_ Strictly cyclic shifts on /,

By EDWARD KERLIN and ALAN LAMBERT in Lexington (Kentucky, U.S.A.)

1. Introduction. Let X be a complex Banach space and let o be a closed abelian
subalgebra of #(X), the algebra of all bounded linear transformations on X. & is
said to be strictly cyclic if there is a vector x, in X such that &/x,=X. General pro-
perties and examples of strictly cyclic algebras may be found in [1} and [4]. A large
class of examples is given by the algebras generated by certain weighted shifts. In
this paper we will be concerned with characterizing strictly cyclic weighted shifts -
on /,. (An operator T is said to be strictly cyclic if the closed subalgebra it generates
is strlctly cyclic.) -

For 1=p<-<o let ], be the Banach space of all absolutely p-summable sequences
of complex numbers. Let {eo, ey, ...} be the- standard basis for I,. For each bounded -
sequence a={a,, a,, ...} of non-zero complex numbers the ()perator S, in B(1,)
defined by SGLZ' X, e,,] = > a,X,_,e,is called the weighted shift on /, with weight

=0 n=1
sequence o. It is well known that ||S,|=sup [«,|. We set fo=1 and f,=o, ;... %,

for n=1. In [1] MARY EMBRY showed that S, is strictly cyclic.on I, if and only if

Sup ﬁn-}-m

n,m ﬁnﬂm

dual result for shifts on L. :

In § 2 we establish the basic notation and concepts used throughout the paper.
Section 3 is concerned with strictly cyclic shifts on /, for 1 <p<<e. We give a general
sufficient condition for strict cyclicity. Then shifts on /, whose weights are monotone
non-increasing in modulus ‘are completely characterlzed Several tests for strict
cyclicity are given as corollaries to these results.

In § 4 weighted shifts on /. are examined. The commutants of such shifts are
characterized, with special emphasis on those shifts S, such that inf |o,|>0. To each

) n

< o, Although this is not valid for p> 1, we determine in this paper a

weighted shift S, on /_ there is associated in a natural way a closed abelian subalgebra
" & of the commutant of S,. We obtain a necessary and sufficient condition for strict
cyclicity for 4, analogous to our results for the case p<e<o. In conclusion we list a
number of open questions relating to this material.
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2. Preliminaries. The following facts about strictly cyclic abelian algebras will
be used throughout this paper. Details can be found in [1]. Let x, be a strictly cyclic
vector for the closed abelian subalgebra &7 of Z(X’). Then for each x in X there is a
unique operator A, in & such that 4,x,=x. The map x —~ A, is a linear homeomor-

phism of X onto /. Therefore there is a constant M such that for all x and y in X,
A ph=M|x||||yl. We will concern ourselves with X=1,. '

For A in.g(l,) we let o/ (4) be the weakly closed subalgebra of #(/,) generated
'by A and the identity operator /. That is, & (A4) is the weak closure of the set of
polynomials in 4. We then let &/ (A)={Bin ﬂ(l) AB BA}, called the commutant
of A. It is well known that for every shift S, on /,, &’(S,) is a maximal abelian
subalgebra of #(/)).and e, is-a cyclic vector for azf(Sa), Thus, it follows from [3;
Cor. 3. 3] that' S, is strictly. cyclic if and only if e, is strictly-cyclic for S,. It is easy
to see that any operator similar to a strictly cyclic operator is.itself strictly cyclic,
and that an argument comipletely analogous to [2; Th. 1] shows that S, is sim;il_ag,
via anf isometric-isomorphism, to S, where y,=la,|, n=1, 2, ... . Therefore, when

" convenient, we will assume our shlfts to have posmve welghts x

Letama 2. 1. S is srrzctly cycltc on l if and only if

m=0

: R 2 & B i
l . N . l" n—m < oo
( ) kK t nél Z ﬂmﬁn m y ) ’
‘for all x and yin l -

Proof. Suppose S, 18 strlct]y cyclicon /,.Lety be i in Iy and for each posmve in-

teger N let Ay = 2 24 S?.Then Ayising(S,)and ||(A AN)eOII = Zy,, e,

n= 0 Pn ‘n-—

Thus Ay converges in norm to A4,, and so 4, = 2 2 S, the' series converging in

. . . , n=0 Fn ;
“the operator norm. Now, for each x and y in /,, i-
yn 3 < Bn-{»m S B"
A X = S" Z XmVn [ [ y XV ]
nZO ﬂn né'()‘ m=0, Y [5,, B!,, n+ nZO e 0 ﬁ" ﬁn ” n—m| €n-

Therefore 0] holds — :
Conversely, suppose (1) holds for each X and yinl,. For each xin [, let T be
the linear transformation on 1, given by _
Ty = 5( > b, ‘xm’y,._m] en
n=0 m=40-ﬁmﬁn—m '
T, is easily seen to be a closed linear transformation and so by the closed graph
theorem T, 'is bounded. Moreover, for each x and y in /,, T,y=T,x. Thus | T, x| =
=| T Iyl and by the uniform boundedness principle there exists a constant M such
that | T,x=M | x| [|y| for all x and. y in /,. For each non-negative integer M. let
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N
Y™ = n;;y,. .- Then limit IQT T,m| = 0. But T, = 2 n Sy and so T, is a

N—oo . : n=0 Mn

member of 7 (S,). Smce T,e0=y,-S, is strictly cyclic

3. The case l<p<oo. The following lemma "gives the most general sufficient
) condition for strict cyclicity known to the authors at this time. This condltlon has
been discovered independently by Mary Embry Throughout this sectlon we assume

l<p<o and —-}-i 1.

-q
Lemma 3. 1. (NIKorsKIi [5]) Let S be a wezghted shift on I, and suppose
. n 4 .
=sup 2 | B g" < oo, Then S is strtct/y cychc on I,.
. m=0|PmPn-—m

Proof Let x and y be in /,. Then by Holder’s inequality,

a\rlq n
e ] [mz . ,,.v] "

Zl il neml” = M”""IIXII"IIyII"-

513 by ?52-[5

mYn—m
n=0 m=0ﬁmﬁn—m o ‘ n=0 \m=0

= MP/

,"[\48.

By Lemma 2.1, S, is ‘st_rictly cyclic. ‘
We show now that under the assumption of monotomc]ty of the welghts the
converse to. Lemma 3.1 is valid. :

Theorem 3.2. If {|a,|} is monotomca//y non-increasing then S is strzctly cychc

on 1, if and only if sup 2", B fgn

Proof. Suppose S; is strictly cyclic on /, and {|o,} is monotonically non-in-

creasmg By the remarks in section 2 we assume without loss of generality that each .
s n “|p

o,>0, By Lemma 2. 1 3M >0 such that Z > g" X Vnom = Mllxll”llyll"

m=0FPmPn—m

for all x and y in /,. Let x and ybeinl, wrth x,=0 and y,,EO for each 7. For each
positive 1nteger N,

< oo,

p
myn_m] = Mjx|I”]|y|.

B Bn
‘Br;—k N Bm—k

in the' above. inequality we see that

= N[m 0 mﬂn m
Since {a,} is monotonical"ly decreasing,

ﬁn . ﬂZN
/))n m BZN m
g S P ],, Mixlelyle. L [ ! ]Wf 0=k=2N and

J m n—m = X et- or =K= an .
n= m= OﬂrnﬂZN m ‘4 i Y Ve = 2N+1 : - : :
yr =0 otherwise. Then the preceding inequality reduces to - Co ’

whenever O=sk=m=n. -

Therefore, replacing
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N+1 [ Y B

P
Xul =M|x|*.
2N+1 =0 BuBPan-m ] Il

ZN _Bv

o BB ﬂ Xom _(2M)1/”|]x|| It follows that
mP2N-m

Hence for every x in /,,

Ban ]qs ya/ =
m= O[ﬁmﬂzN m '_(ZM) r=cC

Now, .

Ban ] [ Ban ] 2 [ Ban ] [ Ban ]"S |
m= O[BMBZN m m= 0 ﬂmﬂZN -m g ﬂmﬁzN -m § ﬁmﬂZN -m 2C
Qn the other hand ‘
2[ Bans ] 1+Z[ Bawss ]“=

Bmﬂ2N+1-—m ﬂmBZN+1 m
= W aawey |'[ Pow ]q X [ Ban ] '
l-l-mé'o [a2N+1—m]'[BmB2N—m g ﬁmﬂzN m §1+2C

Thus we see that sup Z [
n m=0 ﬂm'Bn m
Remark. The argument above is valid under the somewhat weaker assumption
that {|e,|} is ultimately monotone non-increasing.
Lemma 3. 1 and Theorem 3. 2 admit the following mterestmg corollaries. The
first of these generalizes [4; Th. 4. 1].

] =1 +2C < =, completing the proof.

Corollary. 3.3. Suppose there exist u and v in I, such that for all n and m,

Bt m

= |u,|+|v,|. Then S, is strictly cyclic on [,.

ﬂnﬂm
[ A
Proof. For n=m=0, ; ﬂ" =29(|t|? + |0y - m|?) and hence
‘ \ 5 a .
sup 3 gt =2 (lulg+ o) <=

oo

~ Corollary 3.4. Suppose {|a,|} is monotonically non-increasing and Z’

ﬂ?.m

- 0O,

Then S, is strictly cyclic on I,.

Proof. It is an easy consequence of the monotonicity assumption that for
ﬁi+j @ &r_; ﬂz: ﬁu
’ ﬂiﬁ,; ﬁ]z ﬂiﬂj .Bt ﬂj
© 3.3, S, is strictly cyclic.

=% =

i=j=0 and so for any i and j=0, . By Corollary
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The next corollary shows that the collection of strictly cyclic shifts on /, i
fairly large.

Corollary 3.5. Suppose {|a,|} is monotonically non-increasing and for some
r=0, > |a,["<eo. Then S, is strictly cyclic on I, for every p=l.
- n=1 .

Proof. Fix p>1 (the case p=1 follows from EMBRY’s result mentioned above).
We show that the hypothesis of Corollary 3. 3 is satisfied. Let M be a positive in-
teger such that Mg=r. Then if n and m are non-negative integers with m=M we have

Bn+m _ |(1A et | Apem+1""Onym
- 1 M "
‘ ﬂnﬂm ) |ﬁM’ "t " Apg 417 Oy
1t follows from the assumption of monotonicity- that
ﬁn+m
a"
= T e
‘ 1 ’ .
Let ¥, = max M if0=k<M and u, = — |a,, |M otherwise. Then
M (BB C Bl T :
. n,m< nFPm M s .
%’%’1 §u,,~}-u,,, for all » and m=0.
nrm N

Moreover since Mg>r, X|a,|MI< and consequently {u,} is in [,. By Corollary 3. 3,
S, is strictly cyclic.

‘ Only slight modifications. of [3; Cor. 4. 8] show that if a, Iog )
each n=1 then S, is strictly cycllc on l for all p>1. However {a } decreases mono-
tonically to O and is not r-summable for any r=0.
~ We point out now a common theme in Embry s result concerning shifts on /,
and our results for p>1. For n=0 let e, be the sequence (0,0, ...,1,0,0,..)), the
1 in the n™ position (beginning the indexing at 0). For p> 1 we consider {e/} as the
standard basis for /, . For p=1 we may still write every element of./_ uniquely in

N
the form Z’ a,e. . Now for Nz0letfy = 2> B e, viewed as ‘a continuous

. a=0 ﬁmBN— . "’
linear functi()nal on lp.Then forp=1,{ full. = Jmax B g -and so Mary Embry’s
0sn=N | PnPN-n :

result can be rephrased in the following manner.

Theorem. (EMBRY) S, is strictly cyclic on I, zfand only if {fN} is bounded.

Our result above reduces to:

If p=>1 and { fy} is bounded then S, is strictly cyclic on /,. The converse holds lf
{la,|} is monotonically non-increasing.

If 1<p< o and {|a,|} is monotonically non-increasing then essentlally the same
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proof as [6; Cor.-1] shows that the spectral radius r of S, is limit le,|. Now suppose
. N-+oo

{l«,[} is monotonically non-increasing and S, is strictly cyclic on /,. Then {fy} is
bounded in /. For ﬁxed m and N=m, v
1.
<fN’ m> = [T_B—N—_ —(aN—ln+1"'aN)a

m

hence for each m,llmlt (f,v,"e,’,,>'=/;—-. It. follows that fy converges weakly to
. e N—+oo ’ m . ' - :

==} r"l .

> —einl.

Hl:loﬁm 1

We will see in the next secnon how some of these ldeas may be extended to/,.

4. The case p=oo. Smce [, is not separable there are no cyclic operators onl_.
However for a bounded sequence {a,} of complex numbers S, still defines a bounded
operator on /_, and we may ask when 27°(S,) is strictly cyclic. First note that if 7Tis a
linear transformation from /_ to /_, then there is a sequence {fq, 7, , ...} of continuous
linear functionals on /_, such that for every x:in [, Tx={t0(x), £;(x), ...). Moreover,
T is bounded if and only if S’np Il < eo. If this holds then || T||=sup |i#,i|. An easy

computation shows that if T is a bounded linear operator on /., with {r,} defined as
above, then T7'S,=S,T if and only if :

) 4508, =0 and f,4,08, =04t (1=0,1,..).
We now examine a special class of operators in &Z'(S,). Let
é’:‘{x inl.: su X,y| < o0 }
0 3 T L

n m=0
For each xin & deﬁne the linear transformation A, on L. by

(Axy)n = Z B” myn—-m (n=0, ], 2,)

< ) . m=0 ﬁmﬁn-m . T
With e,=(1, 0,0, ...), étc., it is easily seen that A ,eo=x, A, = &— Sgr Ay =1, A,
Ae, )
is bounded, and '
n ﬁ"
AL =sup Xl
) ” ’ "P"é'o ﬁmﬁn—m | I

Let #={A,: x in &}.
Lemma 4 1. Let x and y be in &. Then z=A,y is in. c?’amlA =A,A,=A,A,.

n :
Proo f We must show that sup > B m| <o, Where
n m=0 ﬂmﬂn m
L b
=2

X Vk-1-
=0 ,Btﬂk—l'
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Fix an integer n=0. Then

A S I A 1 S
mZ !ﬂmﬁn -m Zﬁkﬁn kxkym é' ﬁmﬂn mlkZ /jkﬁm—k[[x,‘Hym A|
i n n ,B,,, ] _ ju [}n. [ n ﬁn—k ] _
g [ é’ ﬁmﬁ" N Bkﬁm . | Vi kal = g; BB ”gk BB | Voerl | X!
3 I["- Boes | ]
37| e L) O

Techniques of rearrangement of series similar to those used above show that
for each w in /_, and .each non-negative integer n, (A,w),=(A4,A4,w),=A4,A.W),,
le. 4,=A,A,=A,A,. Since A, +A, = A,+, we have proved part of the following
result. : C

Theorem 4.2. & is a norm closed abelian subalgebra of &L'(S,) with S, and
I in B. Moreover, if mf |, |>0, then JJ "(S)=2. '

Proof. Let {x(N)} be a sequence in & and let 4 be a bounded opeérator on /_
such that_llrl{}lt | A —All = 0. Then xXV'=4_(x,e, ~x=Ae,. Choose M >0 such

that |4, | =M for all N, ie. 5"1%——— lx(N)|<M for all N and n=0. Letting
m=0 |PmPn-m
N —e> we see that sup > % X, =M hence x is in & and A, =A.
n m=0|PmFPn-m

" Now suppose 0 = inf |d,,[>0.4 It is then immediate that the range of S¥ is

{xinl :x;=0 for 0=i=k}. Let T be in &’(S,) with {z,} as in (2). Set u=Te,. We
show that u is in & and 4,=T. Let x be.in /_ and wrlte X=Xxg€y-+ S,z for some z in
L. Then to(x)= = Xoto(eo) =xo1o. Now for n=1

tnOSa_antn—l_OS: T=... :ButO

) t,,oSé,’“:O for all n. Then t,(x)=1, [ Z Xp€ ] 2, Xmtn(en). Now for m=1,
m=0 m=0 .
1 1 ‘oL,
Atn(em) =1, ['&“— Saem—l] = E;:tn(saem—l) = ;""'tn—1(em—1) =
’ _ Oy gy ﬁn

- tn—m € = ll m:-*
Uy e ey ( 0) :Bmﬁn m
Therefore 1,(x)= 2 B
proof m=0 ﬁmﬂn m
Unlike the case p<<o the vector e, need not be cyclic for '(S,). For example
if «,=1 for each n then by Theorem 4. 2, &Z'(S,)=2, and so &/’(S,)e,=¢&. But in

this case

Upy_ - Thué uis in & and 4,=T, completing the

m=0

é‘:{xinl S 1% [<oo}
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and hence is not dense in /.. However there are many shifts on L for which e, is
in fact strictly cyclic for %, and these can be classified precisely, in a manner analogous
to Lemma 3. 1.

Proposition 4.3. The vector ey is strtclly cyclic for if and only if

n ﬂ"
s oo,
l;llp mZ’O Bmﬁn m =
Proof. Suppose M=sup 2 ; g <o, Let x be in /.. Then
SUp 2 ﬁ ,B |xm|_ ”X”

and hence x is in &, so that &=1/.,. Conversely, suppose & =/... Then in particular

for x=(1,1,1, - )méa we have sup Z’ ; g" < oo,
n m= mn—m

Some open questions:

1. Is the converse to Lemma 3. 1 valid?

2. If lim a,=0 need S, be strictly cyclic on /,, 1 =p<'e?
3. If §, is a weighted shift on /_ is &’(S,) abelian?

Added in Proof. A negative answer to question 1 has recently been obtained
by G. Fricke. Using Theorem 3.2, R. Gellar and E. Azoff mdependently pro-
vided negatlve answers to question 2.
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