On p-pure subgroups of torsion-free cotorsion groups

By L. C. A. VAN LEEUWEN in Delft (Netherlands)

1. Introduction, In this paper we give an explicit form for the structure of
torsion-free cotorsion groups (Theorem 1). Wé apply this to a special class of groups,
the torsion-free -abelian groups without elements of infinite p-height. A torsion-
free abelian group G has an element @ of infinite p-height if the equation p"x=a
is solvable in G for any integer n=1 (p a prime). BoYER and MADER [5] have deter- -
'mined the structure of a torsion-free abelian group G without elements of infinite
-p-height in terms of p-pure and p-basic subgroups. With the aid of the torsion-free
cotorsion groups we state the torsion-free part of their result more precisely (Theo-
rem 2). Then we investigate the p-pure subgroups of groups G without elements
of infinite p-height which have the additional property that G is complete with
respect to the p-adic topology, the so-called p-closed groups. The similarity with
the closed p-groups defined by FucHs for the torsion case is obvious ([6], p. 114)
and one can easily prove the analogues of theorems of p-groups for the torsion-
free case (Lemma 3 and 4). Our main object is, however, to derive results on the
extensions of homomorphisms for p-pure subgroups of torsion-free cotorsion groups.
‘Our theorems 3 and 4 are generalizations of corresponding results of ARMSTRONG
[1] for p-pure subgroups of the group of p-adic integers. Let S be a p-pure sub-
group of a p-closed group G and let B be a p-basic subgroup of S. Then
Hom (S/B, G/S)=0 (or equivalently Ext (S/B, S)=0) is a sufficient condition that
every o€ Hom (B, S) has an extension to an endomorphism of S. Therefore we
investigate the groups S with Hom (S/B, G/S)=0. In Theorems 5 and 6 we give
some equivalent statements for the condition Hom (S/B, G/S)=0. It turns out that,
if the rank of S=ux,, S is completely decomposable into a direct sum of copies
of some torsion-free quotient-divisible group of rank 1. Finally we investigate the
groups S as above but without the restriction Hom (S/B, G/S)=0. In theorem 7
the structure of these groups is reduced to the case where S is a subgroup of Z(p).
containing 1 and with the property that S, as a ring, is a subring of Z(p).

~ Our notation and terminology is, for the main part, in accordance with that
of Fuchs [6]; for unexplained notions we refer to his book [6].
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2. The structure of torsion-free cotorsion groups. Torsion-free cotorsion groups
were defined by HarrisoN [9]. For convenience let us summarize some results of
[9]. The word group will always mean abelian group. The additive group of rationals
is denoted by Q, the additive group of integers by Z. A group G is reduced if it
has no non-trivial divisible subgroup. A reduced group G is called cotorsion if G
a subgroup of a group M with M/G torsion-free imply that G is a direct summand
of M, ie. Ext(H, G)=0 for all torsion-free groups H.

(i) There is a one-to-one correspondence between all divisible torsion groups.and
all torsion-free cotorsion groups. If D is a divisible torsion group, the corres-
pondence is D—~Hom (Q/Z, D). If G is torsion-free cotorsion, the inverse of
this correspondence is G~ (Q/Z)QG.

A result of FucHs [7, p. 123] states:

(i) ‘A torsion-free group is a cotorsion group if and only if it is a reduced algebralcally
compact group.
In [9, Prop. 2. 1., p. 371] it is proved: »

(iii) A group is torsion-free cotorsion if and only if it is isomorphic to a direct sum-
mand of a complete (unrestricted) direct sum of p-adic integers.

Definition. The height of the p-adic integer 7 is the integer £(=0) such that
n€p*Z(p), but ngp**tt Z(p), where Z(p) is the group of p-adic integers. In order
to find the structure of torsion-free cotorsion groups it is enough to determine the
groups Hom (Q/Z, D) for arbltrary divisible torsion groups D (by (i)). The followmg
theorem holds:

Theorem 1. Let D be a divisible torsion group and suppose D=3 3 C(p}”),
Py Ap,;

where C(p;{”) is the quas: -cyclic group of type p. (p; a prtme) Then

M N ‘Hom (Q/Z, Dy=Z"* 2" Z(p;)

Pj %y
where the first (complete) sum E* is taken over all prime numbers p ; and, for each prime
number p;, the number of components n; with height=k in {...,n;, ...y € > Z(p;) is.
finite (k=0,1,2,...). : "Pj_

A proof of Theorem 1 is given in [11]. All torsion-free cotorsion groups have
the structure (1) of an interdirect sum of groups of p-adic integers for different primes
p and by the result of FUCHS [7, p. 123, (j)] the torsion-free reduced algebraically com-
pact groups have this form. The following remarks are due to Prof. L. FucHs.

We have $Z(p)C 2’ Z(p) < 2* Z(p), where X’/ is the maximal divisible sub-
group of X*/X, the latter group being again algebraically compact. Actually, X’ is
the completion of X is the n-adic topology (cf. [9], p. 379), so Z is dense is X" which
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means X’/ Z is divisible ([9], p. 380). Thus Z* will be the direct sum of X" and a reduced
algebraically compact group ==X*/¥’. Now we are going to use the concept of
p-basic subgroup (p a prime), introduced in [7] by Fuchs. Let G be an arbitrary
torsion-free abelian group. Then By is called a p-basic subgroup of G, if the fol-
lowing conditions are satisfied :

(1) B, is a direct sum of infinite cyclic groups.
(i) B, is.a p-pure subgroup of G, ie. p"By, = B,(\p"G for r=0,1, 2, .
(iii) The factor group G/B, is p-divisible: i.e. p X=a is solvable in G/B0 for any
aeG/B, and any integer n=0. '

In [7] it is shown that every torsion-free group G contains p-basic subgroups
for every prime p. Moreover the p-basic subgroups of G (for the same prlme) are
all isomorphic.

For each A€ A (the index set A is arbrtrary) let Z(p), be the group of p-adic
integers and Z, the infinite cyclic group of finite p-adic mtegers Let P = 2* Z(p),

A€A
be the complete direct sum and R = Z’ Z(p); the discrete dlrect sum of the groups
AgA
Z(p),. If we introduce the n-adic (p-adic) topology for abelian groups (see [9]),

then P is complete in the n-adic topology and the n-adic topology coincides with
the p-adic topology. R is a pure subgroup of P, hence it possesses a completion
in P for the coinciding n-adic and p-adic topologies. Let C= (Z Z(p),)* be the

completlon of Rin P, then, by the remarks of Fuchs, C= Z Z(p); and C is a torsion-

free cotorsion group Moreover C is a direct summand of P.
Let G be an arbitrary torsion-free abelian group. One can define a homomor-

phism ¢:G —P (into) such that the subgroup of elements of infinite p-height in
"G is the kernel of ¢ [5]. Assume now that G has no elements of infinite p-height.
Then P contains an isomorphic copy ¢(G) of G. It is known that ¢(G) is a p-pure
subgroup of P and. hence ¢(G) possesses a p-adic completion in P. Let B be a p-basic
_subgroup of G, then o(B) is a p-basic subgroup of 6(G). And ¢(B)=0¢(G) implies
(2) .p-adic completion of ¢(B)=p-adic completion of ¢ (G).

a(B)is dense in ¢(G) in the p-adic.topology, hence ¢(G)= p-adic completron of ¢(B),
which implies

(3) p-adic completion of ¢(G)=p-adic completion of ¢(B).

(2) and (3) imply that ¢(B) and ¢ (G) have identical completions in the p-adic topology.
We have proved:

Lemma 1. Let G be a torsion-free group' without elements of infinite p-height.
If B is a p-basic subgroup of G, then B and G have identical completions is the p-adic
topology. :

7 A
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If B is a p-basic subgroup of G, then its isomorphic copy 6(B) (in ¢(G)) has the

form Z Z, ([5]). As a direct consequence of Lemma 1 we get:
A€A

Lemma 2. R= Z Z(p),and 6 (B)= 2 zZ, haue the same p-adic completion in P.
As we have seen the p-adic completlon of R has the form C = 2 Z(p);, so

o(B) and o(G) have the same p-adic completlon C by the lemma’s ] and 2. Also-
6(G) is p-pure in P implies 6(G) is a p-pure subgroup of C. The torsion-free part of .
Corollary 2.7 in [5] may be slightly sharpened in the following form:

Theorem 2. Every torsion-free abelian group G without elements of infinite
p-height may be considered to be a p-pure subgroup of some torsion-free cotorsion group
C= Z Z(p), and containing B = ZZA as a p-basic subgroup. C is the p-adic

complenon of G and B. :

According to a definition in [6], § 34, p. 114 for p-groups we definc_a torsion-
free group G without elements of infinite p-height to be a p-closed group if every
Cauchy sequence in G has a limit in' G, i.e. if G is complete with respect to the p-adic
topology. It is easy now to give results for p-closed groups which are analogous
to the corresponding. properties of p-groups. Here. are 2 examples:

Lemma 3. The torsion-freé group G is p-closed ‘if and only if G is the p-adic
completion of a p-basic subgroup B of G (cf. Theorem 34.1 in [6]).

Lemma 4. Two p-closed groups are isomorphic if and only if their p-basic sub-
groups are isomorphic (cf. Corollary -34.2, [6], p. 115). :

3. Extending homomorphisms. Now we apply the structure theorem 2 to the
investigation of torsion-free abelian groups without elements of infinite p-height.
We are able to generalize results of ARMSTRONG [1] who obtained extension theo-
rems for homomorphisms of p-pure subgroups of the group of p-adic integers.

Let S be a p- pure subgroup of G = > Z(p), and let S contain B= > Z, as a
i€a T

p-basic subgroup. Both G and B are fixed.
Now Hom (G/S, G)=0, since the homomorphic image of a p-divisible group
is again p-divisible. But G does not contain p-divisible subgroups 0. Then

0=Hom (G/S, G) -~ Hom (G, G) & Hom (8, G) - Ext (G/S, G) —Ext (G, G)=0

is exact, where Ext (G, G)=0 since G is a cotorsion group. The action of j is to
restrict € Hom (G, G) to S. Consequently, every o€ Hom (S, G) has an extension
to an endomorphisrh of G if and only if Ext (G/S, G)=0. ‘

In case there exists an extension &€ Hom (G, G) of «€Hom (S, G), then & is
uniquely determined, i.e. if & B are endomorphisms of G which agree on S, then
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#=p. For S is contained in the kernel of the difference 7 = a—p. Thus 7(G) is
a homomorphic image of the p-divisible group G/, and, for this reason, is p-divisible.
Since G is p-reduced and since 7(G)=G, it follows that 7(G) = @—p)(G) = 0.
Thus &== B

‘Lemma 5. Let L be a subgroup of a torsion-free group H and G an arbitrary
torsion-free cotorsion group. Let L, be the smallest pure subgroup of H contammg
L and p a rattonal prime. Then the following are equivalent:

(1) L is a p-pure subgroup of H.
(2) The p-primary component of the torsion-group L_[L is 0.
(3) Ext(H/L, G)=0.

_(4) Ext(L,/L,G)=0 (cf. Lemma[l], p. 317).

.Proof. ()~(2) (1], p- 317). Since L, is pure in H and H is torsion-free, H/L,
is torsion-free. Hence Ext (H/L,, G)=0, since G is cotorsion. Now 0=Ext (H/L, G)—~
—Ext(H/L, G) ~Ext(L,/L, G) -0 isexact, hence Ext (H[L, G)=0+Ext (L /L, G)=0
or (3)«(4). Finally L /L is a torsion-group and G is torsion-free, so Ext (L, /L, G) =
=~Hom (L /L, D/G), where D is the divisible hull of G. The maximal torsion sub-
group T of D/G is a p-group and so Hom (L, /L, D/G)=Hom (L_/L, T)=Hom (p-pri-
mary component of L /L, T), which is zero if and only if the p-primary component"
of L /L is 0,'since T is divisible. Hence Ext (L,/L, G)=0 « p-primary component
of L,/L is 0 or (4)-=(2). This completes the proof.

Assume again that G is a torsion-free cotorsion group w1thout elements of
infinite p-height and let S be a subgroup of G. Then lemma 5 implies, taking S=L
and H=G, that S is a p-pure subgroup of G if and only if Ext (G/S, G)=0. Using
our result above about the extension of homomorphlsms we_get a slight extensnon
of a theorem of Armstrong:

Theorem 3. Let G be a torsion- -free cotorsion group without elements of infinite
p-height (p-closed group ). Let S be a -subgroup of G, then the followmg are equiv-
alent:

@ S is a p-pure subgroup of G.
(i) Ext (G/S, G)=0.

(iti) Every homomorphism of S into G ‘may be extended to an endomorphism of G.
. (cf. Theorem, [1], p. 318). o

Every torsion-free abelian grdup S without elements of infinite p-height may
be considered to be a p-pure subgroup of a p-closed group by theorem 2, hence such
a group satisfies conditions (it) and (iii).

7*
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Now the structure of Hom (G, G) for a p-closed group G can easily be derived.
Let G = Z Z(p). We know that B = Z Zis a p-basic subgroup of G. Hence

m

B is a p-pure subgroup of G, but then Hom (B, G) 2z Hom (G, G) by theorem 3. ‘And
Hom (B, G)=Hom (3] Z, G)= >*Hom(Z,G)= >* G. Hence Hom (G, G) = 246G

"l

Now we are interested is the endomorphism groups of p-pure subgroups of G.
First we prove: Let S'and T be p-pure subgroups of G = Z’ Z(p),. Then each

€A
element of Hom (S, T') may be extended uniquely to an endomorphism of G. Indeed,

we know that Hom (S, G)=Hom (G, G). Hence Hom (S, T) is a subgroup of
Hom (G, G). Every acHom (S, T) is a homomorphism of S into G, hence
a€ Hom (S, G). But then « has a unique extension & to an endomorphism of G.

Next we show: When the elements of Hom (S, T) are identified with their
extensions, then Hom (S, T) is a p-pure subgroup of Hom (G, G). _ '

Let € Hom (S, T') and identify o with its extension in Hom (G, G). Suppose
a=p*n, pe¢Hom (G, G). Then p*u(a)e T for each a¢ S. By p-purity of T in G,
1@ €T for each acS and therefore uéHom (S, T). ‘

We have proved the well known

. Theorem 4. Let S and T be p-pure subgroups of a p-closed group G. Then each
element of Hom (S, T) may be extended uniquely to an endomorphism of G and when
the elements of Hom (S, T) are identified with their extensions, then Hom (S, T) is
a p-pure subgroup of Hom (G, G) (cf. [1], Lemma, p. 139).

Remark. In particular if Sis a p-pure subgroup of G = V’Z(p),, then each
e
a € Hom (S, S) may be extended to an endomorphism & of G and when we identify

o and &, then Hom (S, S) is a p-pure subgroup of Hom (G, G) = < D™ G, with |A|=m.

m

The question now arises to characterize those p-pure subgroups S of p-closed groups
G which have the additional property that Hom (S, S):Z'*

Let S be a p-pure subgroup of G = V'Z(p)i containing B = VZ- as a
AEA . )
p-basic subgroup. Both G and B are fixed and to avoid trivialities we suppose that

S#B, S#G. In order that Hom (S, §)= Z*S, we must have Hom (B, S)=
=~Hom (S, §), since Hom (B, S)=Hom (Z 2* Hom (Z,, S)= >* S.

l

. Therefore the groups S must have the property that every homomorphrsm of B into
S can be extended to an endomorphism of S.

Now Hom (S/B, S)=0, since S/B is p-divisible, but S is p-reduced. Since B is

p-pure in S, we also have Ext (S/B, G)=0, for G is torsion-free cotorsion (lemma 5).
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As S/B is p-divisible and G is p-reduced, we get Hom (S/B, G)=0. Then
0 -Hom(S/B, §)=0—-Hom (S/B, G)=0-Hom (S/B, G/S) ~Ext (S/B, S)—~
—Ext (S/B, G)=0

is exaci. Hence Ext(S/B, S)=Hom (S/B, G/S). Likewise 0=Hom (S/B, S)—
—~Hom (S, §)%Hom (B, S) —~Ext (S/B, S) ~Ext (S, S)—~Ext (B, $)=0 (B is free)
is exact. If ¢ is onto, then we have Ext (S/B, S)=Ext (S, S). In other words, if
.every o ¢ Hom (B, S) has an extension to an endomorphism of S, then Ext (S/B, S) =
=~ Ext (S, S). Oa the other hand, if Ext (S/B, S)=Hom (S/B, G/S)=0, then every
a€ Hom (B, §) has an extension to an endomorphism of §. It can easily be shown
that, if «¢ Hom (B, S) has an extension &£ Hom (S, S), & is uniquely determined.
We remark also that Ext (S/B, §)=0always implies that Ext (S, $)=0.G = Z’Z(p),l _

L . i€A
is g-divisible for all primes g #p, hence G/B, as a homomorphic image of G, is g-divis-

isble for all primes g p. But B is a p-basic subgroup of G, so G/B is p-divisible too.
Hence G/B is a divisible group- Likewise G/S = (G/B/S/B, as a homomorphic image
of G/B, is a divisible group. Assume that G/S is not torsion-free, then the torsion-
part T#0 of G/S is a direct summand of G/S, hence Ext(G/S, G)=0 implies
Ext (T, G)=0. It follows that the p-primary component of 7 is 0 by Lemma 5.
So G/S cannot contain elements whose orders arc powers of the prime p. In the
same way we find that if S/B is a torsion-zroup, then Ext (S/B, G)=0 implies that
the p-primary component of S/B is 0. In particular S/B cannot be a p-group.
Af.er these preliminary remarks we now investigate the groups S with

Hom (S/B, G/S)=0.
We shall need the following

Lemma 6. Let T be any group and suppose TS D, where D is a divisible group.
Then Hom (T, D/T)=0 implies that T is a divisible group. ‘

Proof. First we reduce the general case for arbitrary T to the case that T is
torsion. If D=T, the lemma is trivial. So assume D/T#0, and let T, be the torsion sub-
group of T. From 0 -7, -~ T — T/T, -0 is exact it follows that 0 - Hom (7/T,, D/T) —
—Hom (7, D/T) is exact. But Hom (7, D/T)=0, hence Hom (T/T,, D/T)=0. Sup-
pose that 7/T, 0. T/T, is torsion-free, hence Z< 7/T,. Now Hom (7/T,, D/T)=0—
~Hom (Z, D/T) —~Ext (T/T,/Z, D/T)=0 is exact so Hom (Z, D/T) = D/T=0, which
is a contradiction. Hence T/T,=0 or T=T,. From now on T is supposed to be a
torsion group. If 7=0, the lemma is trivial. Let 750, then T is the direct sum of
its p-primary components and since 70, T contains an element of order p; for some
prime p;. Then T contains a direct summand of type C(p}) (I=1 or =) ([6], p. 80).




102 S C. A. van Leeuwen

Suppose C(p}) thh finite /=1 is a direct summand of T, then Hom (C(p}), D/T)=0.
Since C(p}) is a direct summand of T, C(p°)/C(p!) is a direct summand of D/T,
‘hence Hom (C(p}), C(p;?))=0. This gives a contradiction, since

Hom (C(p}), C(p7)) = C(p)),

as is well known. So, if T contains an element of order p;, 7 must contain a direct
summand of type C(p;°). Hence T = E@®T’, where E is the divisible part (0)
of T and T is the reduced part of T. Suppose T”is not 0. As T” is torsion it contains
an element of order p; for some prime p;. Then T’ contains a direct summand of
type C(p7), where m=1 (finite) or m=oo. But T’ is reduced, so it cannot contain a
direct summand of type C(p7’). Hence C(p7) is a direct summand of T*for m=1 and
finite. But then C(p7) is a direct summand of T which is impossible as we have seen.
Hence T'=0 and T=F'is dmslble
Next we prove:

Lemma 7. Hom (S/B, G/S)=0 implies that G/S is not a rorsion-grbuj).

Proof. G/S=G/B|S/B, so Hom (S/B, G/S)=Hom (S/B, G/B/S/B)=0 implies
that S/B is a divisible group by Lemma 6. Now Hom (S/B, G/B/S/B)=0 implies
Hom (S/B/(S/B),, G/B[S/B)=0 (see the proof of Lemma 6) implies S/B/(S/B),=0
or S/B=(S/B),. 1t follows that S/B is a divisible torsion-group. Assume now that
G/S is a torsion-group. Then S/B torsion and G/B/S/B=:G/S torsion imply G/B tor-
sion which is a contradiction, since G/B contains Z'Z(/)),I/):Z,1 = YZ(p);/Z; as a

direct summand and this is a mixed group. Consequently, G/S is not a torsion-group.
This completes the proof of Lemma 7. '

For the sake of reference we state the next lemma whose proof is contained in
the proof of Lemma 7. :

Lemma 8. Hom (S/B, G/S) 0 implies that S and B have the same ( torsion-
free) rank and that S|B is divisible.

Remark. By definitions 1. 5 and 1. 6 in [4], p.62 or the remark on p. 45 in [3],
the torsion-free groups S with Hom (S/B, G/S)=0 are quotient-divisible groups, as S
contains a free group B and S/B is a divisible torsion- group

Now we prove: »

Theorem: 5. Let S be a torsion-free group without elements of infinite p-height

and with rank =x,. Consider S as a p-pure subgroup of G = 5’ Z (p)A, while S con-
).GA
tains B = 2 Z, as a p-basic subgroup. Then the following are equivalent:
AcA .

(i) Ext (S/B, S)=>0 (or Hom (S/B, G/S)=0). .
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‘ (ii) S and B have the same torsion-free rank and Ext (S, S)=0.

(iii) There exists a torsion-free quotient-divisible group S’ of rank 1 with

S’SQ,, such that S = 2 S;. (Q, is the group of all rationals with denammatars
ica -
prime to p).

Proof. (i) = (ii) is clear from lemma 8 and the preliminary remarks of lemma 6.
(ii) —(iii). Since rank S=x, we can apply lemma 4.2 of J. HAUSEN in ([10],
p. 170) which assures us of the existence of a group S’ of rank 1, torsion-free and
quotient-divisible, such that S%’Z’S’ (direct sum). Since S” has rank 1 and S and
B have the same rank (by (i)} we must have § = >’ §j(|4|=rank S=rank B).

i€a
Now § has no elements of infinite p-height, so S’ (as a direct summand) has the

same property. Then 'S Q,.
(iii) ~(i). From S = Z’S’ B= Z'Zwe infer that S/B = ZS 1Z = > DC@™),

A tEP
where P is a set of prlmes and p¢P, since S'CQ,. Now Ext (S/B, ) =

= Hom (S/B, D/S), where D is the divisible hull of § ([6], p. 244). Since rank S=
=rank B=|A4|, we get D => Q. Hence D/B = D> Q/Z = > > C(s), where
: A ) i A s

the summiation 2> is taken over all primes s. Then D/S = D/B/S/B =
= >(2 C(s™) 2 C™) = D( D Cw)), where C‘(P) is the complement of
A s tepP

A uEC(P)
P in the set of all primes. Then

Hom (S/B, D/S) = Hom (Z’ Z’ c@™), D 2 Cw)) =0.
7 uccp)

This completes the proof of theorem 5.

It may be remarked that each of the conditions (1) (ii) and (i) is sufficient
in order that every o € Hom (B, S) may be extended umquely to an endomorphism
of S. Now we specialize to the case of finite rank. We recall that a non-nil group of
rank 1 is a torsion-free group of rank 1 with characteristic (k, k,, ..., k;, ...) with
either k;=0 or k;=< for all i. The quotient-divisible groups of rank 1 are exactly
the non-nil groups of rank 1. 4

Theorem 6. Let n be a natural number =1. Let S be a torsion-free group and a -
proper p-pure subgroup of G = Z Z(p) while S contains B = Z Zasa D- basw sub-
group. Then the following are equwalent |

" .() Hom (S/B, G/S)=0 (or Ext(S/B, S)¥O).
. (i) S has rank n and Ext (S, S)=0.
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(i) S has rank n and every o€ Hom (B, S) may be extended ;to an endomorph-
ism of S.

(iv) S is isomorphic to the direct sum of n isomorphic non-nil groups S’
of rank 1 with S"SQ,, where Q, is the group of all rationals with denominator;
prime to p.

Clearly (i)« (ii)«~(iv) by Theorem 5. That (iii)«~(iv) is a special case of the

next result. We now investigate the p-pﬁre subgroups S of G = Z Z(p) containing

B = an Z as a p-basic subgroup and with the propefty that every o ¢ Hom (B, S) may
be extlended to an endomorphism of S. We do not assume that Hom (S/8, G/S)=0.

Theo.rem 7. Let S be ap-puré subgroup of G = an Z(p) cont&ining B = Z"' VA
as a p-basic subgroup. Then the following are eqm’ualenr:1 : '

(i) Every a€Hom (B, S) may be extended to an endomorphism of S. -

(i) S is isomorphic to the direct sum of n isomorphic groups I, such that I is a sub-
group of Z(p) which contains 1 and with the property nl &1 for any né€l.

Proof. (i)—(ii). Since S is-p-pu.re in G -—-ZZ(p), every 0¢End § has a
1

unique extension 3 € End G. So each element ¢ End S'is a (left) multiplication endo-
morphism by an nX#n-matrix with entries in Z(p). Since (1,0, ..., 0), (0, 1, ..., 0), ...
(0,0, ..., 1)€S the columns in the nXn-matrix are elements of S. Now

Hom (S, S) = Hom (B, §) = >'S, so any (n,, 7,, ..., 7)€ > S(m,€S) may be
1 1
used as a multiplicator on the left, inducing an endomorphism of S, in other words,

Mg oee My
.| $=S, whenever the columns are elements of S. Then’
Tpy oee Moy

10..0)(n, Ty T,
LR s e
00..0)\xn, 0 Tn
Similar for other components. Hence in S we have the direct-sum decompositon:
n n, 0 (0
T2l _ 0 + T, P

m, 0 0 - A=,
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0 .
The elements of the form | * | ¢ S form the subgroup /;in S. Then S=1, &+ el,.
17 o
0
0 .
If we identify | * |«7;, then each I; is a subgroup of Z(p). As a direct summand,
, . Ct
0

I; is a pure, hence p‘pure subgroup of S. Sisp-pure in G = 2 Z(p), so I is p-pure

in Z(p). Hence every map of I; into I, isthe restrrctlon of an endomorphlsm of Z(p)
(theorem 4), i.e. every map ofIJ into I, is a (left) multiplication by an-element 7 € Z(p).
Since 1€/;,n. 1=necl,. Then Hom(S,S)=Hom(/,®--- &1, 1,®- - Dl) =
= > Hom (/;, I,) and Hom (B, S) = >’ S = > (I;®--®1,) and every map in
. Lk 1 1

Hom (B, §) is the restriction of a map in Hom (S, S) imply Hom (/;, [,) =1,
(J, k=1, ...,n). Then LI;S I, but 7. 1=n€1k for any n ¢/, implies 1, 1;=1,. Since

A ;=11 it follows that I;=1, (j, k .,n).So,if weput I;)=I, weget S = IDID

o @I (#n summands). Moreover I is a subgroup of Z(p)' w1th =1 or al S I for
any n€l.

(i)—@1). S =ZI, where I is a subgroup. of Z(p) with /S for any n€l
. - )

I'is p-pure in S, S is p-pure in >’ Z(p), so I'is p-pure in > Z(p), hence I is p-pure
1 1

in Z(p). So each o€ End 7 has a unique extension to an endomorphism of Z(p).
Then each element of End 7 is a left multiplication endomorphisim by an element
neZ(p). Since 1¢I, n. 1=misin I. So End IS L, where L; denotes the set of all
left multiplication endomorphism by. the elements- of I. Then End IS L; and I, as
a ring, is a subring of Z(p) imply End I=L; (Lemma, [1], p. 319) in other words

Hom (1, I)= 1. From Hom (S, S) = Z Hom (7, I) and
1 .

n?

Hom (B, S) = > Hom (Z, I)
1
we infer that every map of Hom (B, S) may be extended to an endomorphism of
S. This completes the proof of Theorem 7. '

Remark. If S has rank #n, then (i) resp (ii) of Theorem 7 pass into (iii) resp
(iv) of Theorem 6.
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