
Strictly cyclic shifts on /„ 

By EDWARD KERLIN and ALAN LAMBERT in Lexington (Kentucky, U.S.A.) 

1. Introduction. Let X be a complex Banach space and let si be a closed abelian 
subalgebra of 33 (X), the algebra of all bounded linear transformations on X. si is 
said to be strictly cyclic if there is a vector x 0 in A'such that s/x0 = X. General pro-
perties and examples of strictly cyclic algebras may be found in [1] and [4]. A large 
class of examples is given by the algebras generated by certain weighted shifts. In 
this paper we will be concerned with characterizing strictly cyclic weighted shifts 
on lp . (An operator J is said to be strictly cyclic if the closed subalgebra it generates 
is strictly cyclic.) 

For let lp be the Banach space of all absolutely p-summable sequences 
of complex numbers. Let {e0, , . . . } be the standard basis for lp. For each bounded 
sequence a = {a1 ; a 2 , ...} of non-zero complex numbers the operator SA in 38 (LP) 

defined by s j ^ xne„\ = ^ anx„_len is called the weighted shift on lp with weight 
L=o ) n=l 

sequence a. It is well known that [ |SJ |=sup [a„|. We set j80 = l and / ? „ = a t a 2 . . . a n 
n 

f o r ' « S i . In [1] MARY EMBRY showed that SX is strictly cyclic on if and only if 
o 

Although this is not valid for /? > 1, we determine in this paper a sup 
Pnftn 

dual result for shifts on lp . 
In § 2 we establish the basic notation and concepts used throughout the paper. 

Section 3 is concerned with strictly cyclic shifts on lp for 1 We give a general 
sufficient condition for strict cyclicity. Then shifts on lp whose weights are monotone 
non-increasing in modulus are completely characterized. Several tests for strict 
cyclicity are given as corollaries to these results. 

In § 4 weighted shifts on /„ are examined. The commutants of such shifts are 
characterized, with special emphasis on those shifts SX such that inf |a„| > 0 . To each 

n 
weighted shift SA on /„ there is associated in a natural way a closed abelian subalgebra 
38 of the commutant of SX. We obtain a necessary and sufficient condition for strict 
cyclicity for 38, analogous to our results for the case In conclusion we list a 
number of open questions relating to this material. 
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2. Preliminaries. The following facts about strictly cyclic abelian algebras will 
be used throughout this paper. Details can be found in [1]. Let x 0 be a strictly cyclic 
vector for the closed abelian subalgebra,®/ of 38(X). Then for each x in X there is a 
unique opera tor AX in STF such that AXX0=X. The m a p x — AX is a linear homeomor-
phism of X onto Therefore there is a constant M such that for all X and Y in X, 
\\AXY\\^M\\X\\ | | j | | . We will concern ourselves with X=LP. 

For A IN J8(IP) we let S/.(A) be the weakly closed subalgebra of $(LP) generated 
by A and the identity opera tor 1. That is, SI (A) is the weak closure of the set of 
polynomials in A. We then let JTF'(A) = {B in 3S(<LP):AB = BA}, called the commutan t 
of A. It is well known that fo r every shift S„ on IP, ¿¿'(SJ is a maximal abelian 
subalgebra of ¿%(LP) and E0 is a cyclic vector for ^ ( S J . Thus, it follows f rom [3; 
Cor. 3. 3] that Sj, is strictly cyclic if and only if E0 is strictly cyclic for SX. It is easy 
•to see that any operator similar to a strictly cyclic operator is .itself strictly cyclic, 
and that an argument: completely analogous to . [2 ; Th. 1] shows that Sx is similaii, 
via an isometric isomorphism, to -SY where y„ = |a„|, «;=1, 2, ... . Therefore, when 
convenient, we will assume our shifts to have positive weights. •.. -.i:' 

L e r h m a 2. 1. Sa is strictly cyclic on 1 if and only if 

2 - r i r - ^ y n -(0 , , " . 2 . ~ n B n=0 m±0 PmPn-
for all x and y in lp : 

p 
< oo 

P r o o f . Suppose SX is strictly cyclic on LP. LET-Y be in LP and for each, positive ijfl, 
N 

y ~ 2 y n e n 

y„ 

teger N let AN = 2 ^ T h e n . ^ is i n a n d \\(AY-AN)EO 
n = 0 Pn 11=0 

Thus An converges in norm to AY, and so AY = 2 ~JR ^ s e r ' e s converging in 
n=0 I'n 

the operator norm. Now, for each x and y in /„, 1 i 

AYX — 2 ~7rS"X r^ 2 2 Xmyn n n en + m = 2 I 2 ~~o~o -^m-V/l-ml en-

/1=0 Pn n=0m=0. PnPm n=0 \m=0 PnPn-m ) 

Therefore, (1) holds. 
Conversely, suppose (1) holds for each x a n d y in lp . For each x in 1p let Tx be 

the linear t ransformat ion on lp given by 
~ ( » B 1 

T x y = 2 \ 2 n a Xm'y„-J 
n = 0 \m=0 PmPn-m ) 

Tx is easily seen to be a closed linear t ransformat ion and so by the closed graph 
theorem Tx is bounded. Moreover , for each x and y in lp, Txy=Tyx. Thus ||7^x11 S 
— II Tx\\ || j | | and by the uniform boundedness principle there exists a constant M such 
that HT'j.xll SyVf ||x|| HJII for all x and y. in lp . For each non-negative integer AUet 
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2 yne„- Then limit \\T - T( 0, But Tym = 2 ¥ S"x and so Ty is a 
ii — 0 Pn 

y 
n = 0 N 

member o fs>t (S x ) . Since Tye0=y, Sx is strictly cyclic. 

3. The case 1 < oo. The following lemma gives the most general sufficient 
condition for strict cyclicity known to the authors at this time. This condition has 
been discovered independently by Mary Embry. Throughout this section we assume 

, 1 1 
] < » < o o and — I — = 1. . ' 

p q 

L e m m a 3. 1. (NiKonSKiI [5]) Let Sx be a weighted shift on Ip and suppose 

M = sup 2 
n m = 0 

Pn Then Sx is strictly cyclic on lp. 
Pin Pn — n 

P r o o f . Let x and y be in lp . Then by Hdlder 's inequality, 

2 
Pn 

,!o PmPn-i 
' x,„y„-, S 2 \ 2 

n=0lm =0 
Pn 

P,nPn-

q\pli 
2-K\p\yn-m\p\ ^ 

m = 0 

s M"'" 2 2 \xJ'\yn-„\' .= M"i"\\x\\"\\yr. 
n = 0 m = 0 

By Lemma 2. 1, Sx is strictly cyclic. 
We show now that under the assumption of monotonici ty of the weights the 

converse to. Lemma 3. 1 is valid. 
T h e o r e m 3. 2. If {|«„|} is monotonically non-increasing then Sx is strictly cyclic 

on lp if and only if sup 2 
n m = 0 

Pn 
PmPn-i 

P r o o f . Suppose ¿>i is strictly cyclic on lp and {|a„|} is monotonically non-in-
creasing. By the remarks in section 2 we assume without loss of generality that each 

Pn a „ > 0 . By Lemma 2. 1 3 M > 0 such that 2 
71=0 

2 0 PmPn-t 
yn — m 

for all x and y in lp. Let x and y be in lp with x„ = 0 and y„ = 0 for each n. Fo r each 
positive integer N, 

2N 
"V Pn 

'0 PmPn-
Xmyn-r 

Since {a„} is monotonically decreasing, 

Therefore, replacing J* n by ^ 2 N 

Pn 

S MWxW'Wyr, 

- P> whenever O s i s m s « , 

Pn-,, PlN — m 
2JV 
2 

n = N 

2 N J P: 
n=0 P m P2 JV-

SM\\x\\n\y\\p. Let yk. 

Pn-k Pm-k 

in the above, inequality we see that 

1 
2N+X 

HP 

for 0 ^ k ^ 2 N a n d . 

yk = 0 otherwise. Then the preceding inequality reduces to 
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N+ 1 
2N+1 i 

Hence for every x in lp 

0 PmPlN-n 

S(2M) 1 / " | | x | | . It follows that 

Now, . 

P 2N 2 

J Pl N x 

n= 0 PmP2N — m 

J í P21V V 
w=0 VPm 02 N — m/ 

R Y 2N ( P2N , ^ 
n=N V. 

^ ( 2 M ) q / " = C. 

/n=0 V Hm P 2N —m) m=0\Pm P2S — m/ 

On the other hand 

r = 2 2 
PmP2N 

P2N 
0 V Pm P2N -

=§2 C, 

P2N+Í 
=0 \PmP2N+l-m, 

= i + 2 

1 2 N 

= i + 2 m = 0 
P 2N + 1 

*2(V+1 

.PmP2N+l-m) 

P2N 2N ' P: 

Thus we see that sup 2 

0 l a 2 i V + l - m J \PmP2N-m. 

Pn " 

1+ 2 2N ^ 1 + 2 C . 
0 i PmP-2N-

1 + 2 c o m p l e t i n g the proof. 
n m=0 Pm Pn — n 

R e m a r k . The argument above is valid under the somewhat weaker assumption 
that {|a„|} is ultimately monotone non-increasing. 

Lemma 3. 1 and Theorem 3. 2 admit the following interesting corollaries. The 
first of these generalizes [4; Th. 4. 1]. 

C o r o l l a r y 3. 3. Suppose there exist u and v in lq such that for all n and m, 

Pn + m 
PnPr, 

| « „ j + | D , „ | . Then Sx is strictly cyclic on lp. 

P r o o f . For flSm^0, 

sup 2 
n m = 0 

Pn 
PmPn-, 

Pn 

i2"(\um\" + \vn_m\") and hence 

PJn-
s2 ' ( | | « | | J + ||»|fp-

C o r o l l a r y 3.4. Suppose {|a„|} is monotonically non-increasing and 2 
J2m 

m = 0 Pm 
Then Sx is strictly cyclic on lp 

P r o o f . It is an' easy consequence of the monotonicity assumption that for 

i s y s O , Pu 
PiP., 

3. 3, Sx is strictly cyclic. 

P 2 J and so for any i and ./SO, Pi >2 i 
PÍ 

+ 2 j 
Pj 

. By Corollary 
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The next corollary shows that the collection of strictly cyclic shifts on tp is 
fairly large. 

C o r o l l a r y 3. 5. Suppose {|a„|} is monotonically non-increasing and for some 

r> 0, 2 Then Sx is strictly cyclic on lp for every 1. 

P r o o f . F i x p > 1 (the casep = 1 follows f rom EMBRY'S result mentioned above). 
We show that the hypothesis of Corollary 3. 3 is satisfied. Let M be a positive in-
teger such that Mq^r. Then if n and m are non-negative integers with niSM we have 

A H 1 
n + 1 ¿n + M I 

PnPm | \Pm 
It follows f rom the assumption of monotonicity that 

an + M+ 1' " ®n + m 
aM+ 1 • •«m 

A H 

A A 

1 

Let uk = max 
n,m<M 

Pn< 
I h 

1 
PnP, 

AI + M 

if Osk•<: M and uk = -r— r |a*+ otherwise. Then 

PnPn, 

\PM\ 

^ u „ + um for all n and m ^ O . 

Moreover since Mq>~r, Z |a n | M , <oo and consequently {un} is in lq. By Corollary 3. 3, 
Sx is strictly cyclic. 

Only slight modifications, of [3; Cor. 4. 81 show that if a . = - ,—r-—rr f o r 

' L ; • " l o g ( « + l ) 
each n £ 1 then Sx is strictly cyclic on lp for all p > 1. However {a„} decreases mono-
tonically to 0 and is not r summable for any r > 0 . 

We point out now a common theme in Embry's result concerning shifts on 
and our results for />>1. For « ^ o let e'n be the sequence (0, 0, . . . , 1, 0, 0, ...), the 
1 in the nth position (beginning the indexing at 0). For /? > 1 we consider {e'n} as the 
standard basis for lq. For p = 1 we may still write every element of /„ uniquely in 

PN the form 2 «»<• N o w f o r N = ® let f N = 2 a n 
n = 0 „ = 0 Pn Pn — n 

max 
Osnsw 

e' viewed as a continuous 

and so Mary Embry's 
PnPs-n 

linear functional on lp . Then for/? = 1, || /w | | 

result can be rephrased in the following manner. 

T h e o r e m . (EMBRY) Sx is strictly cyclic on I, if and only if { fN} is bounded. 

Our result above reduces to : 
I f / > > 1 and { f N } is bounded then SX is strictly cyclic on lp. The converse holds if 

{|a„|} is monotonically non-increasing. 
If l < / > < ° ° and { | a j } is monotonically non-increasing then essentially the same 
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proof as [6; Cor. 1] shows that the spectral radius r of Sx is limit |a„|. Now suppose 

{]«„[} is monotonically non-increasing and Sx is strictly cyclic on lp. Then is 
bounded in 1q. For fixed m and N ^ m , 

(fN,e'm> = 
•Ps 

PmPN-
— n~(<XN-m+l'"0ifi)' 

Pm 

hence for each m, limit (/jv,e™) = — . It. follows that fN converges weakly to 

2 lTe'm in/,-
m~ 0 Pm 

We will see in the next section how some of these ideas may be extended to /„. 

4. The case p=Since is not separable there are no cyclic operators on /„•. 
However for a bounded sequence {a„} of complex numbers Sx still defines a bounded 
operator on /„ and we may ask when s#'(Sa) is strictly cyclic. First note that if T is a 
linear transformation f rom /„ to then there is a sequence {/0, tl,...} of continuous 
linear junctionals on such that for every x in Tx=(t0(x), ti(x),...). Moreover, 
T is bounded if and only if sup U f J ^ « - . If this holds then | | = sup ¡¡/J. An easy 

n n 
computation shows that if T is a bounded linear operator on with {/„} defined as 
above, then TSX=SXT if and only if 

(2) t0oSa = 0 and (l + 1 o S , - «„+,/„ ( « = 0 , 1 , . . , ) . 

We now examine a special class of operator^ in ¿ / ' ( S J . Let 

Pn 
PmP n — 11 

For each x in $ define the linear transformation Ax on /«> by 

Pn 

? = \ x in /«,: sup 2 ! 
n m — 0 

(Axy)n= 2 = 0 pmpn-, 
- X V 'v w n — m (n = 0, 1,'2,•'•••)• 

1 
With eo = ( l , 0 , 0 , ...), etc., it is easily seen that Axe0 = x, Ae> = — Sx, ACa = 1, Ax 

is bounded, and 

. M x l l - s u p 2 
n m = 0 

Pn 
PmPn-

Let 83 = {AX: x in $}. 

L e m m a 4. 1. Lei x and y be in S. Then z = Axy is in -S and A, = AxAy = AyAx. 

Pn P r o o f . We must show that sup 
n m= 0 PmPn -

where 

l=oPlPk-t 
X,yk-l• 
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Fix an integer n ^ O . Then 

2 m = 0 
P- 9 P« x v •¿j a o xkym-k 

P J n — m k = v PkPn-k 
^ 2 m = 0 

Pn 

P J n -

n \ n 

= 2 2 
k = 0\m=k 

Pn Pm 

ftmftn — m PkPm-k 

2 
k=0 

Pn 
\ym-k\ \\xk\ = 21» R 

k=0\ PkPn-k 

PkPn,-k 

2 
m=k 

l**l|jm-lfcl 

Pn-k ' 

fin — mfim — k 

= 2 fc= 0 
Pn (n-k 

m=0\Pn-k-mPir 
Pn-

\ym-k\ \ \xk\ = 

W W ^ IMxIIM.II-
PkPn-k 

Techniques of rearrangement of series similar to those used above show that 
for each w in and each non-negative integer n, (A.w) n — (AxAyw)„ = AyAxw)„, 
i.e. A, = AxAy = AyAx. Since Axj-Ay = Ax+y we have proved part of the following 
result. 

T h e o r e m 4. 2. is a norm closed abelian subalgebra of si'(Sx) with Sa and 
I in 33. Moreover, if inf |a„| => 0, then s/'(Sx)=3$. 

n 

P r o o f . Let {*<">} be a sequence in § and let A be a bounded operator on 
such that limit \\Ax{N) — A\\ = 0. Then x(N) = Ax(rf)e0-~x = Ae0. Choose M > 0 such 

P" \x%>\*>M for all N and n g 0 . Letting that JMX(W)|| sSM for all N, i.e. 2 
m = 0 

JV—oo we see that sup 2 
n m = 0 

Pn 

Pn,Pn-

Pn,Pn-

x.„\^M hence x is in S and A=A. 

Now suppose <5 = inf |«„| > 0 . It is then immediate that the range of Sx is 
n 

'{x in L:x,=0 for O ^ i ^ k } . Let T be in ^'("S"«) w i t h {/„} as in (2). Set u=Te0. We 
show that u is in £ and Au = T. Let x be.in and write x—x0e0 + Saz for some z in 

. Then t0(x) = x0t0(e0)=x0u0. Now for n ^ 1 

t noS» = a H t n _ l o s ; - 1 = - = p n t 0 

so ?„os ; , + 1 = 0 for all n .Then t„(x) = tn 2 xmem\ = 2 xmt„(em). Now for m s 1, 
\m=0 J m=0 

1 1 a 
\ = tn(Saiem-l) = 'n - 1 (em - 1) = «,„ I a,„ a„, 

^t(^m) ^ n 

' %n-m+ 1 
a m " " a l 

¿n - m ( f 0 ) 
Pn 

P J n -

Pn xmun-m• Thus u is in S and AU = T, completing the Therefore t n { x ) = 2 ,, R 

proof. ", = 0 PmPn-K 
Unlike the case the vector e0 need not be cyclic for jrf'(Sx)- F ° r example 

if a„= 1 for each n then by Theorem 4. 2, ^'(S^—38, and so si'(Sa)e0 = S. But in 
this ease 

' - \ x ir\L\ 2 kml<00[ = /l 
I m = 0 J 
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and hence is not dense in /„. However there are many shifts on /„ for which e0 is 
in fact strictly cyclic for J1 , and these can be classified precisely, in a manner analogous 
to Lemma 3. 1. 

sup 2 
n m = 0 

P r o p o s i t i o n 4. 3. The vector e0 is strictly cyclic for 

Pn 
if and only if 

ßm ßn -

P r o o f . Suppose A / = s u p 2 . 
n m=0 

sup 2 
n «1 = 0 

ßn 
ßmßn-r 

ßn 
ß,nß n — n 

: « . Let x be in Then 

\xm\^M llxll 

and hence x is in S, so that S = lm. Conversely, suppose S = lm. Then in particular 
n a 

for x = ( l , 1, 1, •••) in S, we have sup 2 ^—¡f— 
n m=0 PmPn-n 

Some open questions: 
1. Is the converse to Lemma 3. 1 valid? 
2. If lim a „ = 0 need Sx be strictly cyclic on lp, 
3. If S a is a weighted shift on /„ i s ^ ' ( ^ ) abelian? 

Added in Proof. A negative answer to question 1 has recently been obtained 
by G. Fricke. Using Theorem 3. 2, R. Gellar and E. Azoff independently pro-
vided negative answers to question 2. 
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