Operators satisfying a sequential growth condition

By BHUSHAN L. WADHWA in Cleveland (Ohio, U.S.A)®

‘§ 1. Introduction

‘An operator T on a Hilbert space § is called hyponormal if T*T—TT* = 0.
One of the very useful properties of a hyponormal operator 7 is that it satisfies the
G, growth condition; that is |(A—T)~"| = 1/d(2) for all 1€ ¢(T) where o(T) and
o(T) denote the spectrum and the resolvent set of T respectively, and d(4)=
. =dist [4, 6(T)]. For most applications we need this growth condition to be satisfied
in a neighborhood of ¢(T). On the other hand, the Volterra operator ¥ does not
satisfy the growth condition G, in any neighborhood of ¢(¥), but there deces exist
a sequence 4,€0(V) (take 4, to be negative real numbers) such that 4, —~0 and
I(V—4,)"*) = 1/|4,]. This motivates us to introduce the concept of a sequential
G, growth condition. A bounded operator T on a Hilbert space $ satisfies sequential
G, growth condition if for every A€(a(T)) (the boundary of ¢(T)), there exists
a sequence 4,€o(T) such that A,—~A and ||(A,—T)"*| = 1/d(4,) for all n. Such
an operator T is also referred to as a sequeritially G, operator. Some other generali-
zations of G, growth conditions have been considered by LUCKE [5, 6] and RiGGs [8].

We prove that a sequentially G, algebraic operator is normal. This result has
an interesting application to the theory of ¢-dilations in the sense that it generalizes
and at the same time simplifies the proof of a recent theorem of FUruTA [2] con-
cerning C,-operators. We also prove that if T is a sequentially G, operator then
T+ < %1 where # is the ideal of compact operators and #, denotes the norm
~ closure of operators with one dimensional reducing subspace. Our result generalizes
a theorem of BERBERIAN [I] and ISTRATESCU [4] which asserts that T+ c X,
whenever T is a G, operator (this in turn is a generalization of a result of STAMPFLI
[12] about hyponormal operators). 4(9) denotes the algebra of bounded linear
operator on 9. -
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The following proposntlon shows the existence of a class of sequentially G,
operators which are not G, operators

Proposition 1. 1. If TEB(9) is a quasi- mlpotent operator such that 0 an(T)
where w(T)={(Tx, x):x¢ H and ||x||=1} is the numerical range of T, then T is a
. sequentially G, operator. ‘

"Proof. Since w(T) is convex there is a line of support for w(T) passing through
0 (since 0€9w(T)) and hence without loss of generality we can assume that w(T) <
c {A:Real A=0}. It is quite easy to show that, for any T¢Z(9H) and A¢w(T),

1
(A=T)"1| = —————=—". Since 0€9w(T) and a T)={0}, for any real negative
(A=1)""I Gt ) (1) () {0}, y g

number 4, dist[4, w(T)]=|4|=d()). Hence we can take A,=—1/n and then'
12, =)'l =

1
12|
In view of a theorem of StamprLi [9], if T is a G, operator and if ¢(T) is a
finite set, then T is a normal operator. Thus no non-zero quasi-nilpotent operator is
a G, operator. Qut next result shows that no non-zero nilpotent operator is a se-
quentially G, operator.

Proposition 1.2. Let TC@(S)) be such that T"=0 for some m=>1 and suppose
that T is a sequentially G operator. Then T=0.

Proof. Since T is a sequentially G, operator and ¢(T)
quence A, —0 such that

IGa =) = 7

17 s T
4" =0 l/l,.l"“1 — 1Al

for all »n. Since |/'L,,|'""+Z' [IT"|||,{,,|"""‘1—»0 as n—oo, we conclude that
i=0 ‘

{0}, there exists a se-

m—1

Z ;;1 this implies

T)~

V |m 1+ Z IT:'” Mnlm_i_l,

Tm=1—-0. Hence by a simple .induction argument 7=0. We thank the Referee for
M

pointing out that this result holds even if |(4,—T)"!] Sm M=l

" Corollary 1. 3. Let T0 be a nilpotent operator, then 0¢ Interior w(T). -

§ 2. Sequentially G; operators and the class C,

An operétor T is called algebraic if there exists a polynomial p(z) such that
p(T)=0. We assume that this p(z) is minimal among all the polynomials q(z) such
that g(T)=0. We shall show that if T is a sequentially G, algebraic operator then T
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. is normal. To prove this result we need the following lemma, which appears implicitly
in STAMPELI [10] and explicitly in PurNam [7] and STAMPELI [12].

Lemma 2. 1. (Putnam—Stampfli) Ler T€B($) and let Ao€a(T) such that
Tx=2Aox, |x||=1. Suppose there exists a sequence {A,}€o(T) such that 2,2, and
S lim | —A] I(T—1 ,.) Y =15 then T*x=Tox.

n—oo

Theorem 2.2, Let T E.@(ﬁ) be a sequentzally G, algebraic operator vy l1en T
is normal.

Proof: Since T is algebraic, there exists a polynomial p(z) such that p(T)=O.
Let z; (i=0, ..., m) be the distinct roots of p(z) of multiplicity »n; (i=0,...,m)

respectively. Then § = 3 ; where 11,.'= {xES:(T—z,-)f'ix = 0}. Thus each #; is
A :

' invariant under T and o(T|n)={z;}. Since T is sequentially G,, it follows that
T|n, is sequentially G, . Moreover T—z;|n; is a nilpotent operator. Hence by Proposi-
tion 1.2, T—z|n; = 0. Thus #; = n(T—2z;) = null space of T—z;. Moreover, by

Lemma 2.1, n(T—z)=n(T*—Z) and n(T—z)1n(T—z;) for i#j Hence .
T= 3 eaziPi-where P, denotes the projection of § onto n(T—z,) and Tis normal.

i=0 :
The next theorem.shows that the above hypothesis can be slightly changed
without affecting the conclusion. The hypothesis in the following theorem means

- roughly that T is sequentially G, except at one point.

Th'eo_'r.e'm 2.3. Let T¢B(9) such that p(T)=0, where p(z) = (z—zo)(z——él)"l...
...(z—2z,)"™. Suppose for each z; (i=1, 2, ..., m) there exists a sequence {AP} ;€ o(T)
such that lff)—»z; and ||(AO -1 = Mml . for all n. Then $ = Z‘ &n(T—z)

and T is normal.

. Proof.-From the proof of Theorem 2. 2, it follows. that
$=n(T-z)+ > ®n(T~z) and n(T—z)=n(T*—Zz) for i=1,2,..,m.
’ i=1 S : : : ’ ’

Thus n(T'—z,) is also orthogonal to y(T—z,) for i=1, 2, ..., m. Hence T is normal.

Now we shall apply the above result to get a generalization of a result of FURUTA -
[2] about the operators in C, class. The class C, of operators was introduced by
Sz.-NAGy and Foiag [13] as the set of all operators T on a Hilbert space $ for which
there exists a unitacy operator U on some Hilbert space & (o 2 $) such that

T"=oPU"$ (n=1,2,..),

where P is the projection of o onto $. U is called unitary o-dilation of T.
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One of the characterizations of the class C,, QEZ. is the following:

.Theorem 2.4. (Sz.-NaGy and Foias [14]) An operator TEA(H) be/ongs to
the class C, (¢=2) if and only if T satisfies the following condition

Jor l<lul<e if g=2

for 1<|;1|§ZT_; if o=2.

1
—T) =
=D IS

Theorem 2.5. Let T€C, (¢=0). Suppose p(T)=0 where p(z) is a polynomial
and all roots of p(z) are on the unit circle except for, perhaps a simple root (say z,).
Then T = U®z, P where P is a projection of § onto the null space of T—zy, and U
is a unitary operator.

Proof. Since C,cC, for 0<g<¢’ ([14, page 50]), T€C, (¢>0) implies that
T¢C,,, and hence by Theorem 2.4,

Q+1

Ie—T)"H = for 1<|uf<

1
| e
Let p(z) = (z—zp)(z—2z)"...(z—2z,)" where |z;]=1 for i=1,2,...,m. Now
for any u, 1<|ul<1 +—;—, u collinear with z; (i=1,2, ..., m);

1
|1e—z;]

1
_ 1| = =
(e
1 1
=zl  d@’

2.3, and hence T = > @z P; where P; is the projection of § onto the null space

i=0

Hence |(u—T)" Y = - Thus T satisfies the hypothesis of Theorem

! m
of T—z;,i=0, 1, ..., m. Since |z;]=1for i=1, 2, ..., m; 2 @z, P;isa unitary opera-

i=1

tor, and thus T = U®zy,Py.

Corollary 2. 6. (FURUTA [2]) If T*=T for some positive integer k=2 and
T¢C, (¢=>0) then T is the direct sum of a zero operator and a unitary operator.

Proof. Obvious from Theorem 2. 5.

§ 3. The class 2,

. The class &, of operators was introduced by HaLmos [3]. An operator T is
in &, if and only if T has one dimensional reducing subspace. 2, denotes the norm
closure of #,. HaLmos [3] showed that every normal operator and every isometry
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is in 2,. STAMPFLI [11] showed that T+ ' %, whenever T is either hyponormal
or a Toeplitz operator, where £ denotes the ideal of compact operators. He also
showed that if the spectral radius of T is equal to the norm of T then T is in 2, .
We shall prove that T+ < %, whenever T is a sequentially G, operator.

The following four results are well known and are stated here for eaéy ref-
erence.

Lemma 3.1. T €, if and only if there exists a sequence of unit vectors X, € $
such that |(T—2)x,| — 0 and |(T*—D)x,|| — O for some icao(T).

Lemma 3.2. Let Ay€a(T) where |Ao|=|T|. Then there exists a sequence of
unit vectors x,€9 such that | (T—Ag)x,| — 0 and |(T*—1o)x,| — 0. Thus TR, .

Lemma 3. 3. If there exists a sequence of unit vectors x,€$9 such that x, con-
verges weakly to.0 and |(T—2)x,| - 0 and ||(T*—Dx,| - O, then T+ A < A, .

Lemma 3.4. If there exists -a sequence of unit vectors x, €9 such that x, con-
verges weakly to x, and | Tx,|| -0 then Tx,=0.

For any operator T on a Hilbert space $, let yp={A€0(T): there exists x€$,
x7#0 such that (I'—2A)x = 0 and (T*—2)x = 0}. If y; is not empty then T€ZX,.
Also if y; is an infinite set then it can be easily shown that T+ % < Z,. In order to
prove our result, we need the following lemmas.

Lemma 3.5. Suppose there exists a sequence of unit vectors x,€$ and Ay § yr
such that ||[(T—21o)x,|l — 0 and |(T*=1)x,| — O then T+ A < &, .

Proof. Since {x,} is a bounded sequence, we assume, without loss of generality,
that x, converges weakly to x,. Then by Lemma 3.4, (T—A)x, = 0 and
(T*—19)xo = 0. Since Ay ¢ 7y therefore x,=0. Thus by Lemma 3.3 T+ < @,.

Lemma 3.6. Let T be sequentially G, and suppose that yr Is a finite set such
that yr=0(T). Then T+ 4 < R, . .

Proof. Let 6(T)={A,, 45, ..., 4,}. Since yp=0(T), each /; is an eigenvalue
of T. Also T is sequentially G, therefore. by Lemma 2. 1, each 4; is a reducing
eigenvalue. If for some 7, n(T—4,;) which is equal to y(T*—1,) is infinite dimen-
sional, then obviously T+ 4 < %,. Otherwise we have § = , &H, where $, =

= > @n(T-2)and H, = HO 9, is infinite dimensional. Siﬁce $, reduces T and
i=1

o(T) is a finite set it is not hard to verify that T'|$, =T, is a sequentially G, operator
and yr, is empty. Note that T, +# C &, implies T+ 4 A, and thus this case will
be considered in the proof of the next theorem.
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Theorem 3.7. If T is a sequentially G, operator, then T+ X" C R, .

Proof. In view of Lemma 3. 6 we only need to consnder the case when y; is a
finite set and yr=o (7).

Since T is sequentlally G,, for any lo Ea(a(T)\yT) there exists a sequence
s € 0(T) such that | (T—p,)" Y = d(y 3 and u,—~/4,. Since gy, —»Aoein, therefore
for any p,, such that |ty — Aol < min {MO—aI:aEyT}', d(ty) = My —2m,| Where
AMOEU(T)\’))T.

. 1 1 1
Thus ||(T—,u,,,°)"1ll =

= ) EO’ T— m’ -1 .
d(#,,,o) M’mo_ﬂmol Amo—# (( # 0) )

mo

Hence by Lemma 3. 2, there exists a sequence of unit vectors X,, such that

“[(T_ #rnJ)_l - (lmo —“mo)_l]xn” —~0 and ”[(T* —/'—lm_,)_ b (Zmo —ﬁmo)— 1])&' ” =0.
Hence by the first resolvent equation we get | (T~ 4,, )x,| —~ Oand | (T*—/’r JXall —~ 0.
Also 4, ({yT Thus by Lemma 3.5, T+ < %1
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