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Introduction 

The object of this note is to show how the theory of Jordan models for C0 

contractions of finite defect, which was developed by S Z . - N A G Y and FOIA§ [ 1 0 — 1 7 ] , 

may be approached from , the relation of quasi-equivalence for matrices [6]. 
We thereby give a different approach to the Jordan model theory and in so doing 
establish a conjecture of S Z . - N A G Y and FOIA§ [ 1 5 ] on the relation between the inner 
functions in the Jordan model of an operator T and its characteristic operator func-
tion 6 r . Our results show that the analogy with the finite dimensional situation is 
complete. 

1. Preliminaries 

Let © be a separable complex Hilbert space and m normalized Lebesgue mea-
sure on the unit circle C of the complex plane. Then L2 ((£) is the Hilbert space of 
all weakly measurable functions from C to © having square integrable norm, and 
H2(<&) is the corresponding Hardy subspace. If / is the identity function on C, then 
the bilateral shift operator U on L2 ((£) is given by 

Uf=xf (/€ L2 (©)), 

where the operation is that of pointwise multiplication. The unilateral shift U+ on 
H2(f&) is simply the restriction of U to H2(<&). The above is discussed in detail by 
HELSON [ 4 ] . a n d S Z . - N A G Y a n d FOIA§ [18] . 

The algebra of weakly measurable, essentially bounded functions from C to 
the algebra J1 ((E) of bounded operators on (£ is ((£)). A function 0 in Lm (%((£)) 
is said to be analytic if 

J(©(z)f,g)z»dm{z) = 0 1,2,...), 
and H""(J1 ((£)) is the algebra of analytic functions in ((E)). 
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If 0 is in H°°(^((f)), then there are two operators that are naturally associated 
with it. Each sends a function u to 0u, where 

0u(z) = 0(z)w(z) (z€C) , 

but the domain of one is L2((£) whereas that of the other is H2(<&). The former is the 
associated analytic Laurent operator and the latter the associated analytic Toeplitz 
operator. We will be somewhat imprecise and use the same notation for each of 
these operators as for the function that induces it, relying on the context to make 
it clear which is intended. If the operator 0 on H2(j&) is a partial isometry, then' 
the analytic function inducing it will be called inner. This usage does not quite 
conform to that of S Z . - N A G Y and FOIA§ [ 1 8 , p. 1 9 0 ] , who use the term inner for an 
analytic function whose values are operators f rom one Hilbert space (Si to another 
(S2 such that the induced analytic Toeplitz operator from H2(<&]) to H2(<&2) is 
isometric. The difference is inessential in that with either definition the typical 
invariant subspace of U+ is the range of an analytic Toeplitz operator induced by 
some inner function ([1], [3], [5], [7] and [8]). 

For each inner 0 let S(0) be the compression of U+ to the orthogonal comple-
ment § ( 0 ) of OH2(<&). It is now well known that every contraction T on a separable 
Hilbert space such that {T*"} converges to zero strongly is unitarily equivalent to 
some S ( 0 ) [18]. 

Our present interest centers on the case where (£ is finite dimensional and 0 
is an isometric operator on //2((£). If 0 is purely contractive [18, p. 188], and if 
(£ has dimension N, then both defect indices of S(0) are N, and S(0) belongs to 
class C0(N). In fact, up to unitary equivalence the most general contraction of 
class C0(N) arises this way [11]. In general, we will not require 0 to be purejy con-
tractive, and thus the resulting S(0) is of class C 0 ( M ) for some positive integer 
MrSN. 

An operator X f r o m a Hilbert space to another § 2 is called a quasi-affinity 
in case it is one to one and has dense range. An operator 7 \ on is a quasi-affine 
transform of an operator T2 on § 2 in case there exists a quasi-affinity A ' f rom 
to §2 such that 

. XT^TzX, a 

in which case we write T,-<.T2. If 7\-< T2 and T2~<Tl, then Tx and T2 are called 
quasi-similar. Again, for a more detailed discussion of these ideas refer to the text 
b y S Z . - N A G Y a n d FOIA§ [18] . 

Two functions 0 ! and 0 2 in H°a(3S{(&)) are said to be equivalent in case there 
exist two invertible functions A and A in (3$ ((f)) such that 

A01 = 02A. 
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A function A in / / " ( J 1 ((f)) is said to have a scalar function 6 as a scalar multiple 
if there exists a function Q in such that ' 

QA = AQ = 5Ia, 

where 7g is the identity operator on (£. Finally, the following concepts introduced 
in [6] are fundamental to our present considerations. A quasi-unit ff is a subset of 

((£)) with the property that the collection of all scalar multiples of the functions 
in ff is nonempty and relatively prime, i.e. has no nonconstant common inner factor. 
If 6>! and 02 belong to (&(<$:)) and if there exist quasi-units ff and JI such that 

ff01 = 02JI, 

then and 02 are called quasi-equivalent. 
In this paper we will study the relation between quasi-equivalence and quasi-

similarity, but we pause to note that in one direction at least the relation between 
equivalence and similarity parallels the finite dimensional situation. 

T h e o r e m 1. Let 0i and 02 be inner functions in H°°{S§((£)). If 0i and 02 

are equivalent, then S(0 ¡) and S(02) are similar. 

P r o o f . Let A and A be invertible functions in such that 

(1) A0t = 02A. 

It follows from (1) that A01H2(<&)(Z02H2(&), and hence 

(2) P2APi = P2A, 

where Pj is the orthogonal projection of H2(<&) onto § ( 0 j ) for j= 1, 2. Define an 
operator X by 

(3) X=P2A\§>(01). 

For every / € § ( 0 i ) we have by (2) and (3) that 

XS(0,)f= P2 AP1 U+f = P2AU+f = P2 U+ Af = P2 U+ P2 Af = S(02)Xf 

where the next to last equality follows from the invariance of 0 2 H2(<&) under U + . 
It remains only to show that X is invertible. We have by hypothesis that A is invert-
ible; therefore, if v is an element of § ( 0 2 ) , then there exists a unique element u in 
H2(<£) such that 

v = Au = P2 Au. 
Employing (2), we have 

v = P2APlu = XP1u; 

thus A'is onto. If Xu=0 for some u in § (©!) , then Au = 02v for some v in H2(<&), 
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and since A is invertible there exists some v' in H2(<&) such that Av' = v. Hence 
by (1), 

J ( M - 0 ! O = Au-02Av' = 0. 

But A is invertible and u is orthogonal to 0yv'-, therefore, u=0, and Z i s one-to-one. 
Thus X is invertible. 

It would be interesting to know to what extent Theorem 1 has a converse; it 
is known [2] that defect indices are not similarity invariants. 

2. Main theorems 

The following result is an analog of Theorem 1 for quasi-equivalence. 

T h e o r e m 2. Let (E be finite dimensional and suppose that 0 t and 02 are inner 
functions in (£)) that induce isometries on H2((£). If 0! and 02 are quasi-
equivalent, then S(0i) and S{02) are quasi-similar. 

P r o o f . Since quasi-equivalence is an equivalence relation [6, Cor. 3.2], it 
will suffice to prove S ( 0 ! ) < S ( 0 2 ) . The facts that E is finite dimensional and that 
0 ! and 02 induce isometries on H2(E) imply 0T and 02 are each unitary valued 
a.e. and consequently their determinants are nonzero a.e. By Corollary 3. 3 of [6], 
there exist functions A and A in (K)) whose determinants are relatively prime 
to those of 0 2 and 0 1 ; and such that . 

A0I = 0 2 A . 

Define X as in (3). The same reasoning used previously implies 

X S ( 0 1 ) = S ( 0 2 ) X ; 

therefore, we need only show that A' is a quasi-affinity. 
Suppose v in § ( 0 2 ) is orthogonal to the range of X, and let u be any vector in 

H2(<£). There exist u' in § ( 0 0 and u" in H2(j£) such that 

By supposition, 

[v, Au') = (P2 v Au') = (v, P2 Au') = v, Xu') = 0, 

and since A0t = 02A, we have 

( v , A01U") = ( V , 0 2 A U " ) = O. 

Thus v is orthogonal to AH2((£), which includes (det A)H2((£). But v is also ortho-
gonal to 02H2(<&), which includes (det 02)H2(fS). Since det A and det 0 2 are 
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relatively prime, it follows that AH2(<&) and 0 2 / / 2 ( ( S ) span H2(f£) (see [1]); thus-
D = 0 . Consequently X has dense range. 1 

Now consider an arbitrary « £ § ( © , ) such that Xu=0; i.e. for which Aud 
£02H2(f£). As mentioned earlier, each of 0X and 02 is unitary valued a.e., and 

therefore, the operators 0T and 02 on L2((£) are unitary. Using this fact and setting. 
/ = 0 ? «, it follows from (1) that;©2 Af—A01f=Au £02H2 ((£), and hence Aft H2(<&). 
On the other hand, 01f=0l 0\u=u. Thus, /1 /and 0 x f are both in H2(<£). From 
this it follows that -

(det A)f£H2(<£) and (det O^f £H2(i£). 

Since det A and det 0^ are relatively prime, we infer by using a lemma of SZ.-NAGY 
[9, p. 74], that f£H2(<&). This implies w£ © ^ ( ( S ) . As u^ifD^, we necessarily 
have w=0. Hence, X is one to one, and the proof of the theorem is complete. 

It is shown in [6], Theorem 3. 1 that every NXN matrix over 7/°° is quasi-
equivalent to a diagonal one with the invariant factors on the main diagonal. Thus 
if 0 is the characteristic operator function of an operator T of class C0(N), then 
0 is quasi-equivalent to a normal matrix 0 ' , i.e. 0 ' is diagonal and the diagonal 
entries of 0 ' are the invariant factors of 0 . From the theorem then we have that 
T is quasi-similar to 5 ( 0 ' ) . Operators of the form S(0') are called Jordan operators 
by SZ.-NAGY and FOIA§, and they were the first to show that every C0(N) contrac-
tion T is quasi-similar to a Jordan operator and that the minimal inner function of 
T i s the first invariant factor of 0 r [11, 15].-We have thus obtained their results via 
a different route; moreover, we have shown that the inner functions that appear 
in the Jordan model of an operator are related to the characteristic operator.func-
tion in the manner they conjectured. To summarize, we have established the fol-
lowing: 

T h e o r e m 3. If T is an operator of class C0(N) for some integer N, then T is 
quasi-similar to a Jordan operator determined by the invariant factors of the character-
istic operator function of T. 

. Finally, Theorem 2 has a converse; that the statement is more general is illusory. 

T h e o r e m 4. Let 6 be finite dimensional and suppose that 0 X and 02 are inner 
functions that induce isometries on 7/2((£). If SiO^) is a quasi-affine transform of 
S(02), then 01 and 02 are quasi-equivalent. ' 

P r o o f . Let 0[ and 0 2 be the normal matrices that are quasi-equivalent to 
0 X and 0 2 respectively. Then by Theorem 2 and the hypothesis, 

5(00^5(00^5(0,)^ S(0'2). 

It was. shown by SZ.-NAGY and FOIA§ [ 1 4 ] that if one Jordan operator is a quasi-
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affine transform of another, then they are both determined by the same nonconstant 
inner functions. Consequently, S ( 0 [ ) = S(0'2), and hence 0^ = 02- It follows by 
transitivity that 0 X and 0 2

 a r e quasi-equivalent. 
We should like to express our gratitude to Professor Sz.-Nagy for suggesting a 

substantial improvement on the proof of Theorem 2. 
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