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1. Introduction 

In a series of four papers, BIRMAN and SOLOMJAK,[18], [19], [20], [21] formulated 
estimates for the characteristic values of an integral operator. More specifically 
they considered two measure spaces (X, q) and (Y, T) and an integral operator 
mapping 22(X, Q) into 22(Y, Then they formulated estimates for the characteristic 
values of this operator. Clearly, these estimates imply trace class criteria. According 
to the summaries of the papers [18], [19], [21] in their main theorems X=Y=Qm, 
the m-dimensional unit cube and g ( X ) s l and r ( T ) ^ l . In their third paper [20] 
they allow X and Y to be unbounded subsets of Skm provided that either g (X) 1 
or i (K) ^ 1. They show how this case can be reduced to their previously treated 
case. At the same time they give examples of operators which can be reduced to 
this case. 

In this paper the question of trace class criteria is taken up again for the case 
of X=Y=M+ and for the case of both measures being the Lebesgue measure. 

In Section 2 first we assign a bound to a given integral operator K acting in 
This bound depends on a given set of three positive constants (a, /?, y) 

and we denote it by \\K\\(a,p, y). The first constant a measures, so to speak, the 
modulus of mean continuity of the kernel K(c, rj) with reference the second variable r\. 
The second constant ft, so to speak, measures an additional smallness of this modulus 
of mean continuity near infinity. The third constant y measures the smallness of. 
the kernel itself near infinity and for brevity we refer to it as the decay constant. 
Then in Theorem 2.1 we formulate a trace class criterion with the aid of the bound 
ll ^ll (a, ji, y). More specifically it is a family of criteria depending on the parameters 
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(a, ft, y). The only needed restriction on these parameters is that they satisfy the three 
inequalities of assumption (2.5) of Theorem 2.1. The first two of these inequalities 
simply says that a and y is greater than 1/2. The third inequality involves all of 
the three parameters (a, p, y). Roughly speaking it says that for given a the modulus 
of mean, continuity near infinity is small compared to the decay exponent y. The 
bigger this decay exponent the less additional smallness of the modulus of mean 
continuity is required near infinity. 

In Section 3 we derive Theorem 2.1 from a Corollary of an abstract Lemma 
of GOKHBERG—KREIN [15] which was formulated by BIRMAN—SOLOMJAK [18. a]. 
The method of our proof differs from theirs inasmuch as the construction of approxi-
mating operators does. Specifically with the aid of the set of three positive constants 
(a, P, y) of Theorem 2.1 for each positive integer n a pardon of 3/1* is defined. Then 
this partion is used to define a subspace of fi2(^+) and we choose the n-th approximat-
ing operator to be the restriction of K to this subspace. In our proof this partition 
plays the same role as the Birman—Solomjak approximation theorem by piecwise 
polynomial functions [17] did play in theirs. 

The delicate counter-example of the Appendix is due to WEIDMANN. It illustrates 
that in assumption (2.5) of Theorem 2.1 one needs a strict inequality. 

2. Formulation of the result 

Let A" be a Hilbert—Schmidt operator acting in £ 2 ( & + ) with kernel K(¿, r¡)-. 
In this section we formulate criteria for K to be in trace class. 

To describe these criteria to the operator K and to a given set of three positive 
constants (a, P, y) we assign a bound, \\K\\(a,fi, y). Using the well known formula 
for the Hilbert—Schmidt norm of an integral operator [4. d] [13. c] and a theorem 
of Fubini [4. b.] we see that for each bounded interval J the mean 

(2.1) M ( S ) K ( 0 = j j i f K ( Z , t j ) d q 

is a square integrable function of the variable Here, of course, \J\ denotes the 
lengt of the interval J . The first constant a will measure the smallness of the modulus 
of mean continuity of the kernel tj) with reference to the second variable tj. More 
specifically define a preliminary bound by 

2 g + l 

(2.2) (a) = sup ( f f m , rj) M ( / ) í © f de dr¡f. 
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Here the supremum is taken over the bounded subintervals of Incidentally 
note that for continuous kernels with bounded support the finiteness of this norm is 
implied by 

SUP SUP L ^ „ i t J m ) \ < 

This implication is an elementary consequence of the fact that to a given vector 
with reference to a given subspace the best approximation is the orthogonal projec-
tion [4. a] [11. b]. Hence 

inf / 1 m , n)-m, nj\*dn = f m , r,)-M(j)K(oi2dr,. 
H S S 

The second constant p will measure an.additional smallness property of the modulus 
of mean continuity near infinity. More specifically for a given pair of positive con-
stant (a, ji) we define a bound by setting 

(2.3)! 
2a + l 

W|1(«,j8) = s u p [ i i j j 2 ( l + m i n ^ / ( ff\K(Z,i)-M(S)K(®\*dtdnf . 

Here, as usual denotes the boundary points of J and supremum is taken over 
all compact subintervals of ^ + . The third constant y will measure the smallness 
of the kernel K(rj) itself near infinity. For brevity we refer to it as the decay ex-
ponent. More specifically with the aid of y we define a bound by setting 

(2.3)2 № ( y ) = sup ( l+ i f l ) 3 ^" ( f f | K(Z,r,)\*dZdrif._ 

Finally define 

(2.4) = max ( !№(«, /? ) , ||AT||g(y)). 

The theorem that follows formulates a family of trace class criteria for the 
operator K with the aid of the bound (a, /?, y). 

T h e o r e m 2.1 . Let K be a Hilbert—Schmidt operator acting on Sup-
pose that to this operator there are three positive constants (a, ft, y) such that 

(2.5) a > 1/2, y > 1/2, and (2a + 1 - 2/J) < (2y - 1) (2a - 1) 

and 

(2.6) p : | | ( « , / j , y ) < = o . 

Then this operator is in trace class, specifically 

(2.7) J f e © i ( f i i ( « + ) ) . 
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We shall establish this theorem in the next section. At present let us consider 
the three inequalities of assumption (2.5) again. The second one, namely that y > 1 /2 
is evident. For, only in this case does the bound ||J5r||2(y) measure smallness at in-
finity. In fact for y < l / 2 this bound is finite for any Hilbert—Schmidt operator. 
Concerning the first inequality all that is evident is the positivity of a. Nevertheless 
a straightforward adaptation of the Weidmann example of the Appendix shows 
that it is possible for a non-trace-class operator to have a finite | |*| |(a) bound with 
a = 1/2. The details of this adaptation were carried out elsewhere [22]. Concerning 
the third inequality of assumption (2.5) all that we know is that it cannot be sharpened 
according to the Appendix. 

3. Proof of Theorem 2.1 

In this section we derive Theorem 2.1 from the Birman—Solomjak Corollary 
[18. a]. We do not know whether the assumptions of Theorem 2.1 allow one to 
construct an operator K which is unitarily equivalent to the original operator K 
and is such that the Birman—Solomjak results of [20] apply to it. We do know, 
however, that the three constants (a, /?, y) of Theorem 2.1 allow one to construct 
a partition of This partition, in turn, allows one to define a sequence of approxi-
mating operators satisfying the assumptions of the Birman—Solomjak Corollary 
[18. a]. 

Our construction will depend on whether 

(3.1)! 2<x + l - 2 j 3 0. 
or 
(3.1)2 2oc + l - 2 0 > O . 

In case relation (3.1)! holds, first we choose a preliminary constant r so that 

(3.2X . r ( 2 y - l ) ^ l . 

Then set 

(3.3) v = tf , 

and to this r we choose a so large that 

(3.4X 2 a - r > 1 and o - r > 1. 

In case relation (3.1)2 holds first we choose the preliminary constant r so that 

(3.2)2 r ( 2 y - l ) > l and 2<x-r(2a+ 1 -2 j? ) 1. 
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Then as before define v be equation (3.3). At present we choose a so large that 

(3.4), max(2a + 1 — 2/?), ^ ^ = 2 a + 1 - 2 0 and a - r > 1. a 

Note that the two inequalities in (3.2)2 together with relation (3.1)2 are equivalent to 

1 2a — 1 
2y — 1 < ' < 2<x+l—2p ' 

Remembering assumption (2.5) and using relation (3.1)2 again we see that this 
inequality does admit a solution r. Let us emphasize again that the definition of 
the constants v, a depends on whether relation (3.1)! or (3.1)2 holds. Having defined . 
these constants for each positive integer n we define a function gn(v, a) by 

(3-5) S„(v, *)•(*).= . 

Finally with the aid of this function we define a family of intervals by 

(3.6) = [&(v,ff)(i) ,g„(v,ff)(i + l)), i = 0, 1, 2, ..., n— 1. 

According to definitions (3.5)12, it is no loss of generality to assume that e r>l , 
which implies that this function is strictly increasing. Then clearly this family of 
intervals defines a partition of the interval [0, v). 

Next let c„(i, v, a) denote the characteristic function of the interval $„(/, v, a) 
and define the subspace Я„(а, p, у) to be their linear span. Specifically 

(3.7) Я . (« ,А v) = {cn(i, v,<r); i = 0, 1 ,2 , . . . , и - 1 } . 

Note that this subspace depends on the constants а, p, у inasmuch as v and a do. 
Clearly 

(3.8) dim«„(a ,p,y) = n. 

Let P„ denote the ortho-projector on ft„(a, /?, y) and set 

(3.9) KN = KPN. 

Then for each positive integer n this equation defines an operator of rank n. This 
fact allows us to apply the Birman—Solomjak Corollary [18. a]. According to this 
corollary for the (2n + l)-st characteristic value of the Hilbert—Schmidt operator 
K, that is for the (2n + l)-st eigenvalue of the positive self-adjoint operator (K*K)L/2, 
we have . 

i 

(3.10) . 
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Here the second factor denotes the Hilbert—Schmidt norm. Actually this estimate 
holds for any operator of rank n. The lemma that follows will imply that for the 
operator K„ of definition (3.9) the right members of estimate (3.10) from a con-
vergent series. 

L e m m a 3.1. Suppose that the operator К satisfies the assumptions of Theorem 
2.1 and define the operator Kn by equation (3.9). Then there are constants d(a, [5, y) 
and к (a, P, y) such that 

(3.11) S ( a , P , y ) > 1/2 

I \iM,y) 

2a + 1 —2P, 

and for every positive integer n we have 

(3.12) p r - A J ( H . S ) S H<x,p, y ) | ^ | 

To establish conclusion (3.11) set 

(3.13) x(a ,P, o) = max 

and 

(3.14) 5(a,P,y) = 1/2min {2a —>c(a,/?, <r)/-, (2y—1)/-}. 

Here the constants r and <x are defined by equations (3.2)1>2 and (3.4)x 2. At the 
same time we see from these definitions that this constant ¿(a, p, y) is greater than 
1/2. That is to say, conclusion (3.11) holds. 

To establish conclusion (3.12) first we introduce a notation for the difference in 
(3.12) by setting 

(3-15) D„ = K—K„ 

Remembering definition (3.9) an elementary argument shows that the kernel of this 
operator is given by 

' n) - M( J n (i, v, a ) ) K ( 0 for ^ Sn(i, v, a) 
(3-16) D n { ^ ) = { m n ) for ^ ^ 

Next we introduce two more operators by setting 

f A , « , ; 
(3-17)г 

and 
(3-17)2 = t 

Remembering definition (3.15) we see that 

(3.18) Dn=Dnil + D„.2. 
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To estimate the square of the Hilbert—Schmidt norm of the operator Dn l we 
need a notation. Specifically for each positive integer n set 

(3.19) P, gH(y, a)) = 2 ( 1 + & ( V > , ) ( / ) ) * * 

Then we claim that 

( 3 . 2 0 ) ! I IA, , i l l 2 (H.S) s \\K\\l(a, P)Sn(a, P, gn(v, <rj). 

For definition (3.17)! together with the partition property of the intervals {./„(/, v, cr)} 
yields 

(3.21) l|Anil||2(H.S) = "2 f f \Dn(£,t,)\*dZdn, 

if we use the well known formula [4. d] [13. c] for the square of the Hilbert—Schmidt 
norm of an integral-operator. Definitions (2.3)1; (3.7), and relation (3.16) together 
show that 

f f \Da^ntd^dn^\\KUa,p) 
f + x S „ (i, v, a) 

lg„(v, f f)(/ + l ) - g n ( v , q ) ( O r - i 
( l + S „ ( v , < r ) ( 0 F 

Inserting this estimate in equality (3.21) and remembering definition (3.19) we obtain 
the validity of estimate (3.20)!. 

In the technical lemma that follows we estimate this sum in terms of n and v. 
Actually this is slightly more general than what we need inasmuch as we do not 
assume that v is a given function of n. 

L e m m a 3.2. For each positive integer n and. pair of positive constants v, a 
define the function g„(v, <j) by equation (3.5). Let «, fl be a given pair of positive con-
stants and define the sum Sn(oc, P, gn(v, a)) by equation (3.19). Then to each a, /? 
and a > 1 there is a constant y (a, /?, a) such that defining the constant x (a, P, a) by 
equation (3.13) for every (v,ri) in (1, ° ° ) X ( 1 , we have 

(3.22) Sn(a,p,gn(r,&))*y(a,p,o)\l
n 

( Vct + 1 
v - e ^ + m . 

The assumption <t>1 together with definition (3.5) shows that the derivative of 
gn(v, or) is increasing. This, in turn, together with the mean value theorem shows that 
for / = 1 , 2, ..., n— 1, 

|g„(v, a) (i + l )-g„(v, a) (01 2" ( i f - 1 . 

At the same time definition (3.5) shows that for / = 0 , 

i*»(v,ff) ( l ) -S.(v. f f ) (0) | = v | i 

7 A. 
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Inserting these- inequalities and definition (3.5) in definition (3.19) yields 

To estimate this sum define the function /„(a, /?, v, <j) by 
x(<r-l) (2a+ 1) 

(3.24) /„(a, P, v, a) (x) = -
| l + v | 

First we consider the case of 

(3.25)! x(a, p, a) = 2a + 1 - 2p. 

We claim that this implies that the function /„(a, P, v, a) of definition (3.24) is in-
creasing on the positive real axis. For, suppose that its derivative does vanish at 
some point m. Then elementary algebra shows that m satisfies the equation 

(3.26) [(a — 1) (2a + 1) — 2 Pa] v j | = - ( b - l ) ( 2 a + l ) . 

By assumption the right member is strictly negative. It is an elementary consequence 
of definition (3.13) and relation (3.25)! that the expression in the bracket is positive, 
that is 

(3.27X (a - 1) (2a + 1) - 2p<r 0. 

Hence there is no point m on the positive axis where this derivative does vanish, 
and our claim follows. The increasing character of. this function shows that 

„ - 1 v(ff —l)(2a + l) n y(<T-lj(2a + l) 

r , " M i " *1 H5rr 
Clearly 
(3-29) f 7— ——dx^n1+<'-»<*'+1> f rtü-dy 

1 i i + v £ Ï T 0 (i+vyr" 

and 

(3.30) / = l-M / f r 1 ^ ^ 
1 j,(®-l)(2a + l) í 1 12/I f y(a~ 1'(2ot + 1> 

~ J T T Y 0 | _ + J , j 

Remembering relation (3.27)j we see that the integral on the right is bounded in-
dependently of v. In fact 

1 v(<T-l)(2a + l) 

f j r 
0 h+y\ 
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This relation together with relations (3.29) and (3.30) inserted in estimate (3.28) 
yields 

n-l ;(<x-lj(2a + l) (1 W 
(3-31) 2 7 - — r r ^ ^ 1 + ( * " 1 ) ( 2 " + 1 ) 7 • 

j=1 

H W 
Inserting this estimate, in turn, in estimate (3.23) we arrive at,. 

(, \2oc \2a+l 

Hence setting 

(3.32)! = 

and remembering definition (3.13) we arrive at the validity of conclusion (3.22) in 
case relation (3.25)j holds. 

Second we consider the case of 

(3.25)2 . x ( a , / U ) = — 
<7 

If the two numbers in definition (3.13) are equal then relation (3.25)i also holds 
and we have just seen the validity of conclusion (3.22). Accordingly we assume that 

2a + 1 — 2/? < 2a-|-l^ 
<r 

Clearly, this implies that 

(3.27)8- . ( f f - l ) ( 2 a + l ) - 2 j 8 f f < 0, 

which, in turn, implies that equation (3.26) does admit a positive solution m. That 
is to say the derivative of the function/, (a, /?, v, a) does vanish at m. Hence this func-
tion is increasing on the interval [0, m] and decreasing on the interval [m, °o). This 
fact together with definition (3.24) shows that 

<3 33> s F W s / F W ' d x + F I T 
It is not difficult to estimate this integral. In fact we claim that relation (3.27)2 

implies ' . 
2x , .(2« + l) 

("4) 'f^jij^W (2,)'-

o 
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For, setting 

an elementary change of variables, yields 

l_ _ 
ffUJ- J (l + t f v 

• H W 
J? rTvw - T J 7TT7w~ 

At the same time, we see from relation (3.27)a that 

a a 
This shows that 

V <7-1 „ 1 
/• 2a—2B — 

/(1 + /) « dt^ilv)'. 
0 

if we remember that by-assumption v > l . Inserting this estimate in the previous 
one we obtain the validity of estimate (3.34). 
It is not difficult to estimate the second term in (3.33) either. To do this recall that 
the positive number m was defined by equation (3.26). This equation together with 
relation (3.27)2 shows that setting 

we have 

vj^-j = y(«,P,<r) 

Then elementary algebra shows that equation (3.26) implies 

. ( 1 + V H ) 1 J 

Inserting estimates (3.35) and (3.34) in estimate (3.33) we obtain 

n-1 jl—lH 2* + D • 1 

(3.36) I I" J J 

+ (y(a,P, a)) ' (-1 ' . ' 
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Inserting this estimate (3.36), in turn, in estimate (3.23) and setting 

(<r-n(2« + !) 
(3.32), y2(a,j3,cr) = (2*c7)2«+1 2 + ( y ( a , / U ) ) ' 

we arrive at the validity of conclusion (3.22) in case relation (3.25)a holds. This 
completes the proof of Lemma 3.2, if we remember that according to definition (3.13) 
either relation (3.25^ or relation (3.25)2 holds. 

Having established Lemma 3.2 we can easily derive conclusion (3.12) of Lemma • 
3.1 from it. For, insertion of conclusion (3.22) in estimate (3.20)x yields 

—J + [ -

if we remember definition (3.3). According to relation (3.17)! 

U A , I 2 | | 2 ( H . S ) = f f I m , n f d k d n . 

This relation together with definitions (2.3)2 and (3.3) yields 

(3.37), IIA,2ll2(H.S) ë \\K\\t(y) y 

Thus setting 
A(a ,P,y) = [\\K\\\{a,P){\+y{a,fi,G)+\\K\\l{y)fl2 

and remembering definition (3.14) we arrive at the validity of conclusion (3.12) of 
Lemma 3.1. 

Finally we can easily derive Theorem 3.1 from Lemma 2.1. For, insertion of 
conclusion (3.12) in the Birman—Solomjak Corollary (3.10) yields 

• j ^ 1/2(«,/>,?) 

According to conclusion (3.11) of Lemma 3.1 the right members form a convergent 
series. Hence 

(3.38) 
n = l 

Since the characteristic values were ordered in decreasing order 

l / i , , ( t f ) s = / i i ( t f ) + At2(A0 + 2 ZH2n+x(K). 
n = l n = l o 

Hence inserting estimate (3.38) in this inequality we arrive at the validity of con-
clusion (2.7), if we remember the.definition of trace class [13. d]. This completes the 
proof of Theorem 2.1. 
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Appendix 

A Hilbert—Schmidt operator with [¡A"j| (1, 1, 1) < «= which is not 
in trace class 

By JOACHIM W E I D M A N N 

Before constructing such an operator note that for a = l , P=l, y = l we have 

2a + 1 — 2/? = (2y — 1) (2a — 1). 

In other words for these constants the third inequality in assumption (2.5) of Theo-
rem 2.1 is replaced by an equality. 

To construct such an operator we first define two ortho-normal sets of functions 
in £¡¡(91+) by setting 

7 2 sin (inO ££[0, 1) 
. 0 

and 
'l/2 sin<7r>7) i ? e [ i , i + l ] 

<A-1) a - ^ ) = { ( 

< A ' 2 ) b i ( n ) = 10 , ( P . / + 1 ] . 
I t is an immediate consequence of this ortho-normality that setting 

< A - 3 ) m , n ) = ¿ T ^ y ^ C O ^ O ? ) , 
/ = 1 * T i 

we have 

(A-4) j f |AT(£, >!)\2 dc dn = J; (772")2 ^ 03' 

That is to say this kernel defines a Hilbert—Schmidt operator A'. At the same time 
it follows that 

(A-5) »,) = 2 7 T T « . - f a ) . 
1=11 + / 

and hence 

<A-6) tr [(K^K)112] = ¿ - J _ = 
/ = 1 i + Z 

In other words the operator K of definition (A-3) is not in trace class. 
Next we maintain that its kernel is Holder continuous. More specifically we 

maintain that 

(A-7) l|/q ( i , i , i ) < ~ . 
To establish this estiniate first we claim that 

(A-8) sup a + l d l l 2 { f f K2(i;, ri)dQdn) 1/2 Co. 
h 0 
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For, in view of the ortho-normality of the system {af} at each point tj definition 
(A-3) yields 

= J 
At the same time we see from definition (A-2) that 

oo 

' + 1 < h implies f b?00dn = 0. 

1 1 
Hence 

ii 

11 

and the validity of (A-8) follows. Second we claim that for every (<;, f/j) and (£, rj2) 
we have 

(A-9) \rl2~1ll 
(1+min ( i h , ^ ) ) ' 

For, in case and r\2 are in the same interval, say . 

(A-10) m +1 ) and t]2£[m,m +1), 

definition (A-3) yields 

(A-ll) i * « , t i j - m , f/oi = (bm(l2)-bm(t]{)) 
m + 2 

Remembering definition (A-2) we see from the mean value theorem that 

(A-12) \bm(M)-bmQl,)\ =S 

Definition (A-l) together with assumption (A-10) yields 

(A-13) 
1 

m + 2 
j~2 

1 + 1 

Hence in this case relation (A-ll) together with estimates (A-12) and (A-13) yields 
the validity of estimate (A-9). In the general case let the integers m l j2 be defined by 

(A-14) m ^ t i ^ m + l s m i S i i i O i i i + l . 

Then definition (A-3) yields 

(A-l5) 2 
i=i 

if we use the triangle inequality. 
Since 

ml + 2""" 

sin ((wx+ l)7t) = 0, 

bmXtii) 
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the mean value theorem implies for / = 1 , 2 

16mi0/,)-sin ((mx+OTt)! < }f2n |»/ i-(w1 + l)i;|. 

Assumption (A-14) clearly implies that 

|'/i-('«1+l)| + |f2-('n1+l)iil = l2~1l-

At the same time, similarly to (A-13) we have for / = 1 , 2 , 

m, + 2 
Í2 

1 +min (tj1}.tj¡¿)' 

Inserting these three relations in estimate (A-15) we arrive at the validity of estimate 
(A-9). Remembering that for £ in [1, the kernel rf) vanishes, we see that 
estimate (A-9) implies 

f | 3̂/2 ifc ~ 

.11 o 

Finally combining estimates (A-8) and (A-16) we arrive at the validity of estimate 
(A-7). 
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