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1. Introduction

The Banach—Steinhaus theorem essentially states that a family of bounded
operators is convergent on a whole space if and only if the operators are uniformly
bounded as well as convergent on a dense subspace. It is the purpose of this note to
extend part of the results of P. L. BuTZER—K. SCHERER [3], namely to give necessary
and sufficient conditions upon a family of operators such that they tend to some
limiting operator with a given order of approximation. This can be interpreted as
the Banach—Steinhaus theorem equipped with a rate of convergence. The results
are stated for locally convex spaces: They yield applications fo weighted approxima-
tion, error estimates for quadrature formulae and the mean ergodic theorem. It
is to be noted that all three applications are of a quite different structure.

2. The Banach—Steinhaus theorem with rate

Let X and Y be locally convex Hausdorff spaces w1th topologles generated by
the families of filtrating seminorms {p}, {g}, respectively.

Let T‘,, 0=0, T be bounded mappings defined on X into Y such that T Tis
sublinear for each ¢=0, i.e.’

| 91T,—T)(fs +/ = aUT,— DAl +4(T,~ T 5]
M 4[(T,—T) @] = qla(T,~T)f]

for each g€{q} and f,,f,,f€X, acR. Provided X is barrelled, the theorem of
‘Banach—Steinhaus states: the family {7, f; 0=0} converges to 7f in the topology
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-

of Y for each f€ X, i.e. for each g€ {q} one has

@ img[Tf~Tf1=0  (V/€X)

-+

if and only if

(3,1) {T,; 0=0} is uniformly bounded, i.c. to each g€ {g} there exists p€ {p} and a
constant M =0 such that

fgg‘I[(Te—T)fléMP(f) (VfeXx),
and o

(3,ii) {T,f; e=0} converges-to Tf in the topology of 'Y for each fEA A being a
total set in X.

~ For the Banach—Steinhaus theorem, see H. G. GARNIR—M. De WILDE—J. SCHMETS
[8, p. 453], N. Boursaki [1, p. 27], H. H. SCHAEFER [14, p. 86].

In order to study the rate of convergence of the given family, it is- useful to
introduce a quantity in place of the classical modulus of continuity, namely a modi-
fication of the K-functional..It is defined for t =0, f€ X, p€ {p} and p< {p} by

6] K(t,f; X, A)p,3 = irif {p(f— g)+15(2)},

) where (4, {p}) is a subspace-of (X, {p})

Theorem 1. Let (X, {p}), (4, {p}), (Y, {q}) be locally convex ‘spaces with
ACX. Let T, Q>0 and T be bounded operators mapping X into Y such that T,—T .
is sublinear for each ¢=0. Then to each q< {q} there exist p€ {p} and p € {p} such tlzat

6) - qUT,— T)f] Co@ KW@ Lf; X, A)p5  (VfEX),

where (@) and Y (o) are positive functions of o, if and only if

6,1) - - ‘I[(T—T)f]§M(P(Q)P(f) (VfeXx)
and ‘

6,i) ql(T,—T) /1= D'ﬁ(@)p(f) (VfeA),
where C, D and M are constants independent of @ and f.

Proof. To establish the implication (5)=(6), first note that

p(f)  VfeX,

(7,1, 1i) . K, f; X, A)p_,ﬁ = {tﬁ(f) YfEA.
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Then (5) implies by (7, i, ii) upon setting =y (¢)[p (0)]™*

Co@r(f), = = CVfex
Co@Vv(@le@) 'p(f), VSfeA.

This yields (6, 1) and (6, . ii) with M=D=C. :
To establish the converse, in view of the sublinearity of T,— T one has by (6, i, ii)
for-each geA

AT~ T = gUT,~ DS~ +qlT,~ T8 =
= Mo(@p(f~8)+ DY (@p(g) =

= max (M, D)o () {p(f—8) + ¥ (@) ()]~ ().

Q[(TQ“T)f] é{

Taking the infimum over all g€ 4 one has that for all f€ X

Jl(T,~T)71 = max (M, D) p @ K (Y Do @1/ X, A5

This proves the theorem. ~

. The sufficient direction of Theorem 1in case X is a Banach space w1th X=

T=1, may be found in P. L. Burzer—K. SCHERER [3]. In this case, for |//(g)—>0
. as ¢ =<, condition (6, ii) is referred to as a Jatkson-type inequality. In this respect

note that P. O. Runck [13] has actually given necessary and sufficient conditions
upon T,-such that avJac'kson-type inequality is satisfied. :

In the foregoing theorem the constants C, D, M were independent of f and .
In the followmg deeper and more theoretical version the correspondmg constants C
and D may depend upon the element f.

Theorem 2. Let (X, {p}), (4, {B)), (Y, {q)) be locally convex Hausdorff spaces
such that A is continuously embedded in X, i.e. to each p€{p)} there is p¢ {p} and
c=0 with p(f)=cp(f) for all fcA. In addttton let X as well as A be barrelled. If -
T 0=0, and T are bounded operators mapping X into Y such that T,— T is sublinear
for each ¢ =0, then the following two assertions are equivalent: - :

(8) to each g€ {q} there is p€ {p} and pE {p} such that (6 =0)

9l(T,—D)f1 = OIK(Q“s,f,X Ay, (VfeX),

| 9) to each q€ {q} there is p €{p} and M =0 such that
©, 9 supglT,~Tf) = Mp(f) (V).

©,ii) L q@=T)f1= 0(™) (VfeA).
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Proof. (8)=(9): The estimate (8) together with (7, i, ii) implies (t=07°)

o), Vfex
0(™%, Vfed.

The second assertion is the- required (9,ii). To obtain (9, i), apply the uniform
boundedness theorem (=necessary condition of classical Banach—Steinhaus theo-
rem) to g[(7,—T)f] = O(1), all f€X, noting that X is barrelled.

(9)=>(8): A being barrelled, (9, ii) implies by the uniform boundedness principle
that there exists 5¢ {p} and D=0 such that condition (6, ii) of Theorem 1 holds.
(6, 1) being valid here by assumption, one may therefore apply Thm. 1 w1th o(0)=1
and ¢ (9)=07".

Concerning the structure of Theorem 2 in comparison with the Banach—Stein-
haus theorem, the assertions (2), (3, ii) on convergence per se are replaced by the
assertions (8), (9, ii) involving an order of convergence. Indeed, if A4 is dense in

X lim K(t,f; X, A),, ;=0. This is the situation in the apphcatlons to follow.
1~0+ : _

q[(Tq—T)f]={

3. Weighted approximation

The first application will be concerned with weighted approximation; it will
turn out to be an actual example of approximation in a locally convex space. Here :
the space Y will be seen to be equal to the locally convex space X and the limit operator
will be the 1dent1ty The corresponding problem was first considered by J KEMPER—
R. J. NesseL [10] using classical methods.

Let E be the space of functions given on the reals R which are either. uniformly
continuous and bounded on R or measurable and pth power (1=p<<o) integrable
on R, and let E be normed in the usual fashion. Let E, be those functions which
are either continuous on R or p th power integrable on each compact subset of R.

" Let o . - .
X={f€Euw; le?*f(X)lg<+=, VB=>0};

it is a locally convex Hausdorff space with respect to the family of norms

Ps(f) = e f()ls.  (VfEE).
Let o ] : .
v A={f€X;f,f loc. abs. continuous, "€ X'}
and S

5(f) = le P (@l (VfeA)

- be a family of seminorms on A.
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It is our purpose to consider the Weierstrass integral

WD) = 55 / Fe=)erp [— 924”2] du

for =0, f€ X. This defines a family of operators W, on X into itself which converge
in the topology of X towards the identity operator, 1e for each =0 and each
f €x
: lim [le=F* [(#, /) (x)—f (x)]llz = 0.

o+

Now W,_,—-I satisfies the hypotheses of Thm. 1. Indeed, taking g,=>0 arbitrary ﬁked,

- itis easy to verify, using [10], that for each f=>0

e 82 [N~ s S AHVDIe ™ f Dl (0= 03 VS EX),
where n=1/2 min (8, ¢3/8). Thus (6, i) is satisfied with- M= 1+¥2 and ¢(0)=1.
Likewise with (6, 11) indeed, for each f=>0 (see (1o

=P [, /) )~/ e = 4V2e 2 le= /" (s (@ = o3 fEA).
Thus one may apply Thm. 1, (6, i, ii)=>(5), to -get for each =0

le=#= {07, /) )= f ()llle = 4V2K(@ %13 X, A)y, -

The following lemma is of importance (compare [2, p. 192] in the case of semlgroup
operators)

Lemma. Under the preceding hypotheses we have

- K@ S X,.A)q,pé%wz_‘(f,fQX)g (t=0;feX),
where {=min (y, ) and '

@265 X); = $up 175 [ (5 +9) +f =) = 2/ @l

Proof. It is obvious that
tj2 1[2.

S =—57 f f[f(x+71+72)+f(x—T1—Tz) 2f(x)]df1dfz+g,(X) :

—1/2 —t[2
where :
t/2 /2

g =_%2 //-f(x-{-rl—l—rz)d_rldrz.

—t/2 —tf2

This yields, first of all,
; Pr,(f—gr) é%wz(tszX),,-
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Furthermore, since g;'(x) = t~2[ f(x+1)+f(x—1)—2f(x)], we have
' Palg) = t 2 0?(t, f3 X)y.
Combining the results, the desired inequality follows immediately.
Proposition 1. For each §=0 there is n(=1/2 min (B, ¢%/8)) such that
le=82 (7, /) (x)~f (Ol = 6V2 (02 13 XD,
In particular, if w,(t, f; X),= b(t") Jor each h>0, where 0<a=2, i.e. f€Lip,(x; X),

. then

e PR [ )@) - fle = 0@  (VB=0).
The latter result, a direct approximation theorem, as well as its converse, is
already to be found in [10]. '
A more interesting related application would be the approximation of an oper-
ator 7: L?(R) -~ L(R) by bounded operators 7T,: LP(R) -~ L%(R), ¢>0, by some mod-
‘ulus of continuity, where both T and 7, are singular integrals of Fourier convolution
type, i.e. :

(T = f Se=wx@ds, (TN = f fx—1) X, () du,

with %, x,,EL’(R), 4rl=landgl= p“+r“1—1 An open problem here
would be to express conditions (6, i, ii) or (9, i, ii) of Thm. 1 or 2 equivalently in
terms of the kernels y, y, themselves. Whereas condition (i), namely y— x, being
" in L"(R) is satisfied by assumption, (ii) would be the difficult one. A solution would
deliver conditions which are not only sufficient for an estimate by some modulus of
.continuity but also necessary.

4. Error estimates for quadrature formulae

QOur general theorem enables one to deduce estimates for numerical integration
formulae as was poiﬁted out to us by Dr. H. Esser.

For f€ C*[a, B], the space of p-times (u=0, 1, 2, ...) continuously diiferentiable
functions on [q, 5], let us set (compare V. I. KryrLov [11]) '

(10 €/ = J1()dx, f ZA; nf(x, n)+ Z 'Z'B SO,

with given noaes x; ,, x} ,€[a, b] and weights 4; ,, B} ,. Then Q and O* define linear
functionals on C*[a, b]. In order to obtain an error estimate of Q f by Q4 ffor large n,
one assumes that the quadrature formula Q% f~ Qf is exact for polynomials p,, of

fixed degree m(=p), i.e. Q¥ p,=0p,,.
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To apply Thm. 1 we take X= C*[a, b} and A= C™*![a, b], m=y, equipped with
seminorms

()= |flew = sgplf“"(x)l (fecH

and

P() = |flens = sup | £ 0] (feCmh,

-,
T

respectively. In theAsetting of this example conditions (6, i; ii) of Thm. 1 may be
rewritten as

105 — Qlicw,ry = Mn™",  |Qh—Qlicm+1,py = Dn” """
with g the discrete n, ‘P(”)=n_“,ll//(n)=n—’"—1 and

|0%— Qlic, Ry = sup M
rg 1o

for I=y and I = m+1, respectively.
Now, in case /=1, these quantities may be computed with the a1d of the theorem -
of Peano asserting that :

b
() Qf-0f = [fOOki- dt  (fECa bl 1= g mt1, 1z 1),

where e

(12) 2hi-10) = Gy

37 (@~ O):(x— 1!

and

x—0"1, x=1,
(x_t)l+—1___ ( ) > -
. 0 , X<t

the index x in (12) meaning that the functional Q' —Qis applied to (x—1)'7" with .
respect to x. From (11) we obtain :

. .
105 —Qlctrn = [ i @Olde I =p,m+1,1=1).
_ Incase I=0, i.e. u=0, thére holds

107 — Qlic.ry = |Qnlic;ry+ Qlic.ry = (b—a)+ Zl [4;, ul-

Concerning (5) of Thm. 1 we may estimate the K-functional
K(™+174, f; C*[a, b, C™*'[a, b))

3% .
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by the (m+ 1— p)-th modulus of continuity (cf. H; JOHNEN [9]):
Op g1 -t fP) = my K@+ 178, f; CHla,b], C™* 1 [a, b)) =

= mem+1—u(t;f(”))’
where (m+1—pu=7+)

w,(t;f“‘))ésup{ sup 2’(—1)'-k[,';]f<u>(x+ks)

Is|=t Ux,x+rs€la,b}|k=0

S——

Combining these results one obtains

Theorem 3. Uﬁder the above definitions .

1ot s- ff(x)dx| Com ™ G 1oa 0715 @) (VS ECHa,E]

holds if and only if
b
, (= 1): [ 74 o1 ()t , .
@ . =0@™), () [ldhn@ld=0@""".
(ﬂ=0):i;'1 |Ai,n| i .

Let us note that (i) and (ii) may be verified for many examples, for instance
~ in case u=0 for the composite Newton—Cotes formulae; cﬂ P. 1. DAVIS—P. RABI-
. NowiITtz [6]. :

For such examples our result would yield error estimates for the quadrature
formula Q° f~ Qf which are entirely free of derivatives. The determination of the
~ best possible constants C, ,, is another problem.

Derivative-free error estimates, at least in the case of functions whlch are ana-
lytic, were originally investigated. by G. HAMMERLIN [8a, b]. Thm. 3 may be inter-
preted as a result in ESSErR [7] now equlpped with rate. See also (7] for hterature on
the subject.

5..Mean ergodic theorem

This application gives part of the results obtained by P.-L. BuTzER, D. LEVIATAN
. and U. WESTPHAL in [4, 5, 12], where the mean ergodic theorem was studied with
respect to the rate of its convergence.

Let'6%(T) be the Cesaro-means of order «=1 of the iterates of a bounded linear
operator T from a Banach space X (norm | -||) into itself, i.e. :

St '
a‘;,(r)=[”+°‘]32[”“’+°‘__l]rf (@z=1,n=0,1,2,..). .

n i=0 n—i
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If | 7" x, xy=M,y, n=0,1,2, ..., then the mean ergodic theorem asserts

lim lloy(T)f—Pf1 =0  (VfE€Xy),
where X, = ‘N (I— T)®R(I-T), N(I—T) denoting the null space and R(I—T)
the closure of the range of ([— T), and P is the projection of X, on N(I— T) parallel
to R(I—T). If Ty=T/X;, define a linear operator B with domain D(B) = N(I-T)&
@®R(I—-T,) and range in X, by Bf=g, where g€ X, is uniquely detcrmmed by
(I- P)f = (I-Ty)g and Pg=0.
- We may then apply Thm. 1 to X, normed by p(f)=| f| and D(B) with semi-
norm p( f)=|Bf . Indeed, since the following inequalities are valid (compare [5, 12])

@ e E = MeMo+ DISI (VfeXo),

@ eSS -B = (Mot DIB| (S €DE)),
one concludes that -
' lea(@) f~Pfll.= CK(n~',f; Xo, D(B))  (YSEXp)

Defining a generahzed Lipschitz class by

Lip (0; Xo)= {fEXo,K(tf,Xo,D(B)) o)),
one has

~ Proposition 2. If f£Lip (8; X,), 0<8=1, then

loa(T)f—Pfl = O(n™).
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