Spectra of convolution}operators‘

By DAVID. W. BOYD in Vancouver (Canada)”’

1. Introduction. A number of recent papers have dealt' with the question of

determining the spectrum of operators Wthh are special cases of the following type

of operator: _
m : Tf(t) = [ k(s)f(ts)ds.

Here k is a given measurable function and the operator is considered as a mapping
from L(0, <) into itself. A sufficient condition for T'to act as a bounded operator
from L?(0, <) to itself is the well known result of HARDY, LITTLEWOOD and PéLyA
[6, p. 230] to the effect that : '

) - T, = flk(s)]s““’ds =N (kj < <.

For example, Brown, HaLmos and SHIELDS [2] by- Hxlbert space methods found
the spectrum of the Cesaro operator

3 | Pf(t) = f f(s)ds = f f(ts)ds

“In [1], thls author gave an exp11c1t formula for the resolvent of P as an operator
on L?(0, =), 1=p=oo, and from this deduced the spectrum of P. LEIBOWITZ [10]
determined the spectrum of P as an operator on L?[0, 1]. Recently, RHOADES [11]
extended the considerations to operators corresponding to Gamma type summa-

“tion methods. LEiBowITZ [9] has determined the spectrum of operators of the type
(1) where k(s) vamshes for s=1, and for some ¢>0 satlsﬁes

O] f k(s‘)s“(””_ds' < oo
. 0

Rhoades and Leibowitz also consider these operators as acting on L?(0, 1), and -
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Leibowitz completely determmes the spectrum in this case without the extra con-
dition (4).

It is well known (see for example [12 p. 304, p. 311], [13 p- 36]) that operators
of the type (1) are essentially convolution operators. This fact was used in [9]. Using
this, it is clear that the spectrum of T as an operator on LP(0, <) is exactly the spec-
" trum of the following operator K# acting on LP(R):.

ON Kxu@) = [ KGx—y)u()dy,

where K(x)=k(e *)e~*/4, (g = p/(p—1)). The condition (2) translates into the con-
dition |K#||,=[ K|, which is a familiar inequality for convolutions [3, p. 528],
[12, p. 97]. Note that the expressmn 1K, denotes the operator norm of Kx% acting
on LP(R). -

It is surely a familiar fact that the spectrum of K% actmg on LP(R) is the closure
of the range of K, the Fourier transform of K. Since we have been unable to locate
a proof of this in the literature except for p=1 and 2, a proof is presented here as
Theorem 1. From this it follows that the spectrum of T in L?(0, oo) is the closure of
the range of the Mellin transform

6) fc[——+i£] = f k(s)s—/n+it g,
LeE - P 8 :

For completeness, we also present some results concerning the point spectrum
of convolution operators (Theorem 2) and point out that the Riesz—Thorin theo-
rem produces an interesting inequality when applied to operators of type (1).

2. Convolution operators. In this sectlon we will consider the operator K % deﬁned
by (5) for Ke L' (R). We denote the Fourler transform of K by

(7 o 12(5) = j K(x) eit*dx.
We will always assume that 1=p=-oo. The spectrum of a bounded operator from a
- Banach space X .into itself will be denoted by o(T; X). 4
The following deep result is due to WIENER and now usually establlshed within
the framewotk of the theory of Banach Algebras. See (4, p. 107] for a proof.

Lemma 1. Let K €L'(R) and suppose that ) is acontple:t number such that
%0, and A=K () for any E€R. Then there is a function A, € L*(R) such that

(8) : . J4,—Kxd, =K

"Corollary 1. The spectrum of Kx as an operator on L*(R) is contained in the
 closure of the range of K on R. :
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Proof. If 1 is not in the given set then by Lemma 1, there is an 4,¢L'(R)
satisfying (8). Since convolution is a commutative operation, one readily verifies
that the operator A1~* (I+ 4, %), which is a bounded operator on L?(R), is the inverse
of (A=K=%), so A is in the resolvent set of Kx.

Lemma 2. Let 1<p<oo. Let KEL‘(R) and suppose that
o - o [ XK (x)|dx = M < o, .

Then, for each éE'R, and 6 =0, there are functions u; € L (R) of unit norm such that
IR us— Kxugll, = 0() as 5-0..
Proof. For any =0 and £¢R, let

&+

10 - )= [ emirdy = 26~ (sin Sx)/x.
5—d .

Then v; € LP(R) for 1 <p<oe and .

(11) ' sl = 1Pyl

Also, by interchange of order of integration, we have -

: . £+0 i .
(12) ' : Kxv,(x) = [ e"™K(n)dy.
Thus . 0 )
&+6 ,.. . .
a3 - Ea<x>=K(¢)v5(x)—:1<w,;(x)= [ e (K@~ Km)dn.
[-4at]

The assumptxon (9) means that K'() exists and |K’(n)1<M for all £, and w1th 13)
this gives

a4 o E@ =M

We need a slightly better estlmate than this for large x Wthh we obtain from (13) by
integration by parts, obtaining :

1s . | |Es(0)] = 4Mx—1.

Hence

16 f Esx)lrdx = [ (M8 dx + [ @Mox-tydx = 0(6%-Y).

Ix[<4/s . xl=4ls
Define u,,—u‘,/l[v,,ll, and use (11) and (16) to complete the proof.

Theorem 1. Let K¢ L' (R). Let 1< p<oo, Then the spectrum of K * ds an operator
on LP(R) is the closure of theé range of K on R.

3 A
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Proof. Denote the closure of the range of K by o. By Corollary 1 the spectrum
is contained in o. It suffices then to show that if A=K (&) for some £€R then.A is
in the spectrum of K#. If p= s, the function e~ is an eigenvector of K% with eigen-
value K(¢), proving. that (K ; L7)=g. For p=1, the result follows by- taking
- adjoints reducing to p=os. Finally if 1<p<eo, we use ‘Lemma 2 as follows: let
K,(x)=K(x) if |x|=n and zero otherwise. Then K, satisfies (9) so there is a u,€L?
with Ju,|=1 and

an . ||K,.wn'—1€,,<¢)u,,||,,<l/n. ‘

We also have o

(18) nK*—K*n,,_nK,, Kly= [IK@®)|dx =,
and iz

(19). | IR, (&)— R(©)| = &

where ¢, ~0 as n—-oco.
Combining (17), (18), (19), we find that

(20) K%ty — K&y, ~0 as n—oo
which shows that K(¢) €6 (Kx ; LP(R)).

Corollary 2. Let k be a measurable function on (0, =) satisfying
Qn [ k@)Ismrds < o,
0

Let T be defined as in (1) and & as in (6). Then the spectrum.of T as an operator

on LP(0, =) is the closure of the range of k [—1—+ié] as & varies over R. -
, : ) .

Proof. Let K(x)=k(e~")e /7 where ¢ = p/(p—1). Then K¢ L'(R). For any
L fELP(0, =), let Qf(x)=f(e")e*/P. Then Q is an isometry of LP(0, =) onto LP(R).
Furthermore QTQ 'u(x)=Kxu(x) for all ue¢L’(R). Thus o(T; L?(0, «<))=
=g (K ; LP(R)) which is the closure of the range of K by Theorem 1. However

_K@)_k[—;+@]

Remarks 1. The proof of Theorem 1 for p=1 could be accomplished by
noting that the norm of the operator K+ on L!(R) is the same as the L' norm of
the function K, so the algebra of operators K« is isometric with L' (R). The proof
used for 1=<p<-co could also be modified to treat the case p=1.

2. Note that we made use of the Fourier transform only for K¢L'(R) and
not_for elements of LP(R). The usual proof of Theorem | for p=2 uses the fact
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that the Fourier transform is a unitary operator on L2(R) so that K is unitarily
equivalent to multiplication by K(¢). Such a proof is not available for p 2.
' 3. Our Corollary 2 contains the result of Leibowitz quoted in the introduction.

3. Point spectrum. Suppose that K satisfies the conditions of Theorem 1. The
next theorem determines conditions under which a value A will be in the point spec-
trum of K acting on L? (R). We denote the point spectrum by # (K ; LF). Our con-
dltlonS are necessary and sufficient only in case »=1,2 or . In contrast to Theo-
rem 1, we need the Fourier transform of elements of LP(R). We recall that if | =p=2,’
and u¢ L?, then 4¢ L9 while if 2<p=-, i} is a tempered distribution [7, p. 142
and p. 146). The results of Theorem 2 can be translated into results for operators. T
of the form (1).. :

‘Theorem 2. Let KE L'(R) andfor each complex number ,1 Iet E,={¢: K(é) A}
Then

() 2en(K*; L) if and only if E,1 contains an mterval _

(b) if 1<p<2.and if E, is of measure zero, then AQR(K* L”), while th con-
tains an interval then 1Cn(K%; LP), '

(¢) Aen(K«*; L) if and only if E, has positive measure,

" (d) if 2<p<eco and if E, is afinite set then L {n(K* ; L“) whzle szA is of positive
measure then A€n(K#; L?),

(e) Aen(Kx*; L™) if and only if E, is non- empty

Proof. Suppose that E, contains an interval (a 8, a+0). Let F(&) =
= max (1 —|¢],0) and u(x) = f F((¢—a)/d)e~ "+ dL. Then uEL”(R) for all p=1,

" and since F((¢—a)/d) = 0 for Ig al > 8, we readily check that K% u=u. Similarly,
if E; is of positive measure’ SO contains a subset E of ﬁmte posmve measure, then

let u(x) = _/ e-‘§"dg Since gz is in L7 for 1< =2, we have u¢L” for 2=p=eoo,

and as above K u=Ju. These remarks prove one- direction of each of (a) to (d).
Conversely, suppose that uis in L? and K u—/lu If p=1, this implies that

@ ' K(©)a(y = M)

for all ¢, and since # is continuous and vanishes except on E, by (22), it will vanish
* identically unless E, contains an interval. This proves (a) since u(f) 0 for all ¢
implies that u=0 a.e.

l<p=2, equatlon (22) is valid a.e. so that (&) vamshes for almost all EQE;,
and hence vanishes a.e. if E; is of measure zero. By the uniqueness theorem %(£)=0
a.e. implies that #=0 a.e. This completes the proof of (b) and (c). IR

If 2<p=oco and K+ u=Au for u¢ L?, then (22) holds as a statement about tem-
pered distributions. If ¢ is a'testing function with support contained in an interval

3*
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I in the complement of E, then there is a testing function ¥ such that (K— 1)y = qo..
To see this, note that there is a v€ L* such that 8(¢) = (R(&)—2)~* for £€ 7[5, p. 29].
Now let ) =v* @, and invert the Fourier transform to obtain . Using

we have

0 = ((R=-Di, ¥y = (@, (R—-)¥) = (4 o).

This shows that the support of # is contained in E,. If E, is finite then Theorem 4. 12
and Theorem 4. 11 of [7, p. 152] show that # is a finite linear combination of point
measures. But then u ¢ L? if p<oo. This contradiction shows that 1¢ n(K* ; L?) and
completes the proof of (d). ' .

The proof of (e) is left to the reader.

4 Norms. According to Corollary 1 the spectral radlus of a T given by (1) as
an operator on L"(O o) is given by
i [—l+ic] |
P

This is also the norm of T in case p=2, since T is a normal operator. This can also -
be proved directly using the Fourier transform as in KoBER [8]. For p=1 or oo,
the norm of T'is given by N, (k) of (2). If we associate with T'the convolution operator
K« as in Corollary 2, then N,(k)=||K||, =| K ||, =||K# ||, and r,(T)=max 1463) =
=|K#*|,. Thus the Riesz—Thorin convexity theorem shows that in general

r,(T) = max

co<g<oo

(23) Tl S N0 (T where 3 = [2—plip.

5. An example. Let T defined by the following expressioh':
N ! . 1 .. -
Tf(t) = [ s+ @ f(ts)yds— [ s=1f(ts)ds.
0 : o i

Then fc[—%-{—if] = —2i¢[(p~2+¢&?), and hence r,(T)=p, and the spectrum of T_l

on L?(0, o) is the set {in:|n|=p}. According to Theorem 2, there is no point spec-
trum if p<eo, while if p=oo, the whole spectrum consists of point spectrum. We
do not know the value of IITH,, but 1t is easy to compute N,(k)=2p, and hence (23)

gives the estimate
IT], = 2le-2lirp

and obviously |[T|,=r,(T)=p. It would be interesting to show that |]T|lp>p if
p#2. '




Spectra of convolution operators : 37

References

[1] D. W. Boyp, The spectrum of the Cesaro operafor Acta Sci, Math., 29 (1968), 31—34.
[2] A. Brown, P. R. HaLMos and A. L SHiELDS, Cesaro operators, Acta Sci. Math 26 (1965),
125—137.
[3]. N. DunrForp and J. SCHWARTZ, Linear Operators Part I, Interscience (1958).
[4] 1. M. GeLranND, D. A.-Raikov and G. E. SHiLov, Commutative normed rings, Chelsea (1964)
[5] R..GOLDBERG, Fourier Transforms, Cambridge Tracts, No. 52 (1962).
(6] G. H. HARDY, J. E. LitrLewoob and G. POLYA, Inequalities (Cambridge, 1934).
" [71 Y. KATZNELSON, An Introduction to Harmonic Analysis, Wiley (1968).
[8] H. Koger, On a theorem of Schur and on fractional integrals of purely imaginary order, Trans.
Amer.. Math. Soc., 50 (1941), 160—174.
[9] G. LetsowITz, A convolution approach to Hausdorff integral operators (to appear).
[10] G. Lesowrtz, Spectra of finite range Cesaro opzrators, Acta Sci Math., 35 (1973), 27—28.
[11] B. E. RHOADES, Spectra of some Hausdorf operators, Acta Sci. Math., 32 (1971), 91—100.
[12] E. C. TitcuMARsH, Introduction to the theory of Fourier integrals (Oxford, 1937).
[13] H. S. WILF, Finite sections of some classical inequalities, Springer-Verlég_(l970).

THE UNIVERSITY OF BRITISH COLUMBIA
VANCOUVER, CANADA ) o
( Received July 18, 1972) .



