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1. Ixitroduction
Let (I1,),, be the set of all trigonometric polynomials f(x) = 2 ¢, e’ of

k=—n

degree n. The classical Bernstein inequality states that _ _
(1.1 Wdxy f @, = N D, (f€ (I1,)30)>°

where X, isany of the spaces Lz,,, 1§p<oo, or C,, of periodic functions (cf. Sec-

tion 3). As is well known, this inequality plays a central role in the proof of inverse

theorems concerning best approximation by trigonometric polynomials. In a very
general setting it was recently shown in some basic work of BUTZER—SCHERER
[3, 4] (see also [6, 7]) that one may always obtain inverse approximation theorems,
provided an inequality of type (1. 1) is available. In their spirit we may formulatc
the following problem: : .
Let X be an arbitrary (real or complex) Banach space [X] the Banach algebra
of all bounded linear operators of X into itself, and let {T(¢)},., <[X] be a family -
of operators depending on a parameter ¢=>0 (tending to infinity). Suppose B to
‘be a closed linear operator with domain D (B) < X and range in X. The family {T'(¢)}
is said to satisfy a Bernstein-type inequality (with respect to B) if T(o)(X)C D(B)
for each ¢=0, and if there exists Q(g)=0, deﬁned on (0 =), and a constant A=>0
“such that :

(1.2) " IIBT(e)fH<AS2(e)I'fI' cfexe>0>.

In this paper we would like to study (1. 2) in the setting of [2], i.e., the operators
in question are generated via multipliers in connection with Founer expansions
corresponding to -general decompositions of Banach spaces. Then Bernstein in-



122 E. Gérlich—R. J. Nessel—W. Trebels

equalities of type (1.2) in fact lead to a study of uniformly bounded multipliers
(cf. (2. 4)). This is considered in Section 2 which gives convenient sufficient criteria
in connection with Cesiro-(C, j )-decompositions. The most concrete version regard-
ing uniform bounds is given in Corollary 2. 4 for multipliers of Fejér’s type. This-
is in fact induced by a fundamental work of Sz.-NAGY [12] on the representation
of functions as trigonometric integrals. Indeed, the case j=1 of Corollary 2. 4 may
be considered as an elementary version of general results in [12] which are in turn
used there as multiplier criteria to establish far reaching direct approximation theo-
rems for trigonometric polynomials. Section 3 is concerned with particular choices
of {T(¢)} and B for arbitrary spaces X and decompositions. At the end of this sec-
tion the trigonometric system is considered, mainly to discuss the question to which .
‘extent the classical inequalities may be covered by the present methods. The main
bulk of-concrete applications, however, will follow in Part II, thus illustrating the
usefulness of this simple but nevertheless general and unifying approach to the
_subject. Finally, let us emphasize that we do not plan to reconstruct the (sometimes)
long development of certain instances of Bernstein-type inequalities; for a brief
historical account one may consult [10] (seemingly the latest paper on the subject of
a survey nature). :
The authors are very grateful to Professor P. L. BUTZER who inspired the work,

read the manuscript, and made many valuable sugges’uons. The- contribution of
W. TREBELS was supported by a DFG fellowship.

2. Bernstein-type inequalities

Let Z, P, N be the sets of all, of all non-negative, of all positive integers; re-
spectively. Let {P,(},‘EP be a total sequence of mutually orthogonal continuous
projections on X, i.e., (i) P,€[X] for each k€ P, (ii) P, /=0 for all k<P implies f=0,
(iiiy P;P,=06,P,, 0, being Kronecker’s symbol. Then with each f€X one may
as5001ate its umque Fourier ‘series expansxon

@D | fego N en.
With s the set of all sequences y= {y, },cp of scalars, y €s is called a multiplier for

X (corresponding to {P;}) if for each f€ X there ex1sts an element f 7€ X such that
v P /=P, f? for all k€ P, thus

ey S~ SuBs (e

Obviously, Gf=f" defines a bounded linear opérator G on X by the closed graph
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theorem. Conversely, operators 7 on X which permit an expansion of type (2. 2),.
re. P.(Tf)=1, P, f, are called multiplier operators. Denoting the set of all multipliers.
for X by M= M(X; {P,}), with the natural vector operations, coordinate-wise multi--
plication, and norm

(2.3) . Il = sup {Hf’llleX Ifl=1},

M is a commutative Banach algebra, Jsometrlcally 1somorphlc to the subspace:
[Xae C[X] of multiplier operators on X. ,

Let a€s be arbitrary and let X* be the set of all f€ X for which there exists.
Sf?€X such that o P, f= P, f* for all k€P. Obviously, if B* is the operator. with.
~domain X* c X and range in X defined by B*f=/"*, then B®is a closed linear operator-

for each a € 5. Furthermore, if {P,} is fundamental, i.e., the linear span of | P, (X)
‘ A ' k=0

is dense in X, then B*is densely defined for each a¢s.
~ On restricting oneself to operators with the above multiplier structure one-
may rephrase problem (1. 2) in terms of the corresponding sequences, namely

Theorem 2. 1. Let a€s and {T(0)}C[X)y be a family of multiplier operators-
with associated multipliers t(0). If at(0) € M for each 9=0, and if there exists Q(g)=0-
and a constant A=0 such that

ey e @2@I =4
uniformly for ¢=0, then {T(g)} satisfies the Bernstein-type inequality
@2.3) ‘ IBT@f) = 42171 (féX 0= 0).

Indeed, let U*@¢[X Ine be associated with az(g). Then for any fcX, o=0,
and k€P
- PUOfy = ou (@) Pof = “kPk(T(Q)f),

so that T(0)(X)c X* and B*T(g)f= U*©@f. In view of (2. 3—4) this implies (2. 5).

Therefore, in the present setting, the problem is to verify the multiplier con-
dition, particularly (2. 4), thus to establish convenient criteria concerning uniformly
bounded multipliers. To this end we follow up the lines of [2] (see also the literature
cited there), assuming (essentially) that {P,} is a Cesaro-(C,j)- decom'position of”
X. For basic facts concermng those decomposmons (and bases) one may consult:
(81, [9], [11]. :

‘Let the (C,j)-means of (2.1) be defined for j¢P by

2.6) (C.nf = (Ai)"ké;A!}_szf, 4} = [
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-Obviously (C, j), coincides for j=0 with the nth partial sum operator S(n) = 2 P,.
K=0

For some fixed j€P assume that (C,j), is uniformly bounded, i.e.

(2.7 KGNS = Gl (feX),

-the constant C;(=1) being independent of ncP and SEX.

R_emark. In many cases of interest (cf. Part II) one deals with Fourier series
‘in X associated with a total biorthogonal system {f;,f¢}, {fi}C X, {fi}cX™ (the
-dual of X). Then (2. 1) and (2. 2) read '

(2-8) f~k=§0 NS Tf~k§ WfE N s

-respectively; Py (X) is the one-dimensional linear space spanned by f,. If, further-
more, {f;} is fundamental, then it is clear by the Banach—Steinhaus theorem that
.(2.7) for j=0 is equivalent to the assumption that {ﬂ} is a Schauder basis, i.e.,
for every f€ X

“lim =0,

n—oo

SRDA ',—f'

-whereas for j=1 condition (2. 7) is equivalent to the statement that { £,} is a Cesaro
-basis, i.e., for every f€X . :

lim

n—-oo

]ﬁc NSfe— f“ —0

20[.» n+1

To study multipliers in connection with systems {P,} satisfying (2 7), let us
mtroduce the followmg spaces of (scalar-) sequences :

m-»oco

(2.9) by, = {y€1>°°| [7lloo;., = Z[ +"]|A1“v |+ lim |y, <oo}

T = {yEsl SUDkcp| Vil <o), Ayx = Yk.—)’ku, Aj“ = AV 4.

Note that y €/~ and the convergence of the series in.(2. 9) imply the existence of the
limit lim,,__y,,=7.. Furthermore, bv;;, Cbv; in the sense of continuous embed-
-ding (cf: [5]). Obviously, bv; ., is the space of all sequences of bounded variation
‘if /=0, and the space of all bounded, quasi-convex sequences if j=1, respectxvely _

Theorem 2.2. Let {P.}C[X] be a total sequence of mutually orthogonal pro-
_jéctions satisfying (2 7) for some j€P. Then every y€bv; £1 isa multlplzer and

2.10) | Il = € 1lso, -
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Indeed, to each f€ X one may associate (cf. [2IL])

fr=23 [" i ] A1y (C WS+ 71

k=0\ J

Therefore, to verify (2. 4) one has to check whether (for suitably chosen Q2(0)
the bv;, -norms of the sequences {o,7;(0)/2(0)};cp are uniformly bounded for
¢>0. For this purpose, let BV, ; be the class of all bounded continuous functions
S on [0, =) for which f, ..., f9~" are locally (i.e. on every compact subinterval)-
absolutely continuous on (0, =) and 1 W is locally of bounded variation on (0, oo)

such that f X [df D (x)| < o,
Then one may use the following result (cf. [2II])

Theorem 2.3. Let y€s be such that there exists a function gEBV ;. with
- 7=8(k). Then y€bv;y; and .

(2.'11) o Z[k+J]|A1+1 1<Dfx1[dg(1)(x)l

the constant D being independent of y and j.

~ As an immediate consequence one has the following criterion concerning uni-
formly bounded multipliers.

. Corollary 2. 4. Let the system {P,} satisfy (2'..7) for somejEP. Let {y(0)}Cs
be such that there exists {g,} C BV ;. with lim,.___ g,(x)=0 and 7. (0)= g, (k) for each
k€eP, 0>0. Then S _ .

(2.12) | 7@y = C; D [ x7|dgi? (¥))-

In particular, if g, is of Fejér’s type, i.e., there exists Gé.B»VjJrl such that g,(x)=
=G(x/g), then {y(0)} is a family of uniformly bounded multipliers.

3. Partlcular operators in arbitrary spaces

Let X be an arbitrary Banach space and {Pk}C[X ] be any total system of
orthogonal projections satisfying (2. 7) for some j€P. In this section we would:
like to discuss certain particular choices of families {T'(¢)} and sequences &. Through-
out this section 4 stands for constants which may generally be distinct.

9 A
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First, let us consider Bernstein inequalities of the classical type (1. 1). Here it is
essential that the elements f only belong to the direct sum

= @ PX) = {f€X|f= SPSf= S(n)f}
k=0 k=0

rather than to the whole space X. In reducing this situation to that of Theorem 2. 1,
we will have to restrict ourselves to the cases j=0 or j=1.

In case j=0 one has |lo(n)|;=C, by hypothesis, a(n)€ M being associated
with the partial sum operator S(#). For given non-negative a€s consider ao(n),
the continuous parameter ¢ being replaced by the discrete one 7. Since oo (n)=
=Bm)o(n) with B,(n)=a,. for 0=k=n, =a, for k>n, Theorems 2. 1—2 imply

G.D : 1B/l = Ao, |/l (f€L),

provided [|B(m)l,,, = A, for all n€P. In particular, if  is monotonely increasing on
P, then By, = o=tk

In case j=1 con51der the family {I(n)} c[X];, with associated z(n) € M, defined
by 1,(n)=1 for 0=k=n, = 2—(k/n) for n<k=2n, =0 for k=>2n. Then 1(n)€bv,
uniformly for n¢ P, and the restriction of 7(n) to II, is the identity mapping. For
given non-negative o€ consider ai(n). Since oi(n)=#n(m)(n) with

(3.2) M(n) = oy for 0= k = 2n, = a,, for k > 2n,

it is sufficient to examine ||11(n)|[,,v in order to app]y Theorems 2,12, 2 Thus-
for the restriction of B*I(n) to I, we have

Proposition 3. 1. Let the system {P,} satisfy 2. 7) Jor j=1. Let a €s be non-
negative and assume that n(n) is deﬁned by (3. 2) and satisfies ||11(n)||,m2_AozZ,l Jor
all nEP iy hen

3.3 IIB“fII = Ayl fI (fedl).

In particular, Proposition 3.1 immediately applies to concave sequencés a.
" For, then « is monotonely increasing so that also #(n) of (3. 2) is concave, and thus
I (@)ly,, = 25— cto. Concerning convex sequences a compare the remarks at the
end of this section.

In this paper we restrict ourse]ves to three illustrative examples of sequences o,
the significance of this choice in approximation theory being exhibited in [6, 7]. Let
w=0 be arbitrary, fixed. Then

G O o= (hers ) a={log +kVuce,  GiD) 7= {Ohep,

where a(x) is a non-negative function, defined and monotonely increasing on [0, ).
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Obviously, (3. 1) applies to (3. 4) (iii) in case j=0. Concerning examples (3. 4)
(i), (ii) it follows for the corresponding #(n) (cf (3. 2)) that lln(n)/az,,ll,m =A uni-
formly for n=0 by Corollary 2. 4 (for (i) cf. (2. 12)). Thus

Corollary 3.2. (@) Let the system {P,} satisfy (2.7) for ]—0 Given a(x) as
specified in (3. 4) (iii), then for any f€ X, n€P

= Ae*™

3.59) 3 ewp,f 3 r7.
. k=0 k=0 X

© (b) Let the system {P,} satisfy (2.7) for j=1. Then for any @=0 and f€ X, ncP

3.6) 3 ko P fll = 4n® || 3 P,
. - k=0 k=0
G.7) ”jlog(nkw)Pkf = Alog(1+1°) g"(’)r,‘ft.

In each case the constant A is zndependent of feX, ncP.

Now, let us apply Theorem 2. 1 directly to several partlcu]ar families {T'(0)}.
We consider the Abel—Cartwright means of order x>0 of the Fourier series (2. 1) of f

(3.8) () W@)f~ 3 e WP (f€X,0>0),

‘the Bessel potentials of order x>0

(3.9) () L@ S~ 3 (1+G0) " Pf  (feX,e=0)

and the Riesz means of order x, A>d (0 =n+1€N being discrete)

k

x4
+1] ] P.f (ng, neEpP).

(3.9 (i) R, 1(m)f ~k20 [ [
Since (cf 2UD) 1 Pelipxr= Ak’ in case (2. 7) holds for j€P, one has equality for all
¢=>0in (i) for x>0, in (ii) for »*> j+ 1, and’ tr1v1ally in (iii) for », A=>0. Furthermore,
L,(0)€[X1y for all >0 since (1+x%) 2 ¢ BV, :

- For these families {T'(¢)} let us consider a= {k“’} ® =0, with’ Q(Q) 0“. For

-~ .the correspondmg at(g) one has

x® exp (—x%),
%7 (0) k x° (14 x2)=*2,
;2(9) = & =G[E],’ 0 {x«»<1.gx~y, ‘ oéx]él,
2 X > 3

9%
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respectively. Since G€ BV, for each w, x>0 in case (i), for each 0<w<x in case
(ii), and for each le and o, x>0 in case (iii), it follows by Corollary 2. 4 that

Corollary 3. 3. Let the system {P,} sattsfy 2.7 for someJEP Then for every
feX, e>0 (neP):

(.9) 2) koe-0=p,fll = Ao lfl (% 0> 0),
k= . . .
(3.10) |B&IL, (o) f] = Aol f]] 0 <o <),

where for 0 < @ < x—j—1 the corresponding sum exists and therefore

=4e°Ilfl  O<o<x—j-1),

“5 K(1+ KIeY) RS

(1] v

Analogously, Bernstein-type inequalities may be derived for further sequences a.

Remark. The methods employed here may also be used to treat the following
counterpart to the general problem (1. 2):

Let {TM()}, {TP(0)}<[X] be two families of operators and B a closed
linear operator with domain D(B)C X and range in X. The family {7 ()} is said to
satisfy a Bernstein-type inequality (with respect to B and {T®(g)}) if T (e)(X) c
c D(B) for each ¢=0, and if there exists Q(¢)>0 such that -

G12) IBTD (@)1 SQ(Q)‘IIT‘Z’(Q)J"II - (feX,0=0).

From the point of view of applications followmg in Part II, however, formu]a-
tions (1.2) and (3. 12) are parallel.

Furthermore, note that (2. 5) may be interpreted as a weak and (3. 1), 3.3
as strong Bernstein-type inequalities, respectively, as introduced in Butz_er—Scherer :
[3, 4]. However, for commutative operators (as considered here), (2. 5) may be
sharper than (3. 1), (3. 3), as the particular de la Valiée Poussin process shows
(cf. [3]). In the noncommutatxve case, strong Bernstein- type inequalities seem to be
‘essential. |

So far, we have discussed the results of Section 2 in connection with certain
particular choices of families -{T(¢)} and sequences o for arbitrary Banach spaces X
and systems {P,}. Thus it remains to specify X and {P,}. However, this will be
examined in detail in Part II, devoted to explicit applications to classical orthogo'nal
expansions. Here we only consider the trigonometric system in order to provide
a feeling to which extent the classical results are covered by the present approach.

(3.11) = A |fl . (=zjine=0).
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Let X, =L%_, lspsoo or C be the Banach space of 2n-per10dlc functions
with standard norm || - ]|

| f If(X)I”dX]""(1<p<°°), ess. sup |f(¥)], maXIf(x)!

respectrvely Defining the system {P,(},‘EP

(13 PN@ =170, BNE =" Res+7(Re™  (eN),

£ (k) being the usual Fourier coefficient -
o) =2m) [fx)e™dx - (keD),

“{P,} is a total sequénce of mutually orthogonal continuous projections on X. >, and

k=—co

(3.14) s ~-k§(’) Pef [ A (k)e"‘"] (f€X3,)-

It is well known'thét {Pk} satisfies (2. 7) with j=0 in case X, =LE , 1<p<eoo, and
with j=1 in all: X, -spaces. Thus an a‘pplication of (3. '6) yields for any w=0

Z"’ lklwckeikx

Xom

Note that Z' |k|“’c e ik* corresponds to the wth Riesz derivative #¢}(x) of the

k=—n "

(3.15)

é Z c e

k=—n

Xon

trigonometric polynomial z,(x) = Z‘ c.e** (for the definition and basic properties

of thrs fractional derivative see [1, Sec. 11. 5]).
Obviously, apart from the constants (3 15) coincides ‘with’ the cla551cal in-
equality (1..1), thus wrth

=z pr

(3.16) Z’ (ik) cie™

k=—_n

n i :
KX
2 e
= X2n

Xon

only in case of even values of r. The case of odd values, particularly r=1, is not
covered for arbitrary X, -spaces. -
Of course, there are several proofs of (3. 16) for r=1 and all spaces X,_, using
particular features of the trigonometric system. Here we may mention the classical
proof of F. Riesz. In its extended form (cf. [6, 7]) it deals with (even. or odd) se-
quences {o};~ _.., non-negative and convex on P with «,=0. Taking into account
_ addition formulae, specific for the trigonometric system, the proof of the inequality .

n >
Z’ o Ok elkx

n
2 e
k=—n X2n k=_n X2m
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reduces to a verification of the convexity on P of the sequence «,_, /o, for 0=k =n;,
0 for k>n. Whether this method of proof may be extended to more general systems
{P,} remains open. '

Finally, let us observe that the classical Bernstem mequahty (3. 16) for r=1,
X,,=C,,, for example, may of course be derived by using different methods as a
(direct) consequence of theorems in arbitrary Banach spaces. Thus, for example,
one may take (3. 16) for =2 and interpolation techniques in order to establish (3. 16)
for any 0<r<2 (see [13]).
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