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Introduction. In a recent paper ([3]) J. A. DYER, P . PORCELLI and M. ROSENFELD 

obtained a spectral characterization of the elements in the greatest proper ideal # 
of a properly infinite factor Ji, namely that x^f iff <r(;c+Z>)n<7(i)^0 for every 
b^Ji. On the other hand, they proved that if Jl is a factor of type /„, «<=>=>, then 
for any O^x^Jl there is b£Jl such that a(x+b)C)a(b) — Q and they conjectured that 
the same assertion is true if Jl is a factor of type I ^ . 

In the present paper we prove this conjecture by showing that if Jl is a factor 
of type IIX and 0 r ^ x ^ J l , then there is a nilpotent element bQ:Jl such that x+b is 
invertible (Corollary 4), getting exactly the same result as for factors of type /„, 
zz< oo. Moreover, the same result is established for elements in a properly infinite 
factor Ji, which are not of the form A+a with A$C and a(Lf (that is, for not "thin" 
elements; Corollary 5). This is done by proving Theorem 2 below, which allows 
lis to represent every element x in Ji as a suitable operator matrix and then by 
using the trick of BROWN and HALMOS (cf. the proof of Theorem C in [3] and also 
below, Remark 3). 

For results concerning operator algebras we refer to the treatise DIXMIER [2]. 

Two projections e,f in a C*-algebra Jl are said to be equivalent, e ~ / , if there 
is an element vdJl such that v*v = e, vv*=f; then v = ve=fv and e, f belong to 
the same (two sided) ideals of Ji. If Ji is a H7*-algebra and x£Jl, then LP(x) 
(resp. RP(x)) means the left projection (resp. the right projection) of x; it is known 
that LP(x)~RP(x) ("LP~RP" theorem) (cf. [6]). By ££(§) we denote the algebra of 
all. (bounded) operators on the Hilbert space As usually, for an element jc in a 
Banach algebra we denote by a(x) its spectrum. 

1. We begin with the following lemma which is surely known: 

L e m m a . Let e, f£8$(9j) be two projections such that there is 0 < / ^ 1 with 
f - f e f ^ l f . Then e A / = 0 and ( e V / ) ( § ) = e ( § ) + / ( § ) . 

P r o o f . The inequality f — f e f ^ X f is equivalent to the conditions ||(1— 
If then it follows that ¿ = 0 , whence e ( § ) f l / ( § ) = 0 
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and_eA/=0. For we have \\en+M = \\{en+eft) + {\-e)R\\ -e)R\\ gg 
Sj/A \ \ m , so that, if C€(eV/)(§) = e ( § ) + / ( § ) and i = lim „ K . + / Q then the se-
quence {/?„} is convergent and £=l im„/£„£/(§) . Then C-£= l im„ i.e. 
C€e (S)+ / (S ) . Hence (eV/) (S) = e ( § ) + / ( § ) . Q.E.D. 

R e m a r k . The greatest A satisfying.the inequality f — f e f ^ P f could be called 
"the sinus of the angle between the projections e a n d / " . If A=l , then e and / are 
orthogonal, and the lemma says that if "the angle between e and / " is not zero, 
then (eV/ ) (S) = e ( S ) + / ( § ) . 

2. T h e o r e m . Let n: J I -*Ji be a representation of the W* -algebra Ji on 
the C*-algebra Ji, the center of Ji and f czJi a closed ideal in Ji. For every 
x£Ji, there are: an invertible element u£Ji, two equivalent orthogonal 
projections e1, e2 6 Ji, e1^t/^e2, and an element y <z Ji e2 such that, putting x0 = u~l xu, 
we have: 

(i) xoe^e^x^, yx0e1 = e1, x0y = e2; 

(ii) for every projection e[ ex there is an equivalent projection e',, S e2 and an 
element y'£e[Jie'2 such that 

x0e1 = e2x^ex, y = e±, x0y — e2. 

P r o o f . Suppose the W*-algebra Ji is realized as a von Neumann algebra acting 
on the Hilbert space §>, Ji and put J = 7 i - 1 ( / ) . Since the center of Ji\# 
is the canonical image of and there is a projection p ^ J i such that 
(1— p)xp$f. Let x^Ji and let p£Ji be a projection such that n(x)—x, n(p)=p 
and put a=(l—p)xp, \a\ = ^Wd. Since the support of \a\ is smaller than p and 
\ a \ § . / , by using the spectral theorem we get a spectral projection e ^ p 
such that 

\\ag£\\^x\m; ; A > 0 . 
In particular, for 

ll^ll s 11(1-0*^11 №-P)m\ = lia^ll ^ A||^||. . 

We have e = RP(xe) and we put f=LP(xe). Then / ( ^ f ) = x e ( § ) = x e ( § ) and 
||(1 — e)xe^\\ s(A/||x||) that is / - / e /^ (A/ | | x | | ) 2 / . Hence M / = 0 and 
( c V / ) ( § ) = e ( i ' ) + / ( / ) , by Lemma 1. 

The operator 
( 1 - 2 ) / : / ( § ) - ( ! - * ) / ( § ) 

is invertible. We put e1=e, e2 = LP((l — e ) f ) and we note that f—RP((l — e ) f ) . 
Let (1 — e ) / = w | ( i — e)f\ be the polar decomposition of (1 — e)f and let g ^ f J i f be 
the inverse of |(1 — e)f\ in f J i f . Then the operator 

gw*: e2(f)) - / ( § ) 
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is the inverse of the operator: 

( l - e ) f : /(§).-*,($). 

Now define u = gvv* e2 + (l — e2)£Jl. The operator u is one-to-one and «(§) = 
= / ( § ) + e (§) + ( l - e 1 - e 2 ) ( § ) . Since (e V / ) ( § ) = e ( § ) + / ( § ) it follows that 
« (§ ) = § , whence u is invertible and u~1€Jt by the closed graph theorem. 

We put x 0 =u~ 1 xu . The operator 

xe: *($) - / ( § ) 

is invertible, thus so is the operator 

x0ex: - e2(§) 
as well as any operator: 

x0e[ • e i (§ ) - e2(§>) 

where is a projection and e 2 = L P ( x 0 e ^ ) ^ e 2 . It follows that x0e[—e'2x0e[ and 
that there is an element y £ e'jAe2, such that y'x0S[ = e[, x 0 j ' = e2. By the "LP~RP" 
theorem we have e1 = e ~ / ~ e r

2 and <?i~e2. Furthermore, since we also have 

Putting u = n(u), e1 = n(e1), e2 = n(e2) and j; = t t ( j ) (j5 is the corresponding 
for ei=.ei) we obtain (i). If e i s ^ is a projection then there is a projection e '^Sx 
such that n(ei)=--ei and (ii) follows. Q.E.D. 

3 . R e m a r k . BROWN and HALMOS proved that for every CMx6^(§ ) , dim 
there is a nilpotent element b£38(9)) such that x+b is invertible (cf. the proof of 
Theorem C in [3]). The first step of their proof consists of finding an element in 

similar to x and with a suitable matrix form; this suggested us Theorem 2. 
The second step of their proof is as follows. Let x be an operator («X«)-matrix of 
the "suitable form" x = (x,7) with xjV1 = 0 for and xn l invertible. Consider the 
matrix b=(bu) with 6 f i f + 1 = 1 —jc/>i+1, brj=—xij f o r y > / + l and bitj=0 for i^j. 
For n = 3 the picture is as follows 

0 x u X13 0 1 -*12 x13 0 1 0 
X = 0 X22 X2S , b = 0 0 1 — X23 , x + b = 0 x22 1 

X31 X33 0 0 0 • Î31 *32 X33j 

It is obvious that b is nilpotent and x+b is invertible. 
Now, consider a C* -algebra Jt with unit such that there are n mutually equiv-

alent, "mutually orthogonal projections e1,...,e„ in Jt such that ex-\ l-e„ — l. 
Then every element x ^ J t can be represented as an operator («X/j)-matrix whose 
components are in exJtex. Namely, let t;,- be an element of Jt, such that vfvj = elt 
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ViVf — ei, vi=vie1=eiui, for 1, . . . ,« . Put xiJ-vfxvJ£elJte1. Then: 

x = 2 eixej '= 2 vixuvj = (*y) 
¡J i, J 

where the last equality is a notation. We say that xu is the (/, y')-th component in 
the matrix representation of x with respect to the' "basis" (e1, ..., <?„). It is easy to 
see that (x*)uj—x*j and (xy)itj=2xikykj• In particular, if x has a "suitable" matrix 

' k 
representation then there is a nilpotent element b in Jt such that x + b is invertible. 

The method just explained and Theorem 2 allows us. to settle affirmatively the 
conjecture of DYER, PORCELLI and ROSENFELD. 

4. C o r o l l a r y . Let Ji be a finite factor and O^xdJt. There is a nilpotent 
element b £ Jl such that x + b is invertible. In particular a(x + b)C\a{b) = ®. 

P r o o f . For factors of type I„, « < <=° the result is known. So, let Ji be a factor 
of type IIX and denote by d its relative dimension function (i/(l) = l). If x is a scalar 
element, then we may take ¿>=0. If not, x is not a central element. Since it suffices 
to prove the assertion of the corollary for an element similar (in Jt) to x, from 
Theorem 2 it follows that we can suppose that there are: a positive integer n, two 
equivalent orthogonal projections ex, e2£Jt and an element y^e1 Jte2 such that: 
d(e1) — cl(e2)=\/n, xe1 = e2xe1, yxe1 = e1, xy=e2. Let elt ...,en<iJ{ be mutually" 
equivalent, mutually orthogonal projections with ex + . . . +e„= 1 and e1=e1, e„ = e2; 
then xe1 — enxe1, y£e1J/e„, yxe1 = e1, xy — e„. The matrix representation of x with 
respect to the "basis" (elt ...,e„) is a "suitable" one. Indeed, for j^n: 

xj, i ~ v*xvx = v* ej xe1v1 = v* ejenxe1v1 = 0 

and xn l is invertible in e1J/e1 with the inverse y1>n: 

yi,n*n,i = KjOK-Wx) = v^ye^Vj, = vfyxvj. = v f e ^ = e, 

Hence the corollary follows from Remark 3. Q.E.D. 

We can also extend the result obtained in [3] for properly infinite factors to 
properly infinite "C*-factors". In the following corollary "large" projections are 
those which are equivalent to 1 and "small" projections are those which are not 
equivalent to 1. o 

5. C o r o l l a r y . Let n: Ji -+-Jt be a representation of the properly infinite W* -al-
gebra Jt on the C* -algebra Jl whose center reduces to the scalar elements. Then Ji 
has a greatest ideal / which is generated by the small projections in Jl, and an element 
x£Jt belongs to f i f f o (x + b) Oo (b) ̂  0 for every b£Jl. Moreover, if x is not " thin" 
(i.e. x is not of the form k + a where A£C and a ^ f ) , then there is a nilpotent element 
b£Jt such that x+b is invertible. 
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P r o o f . It is well known that in a properly infinite factor the small projections 
form a p-ideal and since any factor has a greatest ideal this is generated by the small 
projections. It is easy to imitate the above argument in the present situation and 
so, Ji has a greatest ideal J and f is generated by the small projections. 

Since the spectral theorem holds in Ji and in Ji there are "large" and "small" 
projections, HALMOS'S proof for the infinite dimensional case of the theorem of 
DYER, PORCELLI and ROSENFELD applies and so, iff a(x + b)f](r(b)^& for every 
biJt. 

Now suppose and x is not "thin". By Theorem 2 we can suppose that 
there are two orthogonal equivalent projections ëx, ë2£Ji, êj ë2 and an element 
yÇ.ëxJië2 such that xë1 = ë2xë1, yxëx = ëx, xy=ë2. Since 1 — ë1^ë2~l and ëx~ 1 = 
— êx + (l — ëx) there are two orthogonal large projection ëx, e" whose sum is ex. 
Again by Theorem 2, we find a projection ë2^ë2 and an element y'^evJie2 such 
that xe'x-=e'2xe'x, y'xe'x=ex, xy'— e2. We put ex = ex, e2—l — ëx — ë2, e3=ë2. Then 
{ex, e2, e3} is a family of mutually orthogonal, mutually equivalent (large) projec-
tions, ex + e2 + e3 = 1, and the matrix representation of x with respect to this basis has 
the following properties: xx x=0=x2 x and x31 is invertible in exJiex. Hence the 
last assertion of the corollary follows from Remark 3. Q.E.D. 

We note that the matrix representation of the not "thin" element x, obtained 
in the preceding proof, obviously implies a theorem of B R O W N and PEARCY ([1] , 

Theorem 2). So the proof of the commutator theorem may be shortened even in the 
case of a properly infinite C* -factor (cf. also [4]). 

We have also obtained an extension, to general W7*-algebras, of the theorem 
of DYER, PORCELLK and ROSENFELD, giving a spectral characterization of the strong, 
radical ([5]). 
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