Bernstein-type inequalities for families of multiplier operators -
in Banach spaces with Cesaro decompositions. II. Applications™)

By E. GORLICH, R. J. NESSEL and W. TREBELS in Aachen (FRG)

~ In this paper a number of applications of the results in Part I is given by studying
certain concrete instances of Banach spaces X and systems {P,} of orthogonal
projections. Rather than to give a complete list of possible applications, our aim
is to. show how the general approach proposed in PartI yields Bernstein-type in-
equalities for classical orthonormal systems such as those concerned with Bessel,
- Laguerre, Hermite and ultraspherical polynomials, Walsh and ‘Haar functions, and .
spherical harmonics. Let us mention that the present unifying approach covers
certain classical as well as a number of new Bernstein-type inequalities.
In the following, LF(a,b), 1=p=oo, —co=g<b=s 0, denotes the usual
Banach space of measurable functions, pth power integrable w1th respect to the
‘weight w(x)>0 '

1l = { / If(x)I"W(x)dx}”" Il = €55, 5D | f ()| w (03

in the case w(x)=1 we abbreviate to L2, || ] o

4.  Bessel series

CLet a=0, b=1, and w(x)=1. Denoting by J,(x) the Bessel function of the first
kind of order v> —1 and by {c,}, ¢ the sequence of positive zeros of J,(x), arranged
-in ascending order of magnitude, the functlons .

90(‘)(3&) = (2x)1/2(Jv+1(ck)) (ax) (keN)

*) This paper is a sequel to Part I, which appeared in Acta Sci. Math., 34 (1973), 121—130. -
The contents (and notations) of the first part are assumed to be known. References as well as sections .
are numbered consecutively throughout this series. The contrlbutlon of W. Trebels was supported
- by a DFG-fellowship. :
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form an orthonormal system on (0, 1). Thus the projections P(“) defined by

(P (x) = [ / JW @) duf 9P (x) - (keN)

. are mutually orthogonal. Wing [42] has shown that {¢p{"} forms a Schauder basis
in L"(O 1), l<p<oo, for vz=—1/2, and BENEDEK and PANZONE [18] have extended *
this result to —1<v=<—1/2 provided 1/(v+3/2)<p<1/(—v—1/2); moreover, these
bounds are sharp.

By (3.6) one then has
Corollary 4.1. Let f€L?(0, 1) with v, p specified as above. Then

4.1) = An®

SkePYOf SPOf (@=0),
k=1 P k=1 |2

the constant A being independent of n€N and f.

In case v=41/2, this inequality reduces to the standard Bernstein inequality
for trigonometric polynomials (cf. (3.15)) since J;,(x)=[2/(zx)}2sin x and
J_12(x)=[2/(nx)]"2 cos x. Clearly, mequahtles correspondmg to (3.5), (3. 7) (3 9)—
(3.11) may also be- formulated .

To give a classical interpretation of B**} let us consider the differential operator
D(V) defined by

D)) = ()~ [ = LA f (%),

Then the Liouville normal form of the Bessel differential equation
4.2) : (' @) +Ax =¥ x)ux) =0 O<x=1)

reads D,y f+f=0, and ¢{? is just the eigenfunction of Dy, corresponding to the
eigenvalue 1 = —k2, k€N. Then (4.1) gives

43) 1D 1, = ArFIf1, - (€M)
" for all
€ @ PO(LP(0, 1)),
Analogously, one may consider the system of eigenfunctions y{? of (4.2), namely

¥ (x) = V——(Jv+1(ck)) Wy(eex)  (KEN).

They form an orthonormal system on (0, 1) with respect to the weight w(x)=x.-
Thus the projections P{?, defined by

(PONH = [ f ol O @y du] Y () (kEN),
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are mutually orthogonal. Now {/{"} is a Schauder basis in L% (0, 1) for 4/3<p<4
_in case v=—1/2 (see [42]) and for 2/(2+v)<p<—2/v in case —l<v<—1/2 (see
[18]); again the bounds are sharp. Thus, letting

. (D N = (xf () = (/%) (%),
(3.6) delivers | ' .

.(4.4) 1Dy flip,w = An2) 15w (néN)
for each f¢ EB PO™(LE (0, 1)). C]early (4.3) and (4.4) are equivalent in case p =2,

Slmllarly, using results of BENEDEK and PANZzONE [17]} and GENEROZOV [301,
Bernstein-type inequalities corresponding.to the eigenfunctions of the equation
(x*™v'(x)) + Av(x)=0 with — co<x<1 may be obtained. Moreover, results of RuTo-
vitz and CrUM cited in [17] allow one to apply the present method to the eigenfunc-
tions of a certain general class of Sturm—Liouville problems. '

5. Laguerre and Hermite series
Let a=0, b=, and w(x)=1. Consider the Laguerre polynomla]s L® of order
o =>=—1 defined by

L®(x) = (k)~e*x~*(d/dx)* (e"‘x"”) (keP).
Setting ’

‘ k+a)]?
O (x) = {F(OH' 1)[ k ]} x*2e=*2[(0)(x),

the projections
. | PPN = f f(u)qo © () du] 0l (%)

are mutually orthogonal. The system {P("‘)}k cp satisfies (2. 7) for j=0in case 4/3<p <4,
a=>—1 (see ASKEY—WAINGER [15], MUCKENHOUPT [34]), : and for j=1 in case
l=p=oo, a=0 or (1 +a/2) '<p<—2/a, —1=<a=0 (see Poiani [36]). Hence by (3.7)

Corollary 5.1. Let fcL?(0, ) with «, p specified as above for j=1, and

w=>0. Then " )

= Alog (1+n%) necPkP).

2 POf
k=0 4
Smce the (p(“) are eigenfunctlons of the differential operator
d( d) a+l x a
Dy =5 [xzc‘] —5— 7=

2 4 4x _
-with eigenvalues —k, k€P, one has by (3.6) that for all f€L?(0, <), p, « as specified

a
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above (j=1), : ' 4 ' .
Dy, [2 POf ] n|| 2 P&Of
k=0 IS k=0 P

A consideration of the L®(x) themselves in the space L% (0, =) with weight
w(x)=x%e"* does not apply here since the L® do not yield a (C, j)-basis for any
J€P except for the case p=2 (see POLLARD [37), ASKEY—HIRSCHMAN [14]).

Now let @=—co, b=+eo, and w(x)=1. Consider the Hermite polynomials-

Hi(x) = (— ke (djdx) e~ (kcP).

(neP).

p

Setting
Pi(x) = (2"k'ﬂ U2e=x*2 I, (x),

{@.} is an orthonormal family of functions on (— oo; o). Thus the projections

EN = { [ F0)oe)d 0,(x)

are mutually drthogonal. The system {P,},¢p satisfies (2.7) for j=1in case l =p= oo
(see [28a), [36]). Since the g, are eigenfunctions of the differential operator (d%/dx?) +
+ (1 —x?) with-eigenvalues —2k, k¢ P, one has by (3.6)

I@¥dx)f+ (1 —x3fl, = An”f”p
for all f¢ EB Pk(L"(— o, ), |=p= o>, n€P. This inequality is contained in a paper
~of FREUD [28] ’ ' -

6. Ultraépherical‘series

" Let a= -—1 b=1, and w(x)=1. The ultraspherical polynomials C} of order
/=0 are given by
(6 1) Ck (x) Mk ,(l - \:2)_; +1/2(d/dv)"[(l 2)k+i 1/2] (kEP),
M, ,; bemg a suitable constant. They are orthonormal on (—1, 1) with respect to the
measure (1 —x%)*~Y2 dx. Hence, setting

0h(9) = (1 =)= CY(),

PP = [ f S )9k ) du o)

the projections P are mutually orthogonal on L?(—1, 1). The sequence {pi}, cp
forms a Schauder basis in LP(—1, 1) for 4/3<p<4, A=0 (cf. WiNG [42] for Jacobi
polynomials). The functions ¢} are eigenfunctions of the operator

o=l by

with corrcsponding eigenvalues —k (k+22), k€P. Thus by (3.5)
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Corollary 6.1. For any feLP(—1,1), 4/3<p=<4,

> PRf|
k_

= Aen(n +24)

(6.2)

ek(k+2l)Pls,l)f :
. p

Noting. that the C} are orthonormal on (— 1 1) with respect to w(x)—
=( 2)}. 1/2 set )

B 1) = [ [ 160G iy ] CEoy em).

The B form a (C, j)-decomposition in L% (~1, 1) provided

, 2l Bl 9sj=20s0<x
63) N R A= ' :
l=p=o if 0=2<j

(see PoLLARD [37] for j=0, AskEy—HiRscHMAN [14] for j=0). The C} are eigen-
functions of o
' Dy = (1 —x?)(d?/dx?) — 24+ 1) x(d/dx)

with eigenvalues —k (k+24) so that by (3.6)

Corollary 6.2. Let g’,, denote the set of all algebrazc polyinomials of degree
“=n. Then :

(6.4) . 1Dy S Nipow = AR fllpw (f€ %, nep),
provided (6.3) is satisfied with j=1. o

So far we have stated Bernstein inequalities of type (3.1), (3.3). However, those ;
of Corollary 3.3 are vahd as well. For example, by (3.11) -

Corollary 6.3. The Riesz means (3.8) (iii) of order %, v=>0 satisfy

el

Jor arbitrary =0, fELL (=1, 1), provided (6.3) holds for some 0=j=v.

= dn®|fl, (1EP)

p,w

Remark. It is possible to extend the above results to Jacobi polynomials.
Indeed, (6.2) may immediately be restated since [42] includes (C, 0)-summability
for the Jacobi case for 4/3<p<4. Also (C, 0)-summability for Jacobi series in the
weight space L2 (—1, 1) with w(x) =(1—x)*(1 +x)?, «, B> —1, is known (see POLLARD
[38] and MUCKENHOUPT [33]) so that the Jacobi analogue of (6.4) follows, namely

(6.5) 1D, lp,w = An(uta+B+ 1) fllp (f€Ps, n€P);
where D, ;) is defined by
' D(a p = (1 —x9)(d*/dx*) + (/3 a— (e + B +2) x)(d/dx)
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and p is restricted to

(a+1) [pi— %] <min{—3~, 1—-;01}, B+D ';}-—%’ < min {%, }_—;_ﬁ}
A more general inequality, which contains (6.5) and the w(x)=1-analogue of (6.5)
-as particular instances, can be stated as well using the result of [42] and [33].

Concerning (C, j)-sammability in L? (—1, 1) one may proceed via POLLARD
[38], StEIN [41], ASKEY—HIRSCHMAN [14], ASKEY—WAINGER [16], and GASPER [29],
according to a written communication of R. Askey.

The paper of STEIN [41] should also be mentioned in connection with (6 5) since
it contains a proof for all 1 =p=oo, a, f# > —1. He also assumes condition (2.7) to be
valid for some J€P and obtains Bernstein-type inequalities for orthonormal systems,
using a different method, namely interpolation in polynomial subspaces.

7. Walsh series
Let a=0, b=1, and w(x)=1, all functions in this section being assumed to have
period 1. Defining the Rademacher functions by
1, 0=x<1/2, : ,
QDQ(X) = _1’_ 1/2 =x = 1’ QDO(X‘}']) = q)O(x)’

cok(X) = cpo(2"x) (ke N)
" the'Walsh functlons are given by .

‘/’Q(x) =1, l//k(x) = (Pkl(x)(l’kz(x)"--- Q_Uk,-(x),‘
k=2%+..+2% k>.>kz=0, kecP.

They form an orthonormal system in LF(0, 1), 1=p< oo, which is also fundamental.
Thus the projections : °

(Pf)(x) = [ f S@ @ du] Yi(x)  (keP)

are mutuallyA brthogonal and total in L?(0,1), 1=p<o; PALEY [35] has shown
that the P, form a Schauder decomposition of L? (0, 1) for 1 <p < oo; for the proof that
they also form a (C, 1)-decomposition of L*(0, 1) see e.g. FINE [27], MORGENTHALER
[32]. Hence, by (3.9)

(1.1) S koe -<k/e>*1>k 7|

k 0

= de’Ifl, 0 =>0)

- for any feLP(0, 1), 1§p<°°, 0=0:
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As in the preceding sections we would like to interpret the case w=1 via some
differential operator. Concerning its definition we follow up BUTZER—WAGNER
[21, 22]: Let G denote the dyadic group consisting of all sequences x= {x,}>=, such
that x,=0 or I, the operation of G being termwise addition mod 2. A functlon
JELP(0, 1) is said to have a strong derivative D fin L7(0, 1) if there exists g€ L"(O 1)
such that

Jim

m-—>oco

and in this case DGf=g. ere

1z S S
X®y = 7 Z ]x,,——y,.l, X = anz—", y= Z'ynz—n,
n=1 n=1 - n=1

finite expansions being used for dyadic rationals. The operator Dg is closed and
" linear (see [21, Prop. 4.4] and [22, Sec. 3}, where further details are given). Since the "
Walsh functions satisfy Dgy, =k, for each k€P, i.e. the Y, are eigenfunctions of
Dg, one has by (7.1), (3.8) (i) ‘

1DV (f NI, = Aell f1,
for all f€LP(0,1), 1 =p<oo, of period 1.

8. Haar series

Let a=0, b=1, and w(x)=1. In the notation of [8, p. 49] the orthonormal system
{hk(x)}k 1 of Haar functions is defined on [0, 1] by

hi(x) = Ao, 1]()‘)
I (x) = 2" {}0.13 (2"‘“x 2k +2)— %, 1](2"‘“‘c 2k+ 1)}

where k=2"+i, meP, i=1,2,...,2", and y, 5 (x) denotes the characterlstic fine-
tion of the interval [a, b]. Hence the projections P, defined by

1
(P)E) = [ [ @y @) du] iy (x)  (kEN)
0
are mutually orthogonal. Moreover, the Haar functions form a Schauder basis 1n

LP(0, 1), 1 =p< <o (see also [11, p. 13]) so that one has as an 1mmedlate consequence
of Corollary 3.2

(feL?(0, 1)),

@.1) ' 'kg'lakpkf =

where a may be any of the examples (3.4).
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An explicit definition of a genuine differential operator D satisfying Dh,=kh,
for all k€N seems to be unknown. Nevertheless such an operator can be identified
with the infinitesimal generator of a suitable semi-group of class (%,). For example,
- let the Abel—Poisson means-W(t) of the Haar expansion of f be defined by

W) = SetRS (= 0)

- then 11m I W(t)f—f]l,,—O for l1=p<oo (cf. [21I]). Setting W(0)=1, it follows that

{W(t) tZO} is a semi-group of bounded linear operators on I7(0, 1) of class (%,).
Its infinitesimal generator .« is easily seen to be represented by

af~ 3 KPS

‘for every fin the domain D(s#) of /. Moreover (cf. [20, p. 9]), D(«) is dense in X,
and .7 is a closed linear operator. Thus — &/ is just the desired operator D. Differential
operators corresponding to the logarithmic and exponential cases m (8.1) may be
. defined s1m11arly (see [7]).

Clearly in certain instances the semi-group theory yields directly Bernstein-
type inequalities in an arbitrary Banach space X. Indeed, for holomorphic semi-
groups of: class (%,) on X with infinitesimal generator &/ one always has the in-
equality | LT (@) f |x=Mt™*| fllx for all f€X, t=0 by Cauchy’s integral formula (see
Butzer—BERENS [20, Sec. 1.1.2]).

Along the present lines one may also treat generalized Schauder systems (cf.
CANTURDA [23]), generalized Haar systems (cf. GOLUBOV [31], Sox—HARRINGTON
[40)), the (orthonormalized) Franklin system (cf: CIESIELSKI [24, 25], RADECKI [39])
as well as further spline function systems (cf. CIESIELSKi—DOMSTA [26]). The Bernstein-
type inequalities obtained in [24, 39, 26] deal with ordinary derivatives which, how-
ever, are not covered by our approach. '

9. Spherical harmonics

Let RY be the N-dimensional Buclidean space (N=2) with elements
. N ,
v=(vy, ..., Uy), inner product v-v*= 3 v.v, and [v|*=v-.v. Denoting by Sy the
K=1

surface of the unit sphere in RY with elements y, z, content Qy=2r"%/I"(N/2) and
surface element ds, let X(Sy) be one of the spaces L?(Sy), 1 =p<-<o, or C(SN) w1th
norms

17, = {25 JIf@IdsGIF" (L =p < =), flc = max SO
Sy yeon :
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" respectively. If ¥,(v) is a homogeneous polynomial of degree k satisfying

AY,0) =0, 4= f(a/a_'um (VERY),

then the restrlctlon of ¥, to Sy, denoted by Y, too, is called a surface spherlcal
harmonic of degree k. The Y, satxsfy the differential equation

©.D A% () = —k(k+N-2Y,(0), () = o] Af(v/lvl)

Let the orthonormal sequence of projections {P,‘},‘EP be defined by (cf 6.1,
A=(N-2)/2) -

PN =3 ff<z) HOBE}RO) = ﬂﬁi‘i’ﬂ [Cit-DfGyds @),

where H(k, N) denotes the numb@r of llnearly independent spherical harmonics
of degree k. The P, form a (C, J)-decomposition of X (Sy) for j=(N—2)/2 (see [19]
and the literature cited there). ‘
Since, for x>2, {k(k+N— 2)n‘2[1+(k/n)2] 2} p€bV; 4y uniformly in n¢P,
it follows by (3.10), (9.1) that

Corollary 9.1. Let f€X(Sy). Then for any »x=>2
1AL, ()f |x = Ar]|f Ix-
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