again by Theorem 2, we find a prOJectlon é;=&, and an element y'¢€ & # &), such
that xé;=¢,xe;, y'xe;=é,, xy'=é,. We put e;=¢;, e;=1—¢e;—¢,, es=¢,. Then
{es, €3, €3} is a family of mutually orthogonal, mutually equivalent (large) projec-
tions, e, +e,+e;=1, and the matrix representation of x with réspect to this basis has
the following properties: x; ;=0=x;, and x, ; is invertible in e, #e,. Hence the
last ‘assertion of the corollary follows from Remark 3. Q.E.D. _

We note that the matrix representation of the not “‘thin” element x, obtained
in the preceding proof, obviously implies a theorem of BrRowN and PeArcy ([1],
Theorem 2). So the proof of the commutator theorem may be shortened even in the

" case of a properly infinite C*-factor (cf. also [4]).

‘We have also obtained an extension, to general W*-algebras of the theorem

of DYER, PORCELLI and ROSENFELD, giving a spectral charactenzatlon of the strong
' radlcal ([5])
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